How to Embrace the Browser,
Architect’s Edition

enhanceconf London
4 March, 2016

Stefan Tilkov, innoQ
@stilkov

innoQ’

Lessons from the past: CORBA

> Once, there was this thing called CORBA
> |t was supposed to rule the world!

> The browser came along, using some stupid text-based
protocol

> Thank God it got CORBA support!

> Everyone was supposed to switch to it ...

| essons from the past: WS-*

> “We can’tignore this Web thing anymore”

> “Let’s just do RCP over XML and HTTP”

> “Port 80 is open, so let’s use it!”

> Re-invent lIOP, IDL, CORBA Services as SOAP, WSDL, WS-*
> Proprietary integration

> Strong vendor support

Anatomy of a SOAP “Web service”

> Doesn’t expose individual resources with URIs

> No links, no forms, no hypermedia

> Uses HITP as a transport

> Can’t use advanced HTTP features (e.g. caching)
> Specific instead of generic

> “Tunnels” through the Web

That “REST” thing

> Architectural style, defined after the fact

> |dentification of resources, HatEoAS, self-descriptive
messages, representations

> Highlighted what contstraints need to be adhered to gain
benefits, and what tradeoffs involved are

RESTful Web services

> Embrace, don’t oppose, the Web’s architecture

> Exchange local optimum for benefits of generic approach
> Simpler

> More efficient

> More interoperable

What’s the client side analogy?

Frontend, we’ve got frontends

Frontend, we’ve got frontends

Assumption:
JS-centric web apps can

-

-
-
-
-
-
-
-
-
g B
-
-

'I
-
-
-
-
-
-
-
l—
-
-

-
-
-
-
-
-
-
-
-
-
-
—’
-
-

—’—
-
-
-
-
| -
-
-
-
-
-
v -

“Web service””

> Use HIITP as transport
> lgnore verbs

> lgnores URIS

> Expose single “endpoint”

> Fails to embrace the Web

Y in the SOAP/WSDL sense

“Web app”?

)

)

)

Jses browser as runtime
lgnores forward, back, refresh
Does not support linking
Exposes monolithic “app”

Fails to embrace the browser

2 built as a careless SPA

ROCA: Resource-oriented Client Architecture
http://roca-style.org

The web-native way of distributing logic

Client Precentation > Rendering, layout, styling
.. on an unknown client
Server Process Flow > Logic & state machine on server

> Client user-agent extensible via

omain Log
omain Logic code on demand

Data

<div class="f1ilter-column">
<label for="project">Project</label>
<select class="multiselect" 1d="project”
name="project" size="5" multiple>

<opt1on>DISCOVER</option>
<option>IMPROVE</option>
<option >MAGENTA</option>
<option>ROCA</option>
<opt1on>ROCKET</option>

</select>
</div>

$(' .multiselect', context).each(function() {
$(this).multiselect({
selectedlList: 2,

checkALl

uncheckA]

‘ext: "Alle",
1Text: "Keinen"

}).multiselectfi

I ¥

ter({label:"",

width:"200px"});

Project

DISCOVER
IMPROVE
MAGENTA
ROCA
ROCKET

Project
MAGENTA , ROCA

Y Alle *Keinen

DISCOVER

IMPROVE
~ MAGENTA
~ ROCA

HTML & Hypermedia

> In REST, servers expose a hypermedia format

> Option 1: Just use HTML

> Option 2: Just invent your own JSON-based, incomplete clone

> Clients need to be RESTful, too
> Option 1: Use the browser

> Option 2: Invent your own, JS-based, buggy, incomplete implementation

Any sufficiently complicated JavaScript client application
contains an ad hoc, informally-specified, bug-ridden,
slow implementation of half a browser.

(Me, with apologies to Phillip Greenspun)

> Clients should be
modularized as much as
servers (cf. pServices)

> Browser as platform

> How to connect separate
Uls?

Web Ul Integration: Links

System 1

System 2

Web Ul Integration: Redirection

*
.
.
S
.

r
.
.
.
.
.
.
.
.
S
.
S
S
S
®
N

System 1 System 2

Web Ul Integration: Transclusion

Web Ul Integration: Web Components?

System 1 Component

Backend platform goals

> As few assumptions as possible

> No implementation dependencies
> Small interface surface

> Based on standards

> Parallel development

Backend Platform

> Independent deployment

> Autonomous operations

What’s the frontend platform analogy?

> As few assumptions as possible

contend Platform > No implementation dependencies

> Small interface surface
> Based on standards

> Parallel development

Backend Platform

> Independent deployment

> Autonomous operations

The browser as a platform

Frontend Platform

Backend Platform

)

)

)

Independent applications
Loosely coupled

Separately deployable
Based on standard platform
Updated on the fly

Any device

How to get away with “just” the Web

> Mobile first > Shared assets
> Responsive design > Pull vs. push
> Progressive enhancement > Sacrifice (some) efficiency

Small frontends, loosely coupled

Summary

The web is more than the sum of
its protocols

Constraints are good
(when architecture is concerned)

Embrace the web’s constraints —
don’t fight them

hank you - @stilkov

Stefan Tilkov
stefan.tilkov@innog.com

hat’s all | have. Phone: +49 170 471 2625

innoQ Deutschland GmbH innoQ Schweiz GmbH
°
I n n 0 Krischerstr. 100 Ohlauer Straf3e 43 Ludwigstr. 180E Kreuzstrafie 16 Gewerbestr. 11
40789 Monheim am Rhein 10999 Berlin 63067 Offenbach 80331 Miinchen CH-6330 Cham
Germany Germany Germany Germany Switzerland

www.innoq.com Phone: +49 2173 3366-0 Phone: +49 2173 3366-0 Phone: +49 2173 3366-0 Phone: +49 2173 3366-0 Phone: +41 41 743 0116

mailto:stefan.tilkov@innoq.com?subject=
http://www.innoq.com

