

http://continuous-delivery-buch.de/

http://continuous-delivery-book.com/

Eberhard Wolff

Microservices

Ein Überblick

A Short Overview

Eberhard Wolff

FREE!!!!

http://microservices-buch.de/

http://microservices-book.com/

Microservices

A Practical Guide 2nd Edition

Principles, Concepts, and Recipes

Eberhard Wolff

http://microservices-praxisbuch.de/

http://practical-microservices.com/

Eberhard Wolff

Microservices Rezepte

Technologien im Überblick

Eberhard Wolff

Microservices Recipes

Technology Overview

http://microservices-praxisbuch.de/ rezepte.html

http://practical-microservices.com/ recipes.html

http://ddd-referenz.de/ https://domainlanguage.com/ddd/reference/

http://leanpub.com/service-mesh-primer/

International Software Architecture Qualification Board

https://www.isaqb.org/

Wikipedia

- Software architecture =high level structures
- Structure =
 - Software elements +
 - Relations among them +
 - Properties of elements and relations

Wikipedia

- Software architecture = structures
- Boxes

Wikipedia

Common definition of architecture

...but does it catch all?

Architecture Fail?

Software doesn't go into production

Security problem

Compliance problem

- Fail caused by structure?
- Successful architecture?

Martin Fowler

Software architecture =

Important

and hard to change decisions

• How to know in advance?

Photo: Webysther Nunes

Software Architecture

Find technical solutions

...to the problem at hand.

- Home-grown definition
- Broad definition

Need to understand the problem!

Quality Attributes / Tree

Availability ISO 25010 Fault Tolerance Reliability Recoverability Maturity Nonrepudiation Security Structure only helps with Maintainability maintainability

Quality Attributes

- Holistic view on quality
- Identify important attributes

• But

high-level

hard to verify

Quality Scenario

Event / Stimulus

Quality Scenario

Concrete

Easy to verify - metric

Usage Scenario

Stimulus

A new users registers

Metric

Only one in 1.000 users calls the hotline.

Usability - Ease of Use

Usage: Solution

- Hire UX experts
- Usability tests

Change Scenario

Stimulus

A new language / locale should be support

Metric

No code modification needed.

Takes two days

Maintainability - Modifiability

Change Solution

Configuration files for language

Code quality irrelevant

Failure Scenario

Stimulus

A server crashes

Metric

System might be unavailable for two hours.

No data might be lost.

Reliability - fault tolerance

Failure Solution

- RAID
- Backup
- Data center in different locations

No need for a cluster of servers

Solutions

- Solutions must solve problems.
- Traditional measures like

```
high code quality,
```

clean architecture,

scalability,

your favorite framework or language

...solves none of the scenarios

Traditional Architect

A title

Modern Architect

- Architect does architecture
- A role

- Might be different persons
- Might change over time

• Might or might not have title "software architect"

Traditional Architect

Most experienced technical person

Most Experienced Person

- For every detail?
- For every technology?
- Unrealistic

• Puts enormous pressure on the architect.

• Why do you want to play such role?

Most Experienced Person

Quite sad

 Use the technical expertise of the team

• ...and grow the team

Traditional Architect

Understand & guard whole system

Understanding the System

Architects need to understand the system.

Systems too large for one person.

• So use the expertise of the team.

Traditional Architect

- Define the architecture
- i.e. make all relevant decisions

Enforce the architecture

Self-organizing Team

- Architect is "just" a team member
- No way to "enforce" architecture
- Actually, the team decides how to work.

Traditional Architect

Enforces the architecture

...but probably doesn't know whether it is truly implemented.

...because he / she can't understand the whole system.

- How do you architect if you can't understand the system?
- What is being "enforced"????

Ivory Tower

• Just because architects think they do architecture doesn't mean it has any impact.

- Information about issues might be wrong.
- Enforcement might be an illusion.

Technical Decisions

- Understand the team's problems
- Seek feedback about possible decision
- Communicate decisions

Technical Decisions

Moderate, don't enforce

Make your expertise usable

 General rule for managing
 self-organization

Moderate Technical Decisions

Use expertise of the full team

• Results:

Better decisions

Team actually executes

decisions

No ivory tower

Software Architecture = Collaborative Game

- All lose or win together
- Everyone has a specific role
- Communication is essential

Understanding the System

Information about the system is incomplete

...so are requirements

More information might be hard to get.

...or too late

...or too expensive

- You will still need to make decisions.
- Be courageous.

Software architecture = making decisions ...constantly ...without enough information

Decisions

Often decisions are made too early

- Work on unimportant stuff
- Too little information

Decisions

• When do you need to make the decision?

• Example: Issue invoices as soon as there is revenue

...and also payment, book keeping etc

No need for a detailed architecture, yet.

Decisions

- What if you do nothing?
- What if you make the decision too late?

- No revenue
- ...only bad if there are customers
- Manual invoicing
- ...might be fine
- ...unless you are truly successful

The best decisions are the ones not made yet.

Be prepared to revise decisions

Traditional Architect

Doesn't code

...because architects do architecture

Problem: Ivory tower

...but that is solved

Problem: Detached from reality

...can be solved by communication

Modern Architect

- What if architecture is a full-time job?
- No time to code

- Anyhow collaborative
- Either have several coding architects
- ...and communication overhead between them.
- Or a full time architect

Soccer Coach

- Knows how to play soccer
- ...but doesn't do it any more.
- In particular won't try to score a goal.

- A role model for software architects?
- Knows how to code
- ...but doesn't do it.
- In particular not for complex code.

Architects May or May Not Code.

Conclusion

- Software architecture = solve technical problems
- Quality attributes / tree / scenarios to understand problem
- Often solution is not traditional architecture
- Software architecture is a collaborative game
- Don't be afraid to make decision later
- Don't be afraid to make decisions with unclear information