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Lessons from the past: CORBA

> Once, there was this thing called CORBA 

> It was supposed to rule the world! 

> The browser came along, using some stupid text-based 
protocol 

> Thank God it got CORBA support! 

> Everyone was supposed to switch to it …



Lessons from the past: WS-*

> “We can’t ignore this Web thing anymore” 

> “Let’s just do RCP over XML and HTTP” 

> “Port 80 is open, so let’s use it!” 

> Re-invent IIOP, IDL, CORBA Services as SOAP, WSDL, WS-* 

> Proprietary integration 

> Strong vendor support



Anatomy of a SOAP “Web service”

> Doesn’t expose individual resources with URIs 

> No links, no forms, no hypermedia 

> Uses HTTP as a transport 

> Can’t use advanced HTTP features (e.g. caching) 

> Specific instead of generic 

> “Tunnels” through the Web



That “REST” thing

> Architectural style, defined after the fact 

> Identification of resources, HatEoAS, self-descriptive 
messages, representations 

> Highlighted what contstraints need to be adhered to gain 
benefits, and what tradeoffs involved are



RESTful Web services

> Embrace, don’t oppose, the Web’s architecture 

> Exchange local optimum for benefits of generic approach   

> Simpler 

> More efficient 

> More interoperable  



What’s the client side analogy?
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Assumption: 
JS-centric web apps can 

be as good as native apps 

They shouldn’t be as bad!



“Web service”1) 
> Use HTTP as transport 

> Ignore verbs 

> Ignores URIs 

> Expose single “endpoint” 

> Fails to embrace the Web

1) in the SOAP/WSDL sense

“Web app”2) 
> Uses browser as runtime 

> Ignores forward, back, refresh 

> Does not support linking 

> Exposes monolithic “app” 

> Fails to embrace the browser  

2) built as a careless SPA 



ROCA: Resource-oriented Client Architecture 
http://roca-style.org



The web-native way of distributing logic

Process Flow

Presentation

Domain Logic

Data

Server

Client > Rendering, layout, styling 
on an unknown client 

> Logic & state machine on server 

> Client user-agent extensible via 
code on demand



$('.multiselect', context).each(function() {  
        $(this).multiselect({  
                selectedList: 2,  
                checkAllText: "Alle",  
                uncheckAllText: "Keinen"  
        }).multiselectfilter({label:"",  
                              width:"200px"});  
});

<div class="filter-column">  
   <label for="project">Project</label>  
   <select class="multiselect" id="project"  
           name="project" size="5" multiple>  
     <option>DISCOVER</option>  
     <option>IMPROVE</option>  
     <option >MAGENTA</option>  
     <option>ROCA</option>  
     <option>ROCKET</option>  
   </select>  
</div>



HTML & Hypermedia

> In REST, servers expose a hypermedia format 

> Option 1: Just use HTML 

> Option 2: Just invent your own JSON-based, incomplete clone 

> Clients need to be RESTful, too 

> Option 1: Use the browser 

> Option 2: Invent your own, JS-based, buggy, incomplete implementation



Any sufficiently complicated JavaScript client application 
contains an ad hoc, informally-specified, bug-ridden, 
slow implementation of half a browser. 

(Me, with apologies to Phillip Greenspun)



ApplicationApplication Application Application > Clients should be 
modularized as much as 
servers (cf. μServices) 

> Browser as platform 

> How to connect separate 
UIs?



Web UI Integration: Links

System 1 System 2



Web UI Integration: Redirection

System 1 System 2



Web UI Integration: Transclusion

System 1 System 2



Web UI Integration: Web Components?

System 1 Component



Backend platform goals

> As few assumptions as possible 

> No implementation dependencies 

> Small interface surface 

> Based on standards 

> Parallel development 

> Independent deployment 

> Autonomous operations

Backend Platform
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The browser as a platform

> Independent applications 

> Loosely coupled 

> Separately deployable 

> Based on standard platform 

> Updated on the fly 

> Any device

Backend Platform

Frontend Platform



How to get away with “just” the Web

> Mobile first 

> Responsive design 

> Progressive enhancement

> Shared assets 

> Pull vs. push 

> Sacrifice (some) efficiency

Small frontends, loosely coupled



Summary



The web is more than the sum of 
its protocols



Constraints are good 
(when architecture is concerned)



Embrace the web’s constraints – 
don’t fight them
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Thank you – 
that’s all I have. 
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