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DDD Domain-driven Design

 Software should provide business value.

 Software should support business
processes.

 Typical changes are to business logic.

* Therefore:
Let the domain drive the design!



What is Even the Domain?
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nDDD



DDD vs nDDD

« DDD Domain-driven Design
Domain drives the design

« nDDD Non-domain-driven Design
Something else drives the design



How to Detect nDDD

 Can you tell which domain the
architecture is for?

 Can you use the architecture for a self-
driving car or a video game?

* My experience:
Technical architecture much too common



Would you rather show / discuss
something technical or business-

related if asked for the
architecture?



Usually, I'm presented with
technical architecture diagrams.
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Even Worse: Tech + Business Chaos
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DDD vs nDDD

 Can the team execute the business
process the application implements?

* \WWhen was the last time the team talked
to a user / customer?

 Can you explain the business purpose of
the application to your partner?

e How does the architecture structure the
business logic?



Why would | care?
There are requirements, right?



Domain-driven Design

 Domain-driven Design:
software should structure domain logic

« DDD's aim is to support the business as
well as possible

e So: Must understand the domain



DDD = Collaboration

Technical people can't define the
business purpose by themselves.

So: Ask & support businesspeople
Might be hard
Sometimes, you might fail

Collaborative Modeling e.g. event
storming / domain story telling can help



Bounded Context



Bounded Context

Model i.e. Ubiquitous

Code Language

Bounds

 Usually handled by one team.
 Example: Order process, delivery process



Bounded Context

» Bounded context = module
* No other concept is so poorly understood.



Bounded Context Example

Invoicing Shipping
Process

Invoicing Tracking

VAT Delivery

Order Process

Shopping Cart

Accept order




Example Non Bounded Contexts

e Customer
* Product

* Very likely data-driven,
not domain-driven



Module

Public
Information

hangeabl
Internals

«»



Class

Public
Methods

Instance
Variables

«»



CRC Cards for Classes

Class Order Service Responsibility Accepting Orders

Collaboration

Order Repository
Invoice Service
Shipment Service
Statistics Service




Bounded Context

Code /
systems

Interfaces

«»



Bounded Context Canvas

Name Payment Core Description Processing Payments
Inbound o Outbounfl .
Communication Ubiquitous Communication

Language
Order Processing Receipt Payment P.rowder
Payment Book keeping

Order Processing




Bounded Context Canvas
Collaboration

Name Payment Core Description Proce

Outbound

Inbound

Communication Ubiquitous Communication
Language
Order Processing Receipt Payment Provider

Payment Book keeping

Order Processing




Bounded Context Canvas
Responsibilit

Name Payment Core Descriptiof Processing Payments

Inbound

.« e Communication
Communication

Ubiquitous
Language
Receipt

Payment

Payment Provider
Book keeping
Order Processing

Order Processing




BUILD MODULES BY
FUNCTIONALITY NOT DATA!



Seriously:

BUILD MODULES BY
FUNCTIONALITY NOT DATA!



Class Order Service Responsibility Accepting Orders

CRC Cards

Collaboration

for
CIasseS: Order Repository
No Data! Invoice Service

Shipment Service
Statistics Service




Name Payment Core Desciption Processing Payments
Bounded

Outbound
Inbound
Contexlt Communication :-Jb|qwtous Communication
anguage
Canvas: R gl tg Payment Provider
: Order Processing ecelp ayme .O €
No Data! Payment Book keeping

Order Processing




Bounded Context Example

Invoicing Shipping
Process

Customer e.g. billing Customer e.g. shipping
address address

Product e.qg. price Product e.g. size

Order Process

Customer e.g. product
preferences

Product e.g. marketing
information




Bounded Context & Modules

 Data model internal
* |.e. hides most design decisions.
 E.g. how data is stored

 Bounded Contexts are naturally great
modules!















Quality



Highest quality everywhere!
eXtreme Programming
Software Craftsmanship



"The harsh reality is that not all
parts of the design are going to be
equally refined. Priorities must be

set."
Core Domain Pattern, Eric Evans



What part has the highest
business value?



