7 5 Why You Might

N Fail with

& Domain-driven

eeeeeeeeeee

Is This a Great Architecture?

Ul
Aggregation
Service

. Write
We are using all Workflow
the tactical DDD Service
pattern like
Service,

Business Logic
Repository, ... Data Service

DDD Domain-driven Design

 Software should provide business value.

 Software should support business
processes.

 Typical changes are to business logic.

* Therefore:
Let the domain drive the design!

What is Even the Domain?

Ul
Aggregation
Service

Write
Workflow
Service

Business Logic
Data Service

nDDD

DDD vs nDDD

« DDD Domain-driven Design
Domain drives the design

« nDDD Non-domain-driven Design
Something else drives the design

How to Detect nDDD

 Can you tell which domain the
architecture is for?

 Can you use the architecture for a self-
driving car or a video game?

* My experience:
Technical architecture much too common

Would you rather show / discuss
something technical or business-

related if asked for the
architecture?

Usually, I'm presented with
technical architecture diagrams.

Better

Invoicing
Process

Order Process

Even Worse: Tech + Business Chaos

A

Invoicing

Process

Oracle Redshift

Apollo Domain) Order Process

DDD vs nDDD

 Can the team execute the business
process the application implements?

* \WWhen was the last time the team talked
to a user / customer?

 Can you explain the business purpose of
the application to your partner?

e How does the architecture structure the
business logic?

Why would | care?
There are requirements, right?

Domain-driven Design

 Domain-driven Design:
software should structure domain logic

« DDD's aim is to support the business as
well as possible

e So: Must understand the domain

DDD = Collaboration

Technical people can't define the
business purpose by themselves.

So: Ask & support businesspeople
Might be hard
Sometimes, you might fail

Collaborative Modeling e.g. event
storming / domain story telling can help

Bounded Context

Bounded Context

Model i.e. Ubiquitous

Code Language

Bounds

 Usually handled by one team.
 Example: Order process, delivery process

Bounded Context

» Bounded context = module
* No other concept is so poorly understood.

Bounded Context Example

Invoicing Shipping
Process

Invoicing Tracking

VAT Delivery

Order Process

Shopping Cart

Accept order

Example Non Bounded Contexts

e Customer
* Product

* Very likely data-driven,
not domain-driven

Module

Public
Information

hangeabl
Internals

«»

Class

Public
Methods

Instance
Variables

«»

CRC Cards for Classes

Class Order Service Responsibility Accepting Orders

Collaboration

Order Repository
Invoice Service
Shipment Service
Statistics Service

Bounded Context

Code /
systems

Interfaces

«»

Bounded Context Canvas

Name Payment Core Description Processing Payments
Inbound o Outbounfl .
Communication Ubiquitous Communication

Language
Order Processing Receipt Payment P.rowder
Payment Book keeping

Order Processing

Bounded Context Canvas
Collaboration

Name Payment Core Description Proce

Outbound

Inbound

Communication Ubiquitous Communication
Language
Order Processing Receipt Payment Provider

Payment Book keeping

Order Processing

Bounded Context Canvas
Responsibilit

Name Payment Core Descriptiof Processing Payments

Inbound

.« e Communication
Communication

Ubiquitous
Language
Receipt

Payment

Payment Provider
Book keeping
Order Processing

Order Processing

BUILD MODULES BY
FUNCTIONALITY NOT DATA!

Seriously:

BUILD MODULES BY
FUNCTIONALITY NOT DATA!

Class Order Service Responsibility Accepting Orders

CRC Cards

Collaboration

for
CIasseS: Order Repository
No Data! Invoice Service

Shipment Service
Statistics Service

Name Payment Core Desciption Processing Payments
Bounded

Outbound
Inbound
Contexlt Communication :-Jb|qwtous Communication
anguage
Canvas: R gl tg Payment Provider
: Order Processing ecelp ayme .O €
No Data! Payment Book keeping

Order Processing

Bounded Context Example

Invoicing Shipping
Process

Customer e.g. billing Customer e.g. shipping
address address

Product e.qg. price Product e.g. size

Order Process

Customer e.g. product
preferences

Product e.g. marketing
information

Bounded Context & Modules

 Data model internal
* |.e. hides most design decisions.
 E.g. how data is stored

 Bounded Contexts are naturally great
modules!

