
How to Embrace the Browser,
Architect’s Edition

Stefan Tilkov, innoQ
@stilkov

enhanceconf London 
4 March, 2016

Lessons from the past: CORBA

> Once, there was this thing called CORBA

> It was supposed to rule the world!

> The browser came along, using some stupid text-based
protocol

> Thank God it got CORBA support!

> Everyone was supposed to switch to it …

Lessons from the past: WS-*

> “We can’t ignore this Web thing anymore”

> “Let’s just do RCP over XML and HTTP”

> “Port 80 is open, so let’s use it!”

> Re-invent IIOP, IDL, CORBA Services as SOAP, WSDL, WS-*

> Proprietary integration

> Strong vendor support

Anatomy of a SOAP “Web service”

> Doesn’t expose individual resources with URIs

> No links, no forms, no hypermedia

> Uses HTTP as a transport

> Can’t use advanced HTTP features (e.g. caching)

> Specific instead of generic

> “Tunnels” through the Web

That “REST” thing

> Architectural style, defined after the fact

> Identification of resources, HatEoAS, self-descriptive
messages, representations

> Highlighted what contstraints need to be adhered to gain
benefits, and what tradeoffs involved are

RESTful Web services

> Embrace, don’t oppose, the Web’s architecture

> Exchange local optimum for benefits of generic approach

> Simpler

> More efficient

> More interoperable

What’s the client side analogy?

Rendered on
Client

Rendered on
Server

DesktopMobile Set top

Web App Native App

Frontend, we’ve got frontends

Frontend

Hybrid

Rendered on
Client

Rendered on
Server

DesktopMobile Set top

Web App Native App

Frontend, we’ve got frontends

Frontend

Hybrid

Assumption:
JS-centric web apps can 

be as good as native apps

They shouldn’t be as bad!

“Web service”1)
> Use HTTP as transport

> Ignore verbs

> Ignores URIs

> Expose single “endpoint”

> Fails to embrace the Web

1) in the SOAP/WSDL sense

“Web app”2)
> Uses browser as runtime

> Ignores forward, back, refresh

> Does not support linking

> Exposes monolithic “app”

> Fails to embrace the browser

2) built as a careless SPA

ROCA: Resource-oriented Client Architecture
http://roca-style.org

The web-native way of distributing logic

Process Flow

Presentation

Domain Logic

Data

Server

Client > Rendering, layout, styling 
on an unknown client

> Logic & state machine on server

> Client user-agent extensible via 
code on demand

$('.multiselect', context).each(function() {  
 $(this).multiselect({  
 selectedList: 2,  
 checkAllText: "Alle",  
 uncheckAllText: "Keinen"  
 }).multiselectfilter({label:"",  
 width:"200px"});  
});

<div class="filter-column">  
 <label for="project">Project</label>  
 <select class="multiselect" id="project"  
 name="project" size="5" multiple>  
 <option>DISCOVER</option>  
 <option>IMPROVE</option>  
 <option >MAGENTA</option>  
 <option>ROCA</option>  
 <option>ROCKET</option>  
 </select>  
</div>

HTML & Hypermedia

> In REST, servers expose a hypermedia format

> Option 1: Just use HTML

> Option 2: Just invent your own JSON-based, incomplete clone

> Clients need to be RESTful, too

> Option 1: Use the browser

> Option 2: Invent your own, JS-based, buggy, incomplete implementation

Any sufficiently complicated JavaScript client application
contains an ad hoc, informally-specified, bug-ridden,
slow implementation of half a browser.

(Me, with apologies to Phillip Greenspun)

ApplicationApplication Application Application > Clients should be
modularized as much as
servers (cf. μServices)

> Browser as platform

> How to connect separate
UIs?

Web UI Integration: Links

System 1 System 2

Web UI Integration: Redirection

System 1 System 2

Web UI Integration: Transclusion

System 1 System 2

Web UI Integration: Web Components?

System 1 Component

Backend platform goals

> As few assumptions as possible

> No implementation dependencies

> Small interface surface

> Based on standards

> Parallel development

> Independent deployment

> Autonomous operations

Backend Platform

What’s the frontend platform analogy?

> As few assumptions as possible

> No implementation dependencies

> Small interface surface

> Based on standards

> Parallel development

> Independent deployment

> Autonomous operations

Backend Platform

Frontend Platform

The browser as a platform

> Independent applications

> Loosely coupled

> Separately deployable

> Based on standard platform

> Updated on the fly

> Any device

Backend Platform

Frontend Platform

How to get away with “just” the Web

> Mobile first

> Responsive design

> Progressive enhancement

> Shared assets

> Pull vs. push

> Sacrifice (some) efficiency

Small frontends, loosely coupled

Summary

The web is more than the sum of
its protocols

Constraints are good
(when architecture is concerned)

Embrace the web’s constraints –
don’t fight them

Stefan Tilkov 
stefan.tilkov@innoq.com 
Phone: +49 170 471 2625

innoQ Deutschland GmbH

Krischerstr. 100
40789 Monheim am Rhein
Germany
Phone: +49 2173 3366-0

innoQ Schweiz GmbH

Gewerbestr. 11
CH-6330 Cham
Switzerland
Phone: +41 41 743 0116www.innoq.com

Ohlauer Straße 43
10999 Berlin
Germany
Phone: +49 2173 3366-0

Ludwigstr. 180E
63067 Offenbach
Germany
Phone: +49 2173 3366-0

Kreuzstraße 16 
80331 München
Germany
Phone: +49 2173 3366-0

Thank you –
that’s all I have.

@stilkov

mailto:stefan.tilkov@innoq.com?subject=
http://www.innoq.com

