
One size does not fit all
Stefan Tilkov 

@stilkov

GOTO London 2016

Building blocks

procedures

functions

libraries

modules

units
objects

classesimages

dynamic libraries

shared objects

components
services

microservices

VMscontainers

lambdas

Commonalities

dependencies

boundary

interface

environment
implementation

How big shall each
individual piece be?

 Just make things the right size

Separate
separate

things

Join things
that belong

together

Information Hiding
“[I]t is almost always incorrect to begin the
decomposition of a system into modules on the
basis of a flowchart. We propose instead that one
begins with a list of difficult design decisions or
design decisions which are likely to change. Each
module is then designed to hide such a decision
from the others.”

David L. Parnas, 1971

http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf

Separation of concerns
“Let me try to explain to you, what to my taste is characteristic for all
intelligent thinking. It is, that one is willing to study in depth an aspect
of one's subject matter in isolation for the sake of its own consistency,
all the time knowing that one is occupying oneself only with one of the
aspects. […] It is what I sometimes have called "the separation of
concerns", which, even if not perfectly possible, is yet the only
available technique for effective ordering of one's thoughts, that I
know of. This is what I mean by "focussing one's attention upon some
aspect": it does not mean ignoring the other aspects, it is just doing
justice to the fact that from this aspect's point of view, the other is
irrelevant. It is being one- and multiple-track minded simultaneously.”

Edsger W. Dijkstra, 1974

http://www.cs.utexas.edu/users/EWD/ewd04xx/EWD447.PDF

Single Responsibility Principle
“A class [or module] should only have one reason to
change. […] The SRP is one of the simplest of the
principles, and one of the hardest to get right. Finding
and separating those responsibilities from one
another is much of what software design is really
about.”

“There is a corrolary here. An axis of change is only an
axis of change if the changes actually occur.”

Robert C. Martin, 1995/2003

http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

High Cohesion
Loose Coupling

Vocabulary

http://vanderburg.org/blog/Software/Development/cohesion.rdoc

inherent: existing in something as a permanent, essential,
or characteristic attribute

adhesive: able to stick fast to a surface or object; sticky:

cohesive: characterized by or causing cohesion

cohesion: the action or fact of forming a united whole; 
in physics: the sticking together of particles of the same
substance

Cohesion in OO: Object Calisthenics

1. One level of indentation per method
2. Don’t use the ELSE keyword
3. Wrap all primitives and strings
4. First class collections
5. One dot per line
6. Don’t abbreviate
7. Keep all entities small
8. No classes with more than two instance variables.
9. No getters/setters/properties
10. No static methods other than factory methods

Jeff Bay, 2008 – http://www.cs.helsinki.fi/u/luontola/tdd-2009/ext/ObjectCalisthenics.pdf

Indicators of strong cohesion

simple to understand

simple to explain

one reason to change

one stakeholder

difficult to split

(re-)used as a whole

Indicators of weak cohesion

hard to understand

difficult to explain

many reasons to change

multiple stakeholders

obviously divisible

partially re-used

Forces for separation
Different environments (scale, performance, security, …)

Parallel/isolated runtime

Crosscutting concerns

Frequency of change

Parallel/isolated development

Need for reuse

Technical dependencies
Domain dependencies

Implementation

Weight

Multiple Dimensions
Different Priorities

System

Persistence

Logic

UI

M
odule A

M
odule B

M
odule C

System A

Persistence

Logic

UI

System B

Persistence

Logic

UI

System C

Persistence

Logic

UI

Environments

Environments
Language runtimes

Application servers

Container Hosts

Operating Systems

Hardware

Supervisors

Let’s talk about
Microservices

Microservices – Common Traits

> Focused on “one thing”

> Autonomous operation

> Isolated development

> Independent deployment

> Localized decisions

Example: Pricing Engine

> Default product prices

> General discounts

> Customer-specific discounts

> Campaign-related rebates
Event Bus/Infrastructure

Super-small, really micro, nano

> As small as possible

> A few hundred lines
of code or less

> Triggered by events

> Communicating
asynchronously

Characteristics: As seen on:
> Any recent Fred George talk

> Serverless Architecture(*)