Quality

Highest quality everywhere!
eXtreme Programming
Software Craftsmanship

"The harsh reality is that not all
parts of the design are going to be
equally refined. Priorities must be

set."
Core Domain Pattern, Eric Evans

What part has the highest
business value?

How can you focus if you don't
know which part has the highest
business value?

Is This a Great Architecture?

Ul
Aggregation
Service

. Write
We are using all Workflow
the tactical DDD Service
pattern like
Service,

Business Logic
Repository, ... Data Service

DDD: Strategic / Tactical

* Strategic Design:
Coarse grained
Modules / microservice

* Tactical Design:
Fine grained
Classes

DDD: Strategic / Tactical

* Strategic and tactical
design are independent.

* YouUu can use one
of them or both.

Strategic Design

More important for architecture.
More impact

Sets priorities (Core domain)
Solves problems between teams

® ® ® :
Priorities zl

No need to use tactical design to just
move data around.

Data by itself is not valuable
What happens with data is valuable

So: Simple business logic might be a
missed opportunity to implement
valuable business logic.

Architecture & Migration

* No more green fields %}
* Brown fields — é

* So: Migration
 Hardly discussed and very complex

ﬁ

Migrate

J

O../
N—,

What is the next step?

How will it provide value?

[S T
T e
™ ™ N

How do we overcome
the next obstacles?

Goal: Full migration
in a few years

Bounded contexts

Migrating to
Bounded Context

State before Migration

* Modules might share data

Goal: Bounded Contexts

Invoicing
Process

Database Database

Order Process

Database

Results

* |Independent modules
* Less coordination
* More productivity

Migration 0 OO

* Lots of effort to fully migrate
— often years

 Business value? Just better productivity?
* First step?
* Value of first step?

Domain-driven Migration
¥

 The domain should drive the design.

* The domain should drive the migration.
* Where is the business value?

 Why are we doing this migration now?

Domain-driven Migration

 Might build new, separate
bounded context for new
features

Domain-driven Migration

 Might build transient
"bubble context” inside
existing systems

https://www.domainlanguage.com/
ddd/surrounded-by-legacy-software/
https://software-architektur.tv/
2020/07/14/folge006.html

https://software-architektur.tv/

Domain-driven Migration

 Might build transient
"bubble context” inside
existing systems

https://www.domainlanguage.com/
ddd/surrounded-by-legacy-software/
https://software-architektur.tv/
2020/07/14/folge006.html

https://software-architektur.tv/

Domain-driven Migration

e Define a core domain

 Might prioritize modules
differently

— not change them

Bounded Contexts: Really the Goal?

Invoicing
Process |

Database Database

Ord’rocess

Database

Domain-driven Migration

 Understanding bounded context is hard.

 Not actually implementing them is even
harder

DDD: Migration

* Ask questions:
 Why is the migration done now?

 What are the next planned changes to
the system?

 What has business given up asking for?

Strategic Domain-driven Design

Strategic Domain-driven Design

A bounded context might be more or less
iImportant.

 Ateam might need support from other
teams to be successful.

* Only solution: Patterns for collaboration
between teams

Strategic Domain-driven Design

* Downstream team depends on upstream
team to be successful.

Customer / Supplier

* Factor downstream priorities (customer)
into planning of upstream team

(supplier)!
 Negotiate and budget tasks!

Strategic Domain-driven Design

Customer Supplier

Customer / Supplier

S

|
Customer Negotiate and Sg)p;gelfr
Delivery budget tasks

Why do | see so little adoption of
strategic domain-driven design?

Can you set up a Customer /
Supplier relationship?

Customer / Supplier

e Customer / supplier is about who does
what.

 Probably not what an architect decides.

Setting Up Customer / Supplier

¢

O%“

o
o
o
o

—_
o
o
o
o

UUUUU
pppppppppp

Customer / Supplier in Practise

We need this
feature ASAP!