How can you focus if you don't
know which part has the highest
business value?
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DDD: Strategic / Tactical

* Strategic Design:
Coarse grained
Modules / microservice

* Tactical Design:
Fine grained
Classes



DDD: Strategic / Tactical

* Strategic and tactical
design are independent.

* YouUu can use one
of them or both.



Strategic Design

More important for architecture.
More impact

Sets priorities (Core domain)
Solves problems between teams



® ® ® :
Priorities zl

No need to use tactical design to just
move data around.

Data by itself is not valuable
What happens with data is valuable

So: Simple business logic might be a
missed opportunity to implement
valuable business logic.



Architecture & Migration

* No more green fields %}
* Brown fields — é

* So: Migration
 Hardly discussed and very complex



ﬁ

Migrate

J

O../
N—,

What is the next step?

How will it provide value?

[ S T
T e
™ ™ N

How do we overcome
the next obstacles?

Goal: Full migration
in a few years

Bounded contexts



Migrating to
Bounded Context



State before Migration

* Modules might share data




Goal: Bounded Contexts

Invoicing
Process

Database Database

Order Process

Database




Results

* |Independent modules
* Less coordination
* More productivity



Migration 0 OO

* Lots of effort to fully migrate
— often years

 Business value? Just better productivity?
* First step?
* Value of first step?



Domain-driven Migration
¥

 The domain should drive the design.

* The domain should drive the migration.
* Where is the business value?

 Why are we doing this migration now?



Domain-driven Migration

 Might build new, separate
bounded context for new
features




Domain-driven Migration

 Might build transient
"bubble context” inside
existing systems

https://www.domainlanguage.com/
ddd/surrounded-by-legacy-software/
https://software-architektur.tv/
2020/07/14/folge006.html



https://software-architektur.tv/

Domain-driven Migration

 Might build transient
"bubble context” inside
existing systems

https://www.domainlanguage.com/
ddd/surrounded-by-legacy-software/
https://software-architektur.tv/
2020/07/14/folge006.html



https://software-architektur.tv/

Domain-driven Migration

e Define a core domain

 Might prioritize modules
differently

— not change them



Bounded Contexts: Really the Goal?

Invoicing
Process |

Database Database

Ord’rocess

Database




Domain-driven Migration

 Understanding bounded context is hard.

 Not actually implementing them is even
harder



DDD: Migration

* Ask questions:
 Why is the migration done now?

 What are the next planned changes to
the system?

 What has business given up asking for?



Strategic Domain-driven Design



Strategic Domain-driven Design

A bounded context might be more or less
iImportant.

 Ateam might need support from other
teams to be successful.

* Only solution: Patterns for collaboration
between teams



Strategic Domain-driven Design

* Downstream team depends on upstream
team to be successful.



Customer / Supplier

* Factor downstream priorities (customer)
into planning of upstream team

(supplier)!
 Negotiate and budget tasks!



Strategic Domain-driven Design

Customer Supplier



Customer / Supplier

S

|
Customer Negotiate and Sg)p;gelfr
Delivery budget tasks




Why do | see so little adoption of
strategic domain-driven design?



Can you set up a Customer /
Supplier relationship?



Customer / Supplier

e Customer / supplier is about who does
what.

 Probably not what an architect decides.



Setting Up Customer / Supplier
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Customer / Supplier in Practise

We need this
feature ASAP!

It takes 3 months, and
we can't start until in

O O O o 6 months. o O O O
Should take a
4]} |‘] 4]} |‘] few days?
It takes 3 months, and
Supplier we can't start until in Cust
6 months. ustomer
& & Escalate (@)
It takes 3 months, and NS
we can't start until in Saed
6 months.



Customer / Supplier

 Managers can set up a customer /
supplier relationship.

* |n real life, teams can circumvent or fight
such rules.



Is this Customer / Supplier?

Shall we grab a

coffee?
Sure!
O OO0 O Our bike trip OO0 O O
yesterday was
great! (© U \V V V &
Oh yes! (©

Listen, | really
need your help
for our new
feature...

