LONDON

NNNNNNNNNNNNN
EEEEEEEEEEEEEEEEEEE

CONFERENCE

O1l0,

conference

9

One size does not fit all

Stefan Tilkov
@stilkov

innoQ

GOTO London 2016

3 Join the conversation #gotoldn

Building blocks

lambdas
components functions
. services - .
containers VMe dynamic libraries
units .
| objects
libraries IMdges classes
procedures shared objects

modules microservices

Commonalities

boundary
environment

implementation

dependencies
Interface

How big shall each
individual piece be?

Just make things the right Siz

wm“‘ ‘l'QVf\,.". ‘. 4 - ‘V.
>, - _-\ - e . v :

’ J \ 7 2
.t s"‘{” -".;'.

Separate Join things
separate that belong
things together

Information Hiding

“lllt is almost always incorrect to begin the
decomposition of a system into modules on the
basis of a flowchart. We propose instead that one
begins with a list of difficult design decisions or
design decisions which are likely to change. Each
module is then designed to hide such a decision
from the others.”

David L. Parnas, 1971

http://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf

Separation of concerns

“Let me try to explain to you, what to my taste is characteristic for all
intelligent thinking. It is, that one is willing to study in depth an aspect
of one's subject matter in isolation for the sake of its own consistency,
all the time knowing that one is occupying oneself only with one of the
aspects. [...] It is what | sometimes have called "the separation of
concerns", which, even if not perfectly possible, is yet the only
available technique for effective ordering of one's thoughts, that |
know of. This is what | mean by "focussing one's attention upon some
aspect”: it does not mean ignoring the other aspects, it is just doing
justice to the fact that from this aspect’s point of view, the other is
irrelevant. It is being one- and multiple-track minded simultaneously.”

Edsger W. Dijkstra, 1974

http://www.cs.utexas.edu/users/EWD/ewdo4xx/EWD447.PDF

Single Responsibility Principle

“A class [or module] should only have one reason to
change. [...] The SRP is one of the simplest of the
principles, and one of the hardest to get right. Finding

and separating those responsibilities from one
another is much of what software design is really
about.”

“There is a corrolary here. An axis of change is only an
axis of change if the changes actually occur.”

Robert C. Martin, 1995/2003

http://www.butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

High Cohesion
L oose Coupling

Vocabulary

adhesive: able to stick fast to a surface or object; sticky:
cohesive: characterized by or causing cohesion

cohesion: the action or fact of forming a united whole;
in physics: the sticking together of particles of the same
substance

inherent: existing in something as a permanent, essential,
or characteristic attribute

http://vanderburg.org/blog/Software/Development/cohesion.rdoc

Cohesion in OO: Object Calisthenics

One level of indentation per method
Don’t use the ELSE keyworc
Wrap all primitives and strings
First class collections

One dot per line

Don’t abbreviate

Ceep all entities small

No classes with more than two instance variables.
No getters/setters/properties

10. No static methods other than factory methods

O 00N OvV1 & W N

Jeff Bay, 2008 — http://www.cs.helsinki.fi/u/luontola/tdd-2009/ext/ObjectCalisthenics.pdf

Indicators of strong cohesion

simple to understand

, , difficult to split
simple to explain

one stakeholder

one reason to change (re-)used as a whole

Indicators of weak cohesion

hard to understand

L , obviously divisible
difficult to explain

multiple stakeholders

partially re-used
many reasons to change

Forces for separation

Different environments (scale, performance, security, ...)

Frequency of change Weight
Need for reuse
Crosscutting concerns

Technical dependencies
Domain dependencies

Parallel/isolated runtime

Implementation Parallel/isolated development

Multiple Dimensions
Different Priorities

Ul

Logic

Persistence

V 2|NPOW

System

g 3|Npow

) 3INpow

- - -

Persistence Persistence Persistence

System A System B System C

Environments

Environments

Language runtimes

Operating Systems Supervisors

Container Hosts

Hardware
Application servers

|l et’s talk about
Microservices

Microservices — Common Traits

> Focused on “one thing”

> Autonomous operation

> |solated development

> Independent deployment

> Localized decisions

Example: Pricing Engine

> Default product prices

> General discounts

> Customer-specific discounts
Event Bus/Infrastructure

> Campaign-related rebates

Super-small, really micro, nano

Characteristics: AS seen on:

> As small as possible > Any recent Fred George talk

» A few hundred lines > Serverless Architecture®
of code or less s AWS [ambda

> Triggered by events

> Communicating
asynchronously

(*) https://leanpub.com/serverless

Super-small, really micro, nano

Consequences:

> Close collaboration — common goal

> Shared strong infrastructure dependency

> Common interfaces, multiple invocations

> Close similarity to actor-based environments

> Well suited to decomposable/“fuzzy” business problems

Example: Product Detail Page

1111

> Reviews Orchestration

> Core product data

> Prose description

> Images

> Related content

Small, micro

Characteristics: As seen on:

> Small, self-hosted > Netflix

> Communicating > Twitter
synchronously s Gilt

> Cascaded/streaming

> Containerized

Small, micro

Consequences:

> Close collaboration — common goal
> Need for resilience/stability patterns for invocations
> Often combined with parallel/streaming approach

> Well suited to environments with extreme scalability requirements

Example: E-Commerce Site

> Register & maintain account
> Browse catalog

> Search

> See product details

> Checkout

> Track status

Medium-sized

Characteristics: AS seen on:
> Self-contained, > Amazon
autonomous > Grouporn

> Including Ul + DB

> Otto.de

> Possibly composec > Self-contained systems (SCS)"

of smaller

MICroServices
(*) https://scs-architecture.org

Medium-sized

Consequences:

> Larger, independent systems

> Including data + Ul (if present)

> Able to autonomously serve requests

> Light-weight integration, ideally via front-end

> Well suited if goal is decoupling of development teams

Hierarchy & Rule Example

> Systems communicate async, use front-end integration
> Subsystems can use sync calls via facades

> Modules only depend on modules of lower layers

> Packages must not have circular dependencies

> Classes within a package can collaborate closely

Method > Methods must not call beyond depth 2

Different modularization levels

Different rules & strategies

System

*
Subsystem Subsystem Subsystem

Subsystem

* * *

*

Service Service Service

Module . .
+ Module Module

* * *

Package

Package Functions

Package Package

*

* * *

Class Class Class

*

Method Method Method

* *

Microservice Sizing
Antipatterns

Antipattern: Decoupling Illusion

Stakeholder - Stakeholder

Stakeholder

Platform Person

Antipattern: Anemic Service

Presentation
Process Flow Useful
... and
Domain Logic Re-usable specific
.. bUt lOW'
JDBC In
Data level

disguise

Antipattern: Unjustified Re-Use

Invoice : -
, E-Mail Printing
Handling

Direct Templating Spell Check
Marketing

Lessons learned

What works:
Being explicit about your
meta-model

What doesn’t:
Mentioning the word
“meta-model”

What works:
Separating macro and
micro decisions

What doesn’t:
Over-regulating
everything

What works:
Trusting your gut and
making a good guess

What doesn’t:
Fleeing into
technicalities

What works:
Use organization and its
use cases as level @ driver

What doesn’t:
Center around technical
commonality

What works:
Prepare to be wrong on
every level

What doesn’t:
Aim for perfection and
stubbornly stick to it

That’s all | have, @stilkov

Stefan Tilkov
stefan.tilkov@innog.com
Phone: +49 170 471 2625

anks for listening.

innoQ Deutschland GmbH innoQ Schweiz GmbH
°
I n n 0 Krischerstr. 100 Ohlauer Straf3e 43 Ludwigstr. 180E Kreuzstrafie 16 Gewerbestr. 11
40789 Monheim am Rhein 10999 Berlin 63067 Offenbach 80331 Miinchen CH-6330 Cham
Germany Germany Germany Germany Switzerland

www.innoq.com Phone: +49 2173 3366-0 Phone: +49 2173 3366-0 Phone: +49 2173 3366-0 Phone: +49 2173 3366-0 Phone: +41 41 743 0116

mailto:stefan.tilkov@innoq.com?subject=
http://www.innoq.com

LONDON

NNNNNNNNNNNNN
EEEEEEEEEEEEEEEEEEE

O1l0,

conference

9

Plerst

Remember to

rate this session
Thank you!

Image Credit

David Mellor Kitchen Knives, https://flic.kr/p/pyW8xB

Alice Popkorn, https://flic.kr/p/5NsmsK

- hairchaser, https://flic.kr/p/agNWyV

https://www.flickr.com/photos/alicepopkorn/
https://www.flickr.com/photos/41829005@N02/

