
Getting Modules
Right

MICHAEL PLÖD

FELLOW

with Domain Driven Design

Get my DDD book
cheaper

Book Voucher: 7.99 instead of (min) 9.99
http://leanpub.com/ddd-by-example/c/speakerdeck

http://leanpub.com/dhttp://leanpub.com/ddd-by-example/c/speakerdeckdd-by-example/c/ddd-europe

Michael Plöd
Fellow at INNOQ

Follow me on Twitter under @bitboss

Current consulting topics:

• Domain-Driven Design

• Team Topologies

• Transformation from IT Delivery to digital product orgs

Regular speaker at (inter-)national conferences and author of a
book + various articles

Separation of Concerns
is the division of complex
systems according to

responsibility

Modularity

is a specialization of SoC and about
information hiding

loose coupling
high cohesion

Domain Driven
Design

has great modularization
concepts (Bounded
Context, Aggregate) and an
iterative approach for the
identification of modules

Bounded
Context

Bounded
Context

Bounded
Context

Module Granularity in DDD

Bounded
Context

Bounded
Context

Bounded
Context

Module Granularity in DDD

Aggregate

Aggregate

Aggregate

Aggregate

Aggregate

Aggregate

Aggregate

Aggregate

Aggregate

Bounded
Context

Bounded
Context

Bounded
Context

Let’s start with Bounded Contexts

https://github.com/ddd-crew/ddd-starter-modelling-process

https://github.com/ddd-crew/ddd-starter-modelling-process

https://github.com/ddd-crew/ddd-starter-modelling-process

https://github.com/ddd-crew/ddd-starter-modelling-process

„It is not the domain
experts knowledge that
goes into production, it is
the assumption of the
developers that goes into
production”

11

Alberto Brandolini
Inventor of EventStorming

A BC
„Gut, dass wir alle einer Meinung sind!“

Inspiriert durch Jeff Patton & Luke Barren

„good that we all share the same
opinion“

for doing Domain Driven Design
Domain expert knowledge is essential

we need direct collaboration

How the business names things

TV

Window

ChairTrolley

Painting

Desk

How the business names things

TV

Window

ChairTrolley

Painting

Desk

What we see in code

TransparencyFactory

RollableStuffContainer

EntertainmentProviderSingleton

DecoratorImpl

RestProvider

WorkEnablementDevice

DOMAIN MODEL

Domain ExpertsDevelopers

Ubiquitous Language

Conversations

Code

Drawings Documentation

Event Storming
is a direct collaboration workshop for various stakeholders of a piece of software

Chaotic Exploration
A Domain Event is the main concept of EventStorming. It is an event
that is relevant for the domain experts and contextual for the domain
that is being explored. A Domain Event is a verb at the past tense. The
official EventStorming colour is orange.

Enforcing the timeline

In a second step we sort those events along a timeline. This will ignite
quite a few discussions and may take some time.

Pivotal Events & Swimlanes
Mark those events that are very important. Those are your pivotal
events. You may also highlight parallel streams of activity with

swimlanes.

Quiz: which of these events are pivotal?

Quiz: which of these events are pivotal?

23

https://github.com/ddd-crew/ddd-starter-modelling-process

Text...Shape... Color... Size...

There are many choices to group domain concepts

24

Output quantity

Boundaries between Pivotal Events
Heuristic: A pivotal event will probably sit on a boundary of a module

Mind the swimlanes
Heuristic: Swimlanes can help you in identifying further cohesion criteria

Bounded Context

A Bounded Context is a boundary for a
model expressed in a consistent language

tailored around a specific purpose

A Bounded
Context is a
boundary for a
model
expressed in a
consistent
language
tailored around
a specific
purpose

Boundary

Learning and
mastering domain

complexity

Conducting
experiments /

Learning

Delivering high
value software

A Bounded
Context is a
boundary for a
model
expressed in a
consistent
language
tailored around
a specific
purpose

Boundary for a model

Business Rules

Decisions

Policies

A Bounded
Context is a
boundary for a
model
expressed in a
consistent
language
tailored around
a specific
purpose

Language

Terminology

Definitions

Meaning

A fruit or a vegetable?
What is a tomato?

A fruit or a vegetable?
What is a tomato?

Fruit

Botanics

A fruit or a vegetable?
What is a tomato?

Fruit

Botanics

Vegetable

Cooking

A fruit or a vegetable?
What is a tomato?

Fruit

Botanics

Vegetable

Cooking
US
Customs

A fruit or a vegetable?
What is a tomato?

Fruit

Botanics

Vegetable

Cooking
US
Customs

25 Min

Time Management

A fruit or a vegetable?
What is a tomato?

Fruit

Botanics

Vegetable

Cooking
US
Customs

25 Min

Time Management

Feedback

Theater

A fruit or a vegetable?
What is a tomato?

