SCALACON / 04.11.2021

Describable,
typesafe
computations

DANIEL WESTHEIDE
TWITTER:

https://twitter.com/kaffeecoder

About me

Senior consultant at INNOQ.
Author of three Scala books.

Twitter LinkedlIn

Disney Streaming

Scala

Finagle
Play Framework

Apache Spark Alka

Quality goals

correcthess
auditability

Example use case

SelfPub, a platform for creating and selling self-published digital books

he royalty rate is 75% of the revenue
SelfPub keeps at least EUR 0.80 of the revenue of each sold book

SelfPub royalties calculation

def royaltiesForMonth(sales: List[BigDecimal]): BigDecimal =

val royaltyRate = BigDecimal(0.75)
val totalRevenue = sales.sum
totalRevenue * royaltyRate

Calculation with logging

tmport java.tuime.YearMonth
private val logger = LoggerFactory.getlLogger("RoyaltiesCalculation")

def royaltiesForMonth(sales: List[BigDecimal], month: YearMonth): BigDecimal =
val royaltyRate = BigDecimal(0.75)

logger.info("royalty rate = {}", royaltyRate)

val totalRevenue = sales.sum

logger.info("total revenue = {}", totalRevenue)

val result = totalRevenue * royaltyRate

logger.info("royalties for {}, total revenue * royalty rate = {} * {} = {}",

month, totalRevenue, royaltyRate, result)
result

Log output

[main] INFO RoyaltiesCalculation - royalty rate = 0.75
[main] INFO RoyaltiesCalculation - total revenue = 20.47

[main] INFO RoyaltiesCalculation - royalties for 2021-10, total revenue * royalty rate = 20.47 * 0.75 =
15.3525

Assessment

easy to implement

difficult to read and maintain

complection of calculation and logging
error-prone

difficult to make calculation log available to
stakeholders

logging as a side-effect

Enter

TreelLog

"I[..] a
veritable
complect of

computation

and
description in
perfect
harmony"

TreelLog

functional Scala library by Lance
and Channing Walton
Github:

"TreeLog achieves this remarkable
feat with a Writer monad writing
to a Tree representing the
hierarchical log of computation.”
based on Cats or Scalaz
introduces the concept of a
described computation

https://github.com/lancewalton/treelog

Treelog types

type LogTree Tree[LogTreeLabel[Annotation]]

type LogTreeWriter[V] Writer[LogTree, V]
type DescribedComputation[V] EitherT[LogTreeWriter, String, V]

SelfPub royalties with TreelLog

tmport java.time.YearMonth
tmport cats.implicits. _
tmport treelog.LogTreeSyntaxWithoutAnnotations._

def royaltiesForMonth(
sales: List[BigDecimal],
month: YearMonth
): DescribedComputation[BigDecimal] =

s"Revenue share for $month" ~< {
for
royaltyRate <- BigDecimal(0.75) ~> (rate => s"Royalty rate = $rate")
totalRevenue <- sales.sum ~> (revenue => s"Total revenue = $revenue")
revenueShare <- (totalRevenue * royaltyRate) ~> (revShare =>
s"revenue share = total revenue * royalty rate = $revShare"

)

ylield revenueShare

}

Accessing the result value

val sales List(BigDecimal(5.99), BigDecimal(12.99), BigDecimal(1.49))

val royaltties royaltiesForMonth(sales, YearMonth.of(2021, 10))
royalties.value.value

Showing the tree log

val sales List(BigDecimal(5.99), BigDecimal(12.99), BigDecimal(1.49))

val royalties = royaltiesForMonth(sales, YearMonth.of (2021, 10))
println(royalties.value.written.show)

SelfPub royalty calculation log

Revenue share for 2021-10
Royalty rate = 0.75

Total revenue 20.47
revenue share = total revenue * royalty rate = 15.3525

Assessment

described computation
hierarchical log with tree structure
Cats or Scalaz dependency
monadic APl using monad transformers
elegant implementation
obstacle in less experienced teams
still verbose and error-prone

referentially transparent

An alternative approach

Goals

familiar APl that looks similar to plain calculations

a log that can be read and understood by stakeholders

guaranteed consistency between log and actual calculation
reduced surface area for calculation bugs

ability to serialize the complete calculation

Solution

self-describing calculations

calculations as data

representing different quantity types in the type system
typeclasses for all operators that are supported as self-describing
calculations

calclog

open-source library built on the same principles
additional goals:
not only open for new quantity types, but also for new operators

zero dependencies
GitHub:

https://github.com/dwestheide/calclog/

calclog

it's demo time...

Summary (1)

here are a few options for creating an audit

log of business-critical calculations

Simple logging is usually not sufficient

treelog is a great choice if your team is
experienced with category theory and monad
transformers, and they love using monads even

for logging

Summary (2)

calclog ensures that your audit log is consistent
with your calculation

it literally derives the log from the calculation
involves some ceremony to add support for your
types and operators

no monadic API

flexible regarding formatting or serialization

another approach worth exploring: macros

Thank you! Questions? Q

www.innog.com

Daniel Westheide
https://danielwestheide.com
@kaffeecoder

innoQ Deutschland GmbH

Krischerstr. 100 Ohlauer Str. 43 Ludwigstr. 180E Kreuzstr. 16 Hermannstr. 13 Erftstr. 15-17 Konigstorgraben 11
40789 Monheim 10999 Berlin 63067 Offenbach 80331 MUnchen 20095 Hamburg 50672 Kéln 20402 NUrnberg
+49 2173 333660