It takes 3 months, and
we can't start until in

O O O o 6 months. o O O O
Should take a
4]} |‘] 4]} |‘] few days?
It takes 3 months, and
Supplier we can't start until in Cust
6 months. ustomer
& & Escalate (@)
It takes 3 months, and NS
we can't start until in Saed
6 months.

Customer / Supplier

 Managers can set up a customer /
supplier relationship.

* |n real life, teams can circumvent or fight
such rules.

Is this Customer / Supplier?

Shall we grab a

coffee?
Sure!
O OO0 O Our bike trip OO0 O O
yesterday was
great! (© U \V V V &
Oh yes! (©

Listen, | really
need your help
for our new
feature...

At the end, she and her team got the help they needed...

Even if you don't have formal
control over a team, you can still
try to influence it.

Organisation #

e Folge 163 - Kommunikation im Entwicklungsprozess mit Rebecca Temme

» Folge 147 - Wie reil3t man den Elfenbeinturm ein? mit Anja Kammer

» Folge 141 - Auftragstaktik - Agilitat beim Militar? mit Sénke Marahrens

» Folge 125 - Organisation und Architektur - ein Beispiel

» Folge 115 - Data Mesh - nur ein neuer Datenanalyse-Hype?

» Folge 110 - Conway's Law

» Folge 106 - Anne Herwanger, Alexandra Hoitz, Stefan Link - Resiliente Organisation und resiliente
Software Architektur - live von der OOP

» Episode 101 - Kenny Baas-Schwegler, Gien Verschatse, Evelyn Van Kelle - Facilitating Collaborative
Design Decisions - Live from OOP

e Folge 96 - Organisation, Architektur - Was ich im Stream gelernt habe

» Folge 91 - Sven Johann - Cross-funktionale Teams zielgerichtet in den Abgrund stlirzen

» Episode 82 - Avraham Poupko & Kenny Baas-Schwegler - The Influence of Culture on Software
Design

» Epsiode 80 - Microservices, Inverse Conway Maneuver, and Flow with James Lewis - Live from
Software Architecture Gathering

» Folge 73 - Das Spotify-Modell gibt es gar nicht!

» Folge 63 - Kim Nena Duggen zu Soft Skills fir Software-Architekt:innen

» Folge 16 - Gerrit Beine zu Sozialwissenschaften und Software-Architektur

e Folge 2 - Organisation und Architektur

https://software-architektur.tv/tags.html#Organisation

Iterations

These [domain] models are never
perfect; they evolve.

Eric Evans

A True Story ||

 Plan at start:
Migrate the system module-by-module

* Prototype to validate migration.

A True Story: The Start ||

* Project start

* Learn more about the domain
 Migration by module makes it impossible
...to improve support for business.

...to Improve automation

A True Story: Result ||

e There were other issues, too.
* Project cancelled
...and considered a failure.

Intuitive Lesson Learned | S

* Do more research up front!

* Be more restrict in approving projects!
 [MHO this is wrong.

* You will always learn about the domain!

* |.e.there will always be something wrong.
 Not just at the start.

Recommended Lesson Learned | S _

 Consider dropping the technical
validation of an architecture.

* |t might need to be changed.

* You might be too (emotionally) invested.
 Be prepared to change the architecture.
 But: don't be intentionally stupid!

Conclusion

Conclusion: DDD vs nDDD

 Domain-driven Design means the domain
drives the design.

* Actually learn and understand the
domain!

Conclusion: Quality & Focus

* Focus on the parts with the highest
business value!

* Don'tinvest too much in other parts.

Strategic Design & Iterations

* You can do strategic design.

...even if you don't have the formal
authority.

Iterations

* You will learn about the domain.
e So: Work in iterations.

Domain-driven Design #

» Folge 134 - Domain Prototyping - Iterative Entwicklung mit Domain-driven Design & User Experience
mit Tobias Goeschel

» Folge 116 - Events, Event Sourcing und CQRS

» Folge 90 - Michael Pléd - Wie steigt man in Domain-driven Design ein?