A Bounded
Context is a
boundary for a
model
expressed in a
consistent
language
tailored around
a specific
purpose

Purpose

Language

Rules

Specific Model

Botanics-US Customs-Cooking-Time management-
Feedback
Tomato

It aims at specific models tied to a specific purpose

The Bounded Context is not about the

Some IT conference

Registration of visitors

Lunch planning

Printing of badges

Room planning

Selling tickets

Handling of payments

YOU at some IT conference

Registration of visitors

Lunch planning

Printing of badges

Room planning Selling tickets

Handling of payments

You can group concerns

Lunch planning

Room planning

Event
Management

Printing of badges

Badges

Registration of visitors

Selling tickets

Handling of payments

Ticket Sales

Don’t
Repeat
Yourself

YOU at some IT conference

Registration of visitors

Lunch planning

Printing of badges

Room planning Selling tickets

Handling of payments

Bounded Context

A Bounded Context is a boundary for a
model expressed in a consistent language

tailored around a specific purpose

This has no purpose at all and the
language is also not specific here

Maybe those are interesting bounded context candidates?

Event
Management

BadgesTicket
Sales

Look for terminology

Application
Form

Scoring
Rule Cluster

Documents Real Estate
Verification

Income
Verification

Rejection

Reference
Properties Rejection

Scoring
Rule Cluster

Credit
Decision
Template

Credit
Decision
Hierarchy

Contract
Proposal

Contract Welcome
Letter

Repayment
Plan

Decision

44

https://github.com/ddd-crew/ddd-starter-modelling-process

45

Domain Message Flow Modelling
A Domain Message Flow Diagram is a simple visualization showing the flow of messages
(commands, events, queries) between actors, bounded contexts, and systems, for a single scenario.

Source: https://github.com/ddd-crew/domain-message-flow-modelling

https://github.com/ddd-crew/domain-message-flow-modelling

47

https://github.com/ddd-crew/ddd-starter-modelling-process

47

https://github.com/ddd-crew/ddd-starter-modelling-process

48

Bounded Context Design Canvas
The canvas guides you through the process of designing a bounded context by requiring you to

consider and make choices about the key elements of its design, from naming to responsibilities, to
its public interface and dependencies.

Source: https://github.com/ddd-crew/bounded-context-canvas

https://github.com/ddd-crew/bounded-context-canvas

COHESION
Think about

Bounded
Context

Bounded
Context

Bounded
Context

Let’s dig into the Bounded Contexts

Bounded
Context

Bounded
Context

Bounded
Context

Let’s dig into the Bounded Contexts

Aggregate

Aggregate

Aggregate

Aggregate

Aggregate

Aggregate

Aggregate

Aggregate

Aggregate

56

https://github.com/ddd-crew/ddd-starter-modelling-process

Everything from here on is
inside a Bounded Context

We are now talking about more fine grained modules

Aggregates

(Internal)
Building Blocks

Entities

Value Objects

Factories

Services

Repositories

TACTICAL
DESIGN

helps us with regards to
evolvability of
microservices

Entities

Entities represent the core
business objects of a
bounded context’s model

Each Entity has a
constant identity

Each Entity has its own
lifecycle

Customer

Credit
Application

Shipment

Value Objects

Value Objects derive their
identity from their values

Value Objects do not have
their own lifecycle, they
inherit it from Entities
that are referencing them
You should always
consider value objects for
your domain model

Color

Monetary
Amount

Customer

Entity

Value Value

Entity

Value Value

Using only Entities and Value
Objects you will end up with

big object graphs

Entity

Value Value

Aggregates group Entities and Value Objects

ROOT ROOT

ROOT

Value Value

ROOT

Each Aggregate has a Root Entity, aka Aggregate Root

<ValueObject>
SelfDisclosure

<ValueObject>
Address

<ValueObject>
RedemptionDetail

<Entity>

Loan

<Root Entity>

LoanApplicationForm

<Root Entity><ValueObject>
CustomerNumber

<Root Entity>

Customer

Consider using Value Objects as indirect references
between Aggregates

Aggregate

Domain
Concepts

Aggregates represent higher level business concepts.

Behavior
Try moving behavior to Value Objects in the
Aggregates. The Entities should deal with lifecycle and
identitiy.

Invariants
Aggregates allow us to implement and enforce rules
and invariants (a fincancial situation must have in-
and outgoings)

Hints

Small
Prefer small aggregates that usually only contain an
Entity and some Value Objects.

Consistency
Boundaries

Take a look which parts of your model must be
updated in an atomically consistent manner

One TX per
Aggregate

Aggregates should be updated in separate
transactions which leads to eventual consistency

Reference by
Identity

Do not implement direct references to other Root
Entities. Prefer referencing to Identity Value Objects

Design Level EventStorming
helps you to

identify and design aggregates

Design Level EventStorming

Starting point

Chaotic Exploration on business rules

Which grouping of the rules is the right one?

„the key to incremental architecture
is to build on a framework that can
accommodate change... that
framework is the domain.... By
modeling the domain, you can more
easily handle changes to the domain“

Allen Holub
https://holub.com

These groups
are great
candidates for
aggregates!

OOAD usually starts with nouns as class candidates,
then goes to attributes and then verbs (methods)

DDD starts with behavior (verbs) and looks then on
structures

Mind the difference between this
approach and the classic object

oriented analysis and design (OOAD)

www.innoq.com
Thanks!

Michael Plöd

Twitter: @bitboss
LinkedIn: https://www.linkedin.com/in/michael-ploed/

Get my DDD book at a discount with:

https://leanpub.com/ddd-by-example/c/speakerdeck

(or by scanning the QR code)

Check out https://socreatory.com for DDD trainings with me
(onsite or online as well as in German or English)