At the end, she and her team got the help they needed...



Even if you don't have formal
control over a team, you can still
try to influence it.



Organisation #

e Folge 163 - Kommunikation im Entwicklungsprozess mit Rebecca Temme

» Folge 147 - Wie reil3t man den Elfenbeinturm ein? mit Anja Kammer

» Folge 141 - Auftragstaktik - Agilitat beim Militar? mit Sénke Marahrens

» Folge 125 - Organisation und Architektur - ein Beispiel

» Folge 115 - Data Mesh - nur ein neuer Datenanalyse-Hype?

» Folge 110 - Conway's Law

» Folge 106 - Anne Herwanger, Alexandra Hoitz, Stefan Link - Resiliente Organisation und resiliente
Software Architektur - live von der OOP

» Episode 101 - Kenny Baas-Schwegler, Gien Verschatse, Evelyn Van Kelle - Facilitating Collaborative
Design Decisions - Live from OOP

e Folge 96 - Organisation, Architektur - Was ich im Stream gelernt habe

» Folge 91 - Sven Johann - Cross-funktionale Teams zielgerichtet in den Abgrund stlirzen

» Episode 82 - Avraham Poupko & Kenny Baas-Schwegler - The Influence of Culture on Software
Design

» Epsiode 80 - Microservices, Inverse Conway Maneuver, and Flow with James Lewis - Live from
Software Architecture Gathering

» Folge 73 - Das Spotify-Modell gibt es gar nicht!

» Folge 63 - Kim Nena Duggen zu Soft Skills fir Software-Architekt:innen

» Folge 16 - Gerrit Beine zu Sozialwissenschaften und Software-Architektur

e Folge 2 - Organisation und Architektur

https://software-architektur.tv/tags.html#Organisation



Iterations



These [domain] models are never
perfect; they evolve.

Eric Evans



A True Story ||

 Plan at start:
Migrate the system module-by-module

* Prototype to validate migration.



A True Story: The Start ||

* Project start

* Learn more about the domain
 Migration by module makes it impossible
...to improve support for business.

...to Improve automation



A True Story: Result ||

e There were other issues, too.
* Project cancelled
...and considered a failure.



Intuitive Lesson Learned | S

* Do more research up front!

* Be more restrict in approving projects!
 [MHO this is wrong.

* You will always learn about the domain!

* |.e.there will always be something wrong.
 Not just at the start.



Recommended Lesson Learned | S _

 Consider dropping the technical
validation of an architecture.

* |t might need to be changed.

* You might be too (emotionally) invested.
 Be prepared to change the architecture.
 But: don't be intentionally stupid!



Conclusion



Conclusion: DDD vs nDDD

 Domain-driven Design means the domain
drives the design.

* Actually learn and understand the
domain!



Conclusion: Quality & Focus

* Focus on the parts with the highest
business value!

* Don'tinvest too much in other parts.



Strategic Design & Iterations

* You can do strategic design.

...even if you don't have the formal
authority.



Iterations

* You will learn about the domain.
e So: Work in iterations.



Domain-driven Design #

» Folge 134 - Domain Prototyping - Iterative Entwicklung mit Domain-driven Design & User Experience
mit Tobias Goeschel

» Folge 116 - Events, Event Sourcing und CQRS

» Folge 90 - Michael Pléd - Wie steigt man in Domain-driven Design ein?

» Folge 72 - Strategisches Domain-driven Design - Grundlegende Patterns unter der Lupe

» Folge 22 - Markus Volter zu Fachliche Architekturen mit DSL (Domain Specific Languages)

» Folge 21 - Domain Story Telling mit Henning Schwentner und Stefan Hofer

» Folge 17 - Nicole Rauch zu DDD, Event Storming & Specification by Example

» Folge 11 - Nick Tune - Legacy Architecture Modernisation With Strategic Domain-Driven Design

» Folge 6 - Eric Evans "Getting Started with DDD When Surrounded by Legacy Systems”

» Folge 4 - Fachliche Architektur - Warum und wie?

https://software-architektur.tv/tags.html#Domain-driven%20Design
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