holatolBEeome A
AGEhitecE / |

f o
L2074
N

]

1

Eberhard Wolff °

Fellow

INNOQ
@ewolff

http

//ewolff.com

Eberhard Wolff i FRACTI{:AL GU|DE TE}

Continuous CONTINUOUS
Delivery DELIVERY

Der pragmatische Einstieg

EBERHARD WOLFF

dpunkt.verlag

B

http://continuous-delivery-buch.de/ http://continuous-delivery-book.com/

http://microservices-buch.de/

http://microservices-book.com/

Microservices

Grundlagen flexibler Softwarearchitekturen

FLEXIBLE SOFTWARE ARCHITECTURE

EBERHARD WOLFF
dpunkt.verlag

http://microservices-buch.de/
ueberblick.html

http://microservices-book.com/
primer.html

FREE!!

Microservices Microservices
Ein Uberblick PI'I mer

A Short Overview

INNOQ INNOQ

Da.-S Eberhard Wolff . | | -
Microservices- bl
Praxisbuch A Practical Guide

2nd Edition
Grundlagen, Konzepte und Rezepte

dpunkt.verlag

http://microservices-praxisbuch.de/
rezepte.html

http://practical-microservices.com/

Eberhard Wolff Eberhard Wolff re Ci p e S . ht m I
Microservices Microservices
Rezepte Recipes

Technologien im Uberblick Technology Overview

FREE!!

Domain-

Driven

Naciaan
Hﬁﬂlul [|

Referenz

Definitionen & Muster

Ubersetzt von
Michael Pl&d

Christian Stettler
& Eberhard Wolff

FREE!N!

http://ddd-referenz.de/
https://domainlanguage.com/ddd/reference/

FREE!!

http://leanpub.com/service-mesh-primer/

° @ International Software Architecture
ISAQ» Qualification Board

https://www.isagb.org/

Wikipedia

 Software architecture =

high level structures

e Structure =
Software elements +
Relations among them +

Properties of elements and relations

Wikipedia

 Software architecture =

structures
* Boxes

... and arrows

Wikipedia

e Common definition of architecture

...but does it catch all?

Architecture Fail?

* Software doesn't go into production
Security problem

Compliance problem

* Fail caused by structure?

e Successful architecture?

Martin Fowler

 Software architecture =

Important

and hard to change decisions

* How to know in advance?

Photo: Webysther Nunes

Software Architecture
 Find technical solutions

...to the problem at hand.

* Home-grown definition

* Broad definition

* Need to understand the problem!

Quality Attributes / Tree

1ISO 25010

Maturity

Non-
|
Structure only <
maintainability

Quality Attributes

* Holistic view on quality

* |[dentify important attributes

* But
high-level
hard to verify

Quality Scenario

Failure Metric

Event / Stimulus

Quality Scenario

e Concrete

* Easy to verify - metric

Usage Scenario

e Stimulus

A new users registers

e Metric

Only one in 1.000 users calls the hotline.

Usability — Ease of Use

Usage: Solution
* Hire UX experts

* Usability tests

* No "classic" architecture work

Change Scenario
* Stimulus

A new language / locale should be support

e Metric
No code modification needed.

Takes two days

Maintainability - Modifiability

Change Solution

* Configuration files for language

* Code quality irrelevant

Failure Scenario
e Stimulus

A server crashes

* Metric
System might be unavailable for two hours.

No data might be lost.

Reliability — fault tolerance

Failure Solution
 RAID
* Backup

* Data center in different locations

* No need for a cluster of servers

Solutions

* Solutions must solve problems.
* Traditional measures like

high code quality,

clean architecture,

scalability,

your favorite framework or language

...solves none of the scenarios

Traditional Architect O

. A title ,r‘
/\

Modern Architect O

* Architect does architecture

e A role

* Might be different persons /\

* Might change over time

* Might or might not have title "software architect”

Traditional Architect O

* Most experienced technical person ’r‘

Most Experienced Person O

* For every detail?

* For every technology?

* Unrealistic /\

* Making all important decisions

* Puts enormous pressure on
the architect.

* \Why do you want to play such role?

Most Experienced Person
* Quite sad

e Use the technical O O O

expertise of the team L

*...and grow the team

Traditional Architect O

* Understand & guard whole system ’r‘

Understanding the System

* Architects need to understand the system.

* Systems too large for one

person. O O
* So use the expertise |
of the team.
YA "
\/

—

)

Traditional Architect O
* Define the architecture

*i.e. make all relevant decisions

 Enforce the architecture /\

= Scrum Master
Removes obstacles

9
/'\ Enforces rules
9 H Q O

| Stories
Product Team
Owner Self-organizing

Implements stories

Self-organizing Team O
* Architect is "just” a team member

* No way to "enforce"” architecture

* Actually, the team decides how to work. /\

* How can the architect define the architecture?

Traditional Architect O

e Enforces the architecture

...out probably doesn't know whether

it is truly implemented.
...because he / she can't understand the

whole system.

* How do you architect if you can't understand the

system?

*\What is being "enforced"”????

Ivory Tower

e Just because
architects think they do
architecture doesn't

mean it has any impact.

 Information about

iIssues might be wrong.

* Enforcement might be

an illusion.

Technical Decisions

* Understand the team's problems

e Seek feedback about

possible decision O O O

e Communicate A

/\

decisions

Technical Decisions
* Moderate, don't enforce

* Make your expertise usable

e General rule for

managing

self-organization /\

Moderate Technical Decisions

* Use expertise of the full team

Results: 00O O

.. |
Better decisions -
Team actually executes
decisions /\

*No ivory tower

Software Architecture =
Collaborative Game

* All lose or win together
* Everyone has a specific role

e Communication is essential

CAMN YOu SRAVE
HUMAMNITY A

asSmes

isions

Dec

Understanding the System O

* Information about the system is incomplete

...S0 are requirements

* More information might be hard to get. /\
...or too late

...or too expensive

* You will still need to make decisions.

* Be courageous.

Software architecture
= making decisions
...constantly
...without enough
information

Decisions

* Often decisions are made too early

* \Work on unimportant stuff

* Too little information

Decisions

* \When do you need to make the decision?

 Example: Issue invoices as soon as there is

revenue

...and also payment, book keeping etc

* No need for a detailed architecture, yet.

Decisions
* What if you do nothing?

* What if you make the decision too late?

* No revenue

...only bad if there are customers
* Manual invoicing

...might be fine

...unless you are truly successful

The best decisions
are the ones not made
yet.

Be prepared
to revise decisions

Traditional Architect O

* Doesn't code

...because architects do architecture

* Problem: Ivory tower /\

...but that is solved

* Problem: Detached from reality

...can be solved by communication

Modern Architect O

* What if architecture is a full-time job?

* No time to code

e Architect is a role. /\

* Anyhow collaborative
* Either have several coding architects
...and communication overhead between them.

e Or a full time architect

Soccer Coach

* Knows how to play soccer
...but doesn't do it any more.

*In particular won't try to score a goal.

* A role model for software architects?
* Knows how to code
...obut doesn't do it.

*In particular not for complex code.

Architects May or May Not
Code.

Conclusion

* Software architecture = solve technical problems

* Quality attributes / tree / scenarios to

understand problem

* Often solution is not traditional architecture

* Software architecture is a collaborative game
*Don't be afraid to make decision later

e Don't be afraid to make decisions with unclear

information