> AWS Lambda

(*) https://leanpub.com/serverless

Super-small, really micro, nano

> Close collaboration – common goal

> Shared strong infrastructure dependency

> Common interfaces, multiple invocations

> Close similarity to actor-based environments

> Well suited to decomposable/“fuzzy” business problems

Consequences:

Example: Product Detail Page

> Core product data

> Prose description

> Images

> Reviews

> Related content

Orchestration

Small, micro

> Small, self-hosted

> Communicating
synchronously

> Cascaded/streaming

> Containerized

Characteristics: As seen on:
> Netflix

> Twitter

> Gilt

Small, micro

> Close collaboration – common goal

> Need for resilience/stability patterns for invocations

> Often combined with parallel/streaming approach

> Well suited to environments with extreme scalability requirements

Consequences:

Example: E-Commerce Site

> Register & maintain account

> Browse catalog

> Search

> See product details

> Checkout

> Track status

Medium-sized

> Self-contained,
autonomous

> Including UI + DB

> Possibly composed
of smaller
microservices

Characteristics: As seen on:
> Amazon

> Groupon

> Otto.de

> Self-contained systems (SCS)(*)

(*) https://scs-architecture.org

Medium-sized

> Larger, independent systems

> Including data + UI (if present)

> Able to autonomously serve requests

> Light-weight integration, ideally via front-end

> Well suited if goal is decoupling of development teams

Consequences:

Building Block
0..1

*

Hierarchy & Rule Example

*

*

*

*

*

Class

Package

Module

Service

System

Method

> Systems communicate async, use front-end integration

> Subsystems can use sync calls via facades

> Modules only depend on modules of lower layers

> Packages must not have circular dependencies

> Classes within a package can collaborate closely

> Methods must not call beyond depth 2

Different modularization levels

Different rules & strategies

*

*

*

*

*

Class

Package

Module

Subsystem

System

Method
*

Class

Package

Module

Subsystem

System

Method

Service

*

*

*

*

*

*

Class

Package

Module

Subsystem

System

Method

Service

*

*

*

*

*

*

Class

Package

Subsystem

System

Method

*

*

*

*

Service

Subsystem

System

Service

* *

*

*

*

FunctionsActors

Modules

Microservice Sizing
Antipatterns

Antipattern: Decoupling Illusion

Stakeholder

Stakeholder

Stakeholder

Platform Person

Antipattern: Anemic Service

Process Flow

Presentation

Domain Logic

Data
JDBC in
disguise

Useful
and
specificRe-usable

but low-
level

Antipattern: Unjustified Re-Use

Invoice
Handling

Direct
Marketing

E-Mail

Hash Table

Templating

Printing

Spell Check

String
Concatenate

Lessons learned

What doesn’t:
Mentioning the word

“meta-model”

What works:
Being explicit about your
meta-model

What doesn’t:
Over-regulating

everything

What works:
Separating macro and
micro decisions

What doesn’t:
Fleeing into

technicalities

What works:
Trusting your gut and
making a good guess

What doesn’t:
Center around technical

commonality

What works:
Use organization and its
use cases as level 0 driver

What doesn’t:
Aim for perfection and

stubbornly stick to it

What works:
Prepare to be wrong on
every level

Stefan Tilkov 
stefan.tilkov@innoq.com 
Phone: +49 170 471 2625

innoQ Deutschland GmbH

Krischerstr. 100
40789 Monheim am Rhein
Germany
Phone: +49 2173 3366-0

innoQ Schweiz GmbH

Gewerbestr. 11
CH-6330 Cham
Switzerland
Phone: +41 41 743 0116www.innoq.com

Ohlauer Straße 43
10999 Berlin
Germany
Phone: +49 2173 3366-0

Ludwigstr. 180E
63067 Offenbach
Germany
Phone: +49 2173 3366-0

Kreuzstraße 16 
80331 München
Germany
Phone: +49 2173 3366-0

@stilkovThat’s all I have,
thanks for listening.

mailto:stefan.tilkov@innoq.com?subject=
http://www.innoq.com

Image Credit

David Mellor Kitchen Knives, https://flic.kr/p/pyW8xB

Alice Popkorn, https://flic.kr/p/5NsmsK

hairchaser, https://flic.kr/p/aqNWyV

https://www.flickr.com/photos/alicepopkorn/
https://www.flickr.com/photos/41829005@N02/