» Folge 72 - Strategisches Domain-driven Design - Grundlegende Patterns unter der Lupe

» Folge 22 - Markus Volter zu Fachliche Architekturen mit DSL (Domain Specific Languages)

» Folge 21 - Domain Story Telling mit Henning Schwentner und Stefan Hofer

» Folge 17 - Nicole Rauch zu DDD, Event Storming & Specification by Example

» Folge 11 - Nick Tune - Legacy Architecture Modernisation With Strategic Domain-Driven Design

» Folge 6 - Eric Evans "Getting Started with DDD When Surrounded by Legacy Systems”

» Folge 4 - Fachliche Architektur - Warum und wie?

https://software-architektur.tv/tags.html#Domain-driven%20Design

Send email to jax2023@ewolff.com

Slides

+ Service Mesh Primer EN

+ Microservices Primer DE / EN

+ Microservices Recipes DE / EN

+ Sample Microservices Book DE / EN

+ Sample Practical Microservices DE/EN
+ Sample of Continuous Delivery Book DE

Powered by Amazon Lambda

& Microservices

EMail address logged for 14 days,
wrong addressed emails handled manually

	Folie 1:
	Folie 2: Is This a Great Architecture?
	Folie 3: DDD Domain-driven Design
	Folie 4: What is Even the Domain?
	Folie 5
	Folie 6: DDD vs nDDD
	Folie 7: How to Detect nDDD
	Folie 8
	Folie 9
	Folie 10: Better
	Folie 11: Even Worse: Tech + Business Chaos
	Folie 12: DDD vs nDDD
	Folie 13
	Folie 14: Domain-driven Design
	Folie 15: DDD = Collaboration
	Folie 16
	Folie 17: Bounded Context
	Folie 18: Bounded Context
	Folie 19: Bounded Context Example
	Folie 20: Example Non Bounded Contexts
	Folie 21: Module
	Folie 22: Class
	Folie 23: CRC Cards for Classes
	Folie 24: Bounded Context
	Folie 25: Bounded Context Canvas
	Folie 26: Bounded Context Canvas
	Folie 27: Bounded Context Canvas
	Folie 28
	Folie 29
	Folie 30: CRC Cards for Classes: No Data!
	Folie 31: Bounded Context Canvas: No Data!
	Folie 32: Bounded Context Example
	Folie 33: Bounded Context & Modules
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44: Is This a Great Architecture?
	Folie 45: DDD: Strategic / Tactical
	Folie 46: DDD: Strategic / Tactical
	Folie 47: Strategic Design
	Folie 48: Priorities
	Folie 49: Architecture & Migration
	Folie 50: Migrate
	Folie 51
	Folie 52: State before Migration
	Folie 53: Goal: Bounded Contexts
	Folie 54: Results
	Folie 55: Migration
	Folie 56: Domain-driven Migration
	Folie 57: Domain-driven Migration
	Folie 58: Domain-driven Migration
	Folie 59: Domain-driven Migration
	Folie 60: Domain-driven Migration
	Folie 61: Bounded Contexts: Really the Goal?
	Folie 62: Domain-driven Migration
	Folie 64: DDD: Migration
	Folie 65
	Folie 66: Strategic Domain-driven Design
	Folie 67: Strategic Domain-driven Design
	Folie 68: Customer / Supplier
	Folie 69: Strategic Domain-driven Design
	Folie 70: Customer / Supplier
	Folie 71
	Folie 72
	Folie 73: Customer / Supplier
	Folie 74: Setting Up Customer / Supplier
	Folie 75: Customer / Supplier in Practise
	Folie 76: Customer / Supplier
	Folie 77: Is this Customer / Supplier?
	Folie 78
	Folie 79
	Folie 80
	Folie 81
	Folie 82: A True Story
	Folie 83: A True Story: The Start
	Folie 84: A True Story: Result
	Folie 85: Intuitive Lesson Learned
	Folie 86: Recommended Lesson Learned
	Folie 87
	Folie 88: Conclusion: DDD vs nDDD
	Folie 89: Conclusion: Quality & Focus
	Folie 90: Strategic Design & Iterations
	Folie 91: Iterations
	Folie 92
	Folie 93

