
Combining Team
Topologies with
Context Maps

MICHAEL PLÖD

FELLOW

Michael Plöd
Fellow at INNOQ

Follow me on Twitter under @bitboss

Current consulting topics:

• Domain-Driven Design

• Team Topologies

• Transformation from IT Delivery to digital product orgs

Regular speaker at (inter-)national conferences and author of a
book + various articles

Get my DDD book

cheaper

Book Voucher: 7.99 instead of (min) 9.99

http://leanpub.com/ddd-by-example/c/speakerdeck

http://leanpub.com/dhttp://leanpub.com/ddd-by-example/c/speakerdeckdd-by-example/c/ddd-europe

How can we maximize the value exchange with the
customer in a continuous fashion at high velocity?

Customers

Product

Organization

(digital)

Product

Money (or maybe data?)

Value

“A loosely coupled software
architecture and org structure
to match” is a key predictor of:

• Continuous Delivery Performance

• Ability to scale organization and
increase performance linearly

Some basic ideas…

Teams

Software

Business 
Domain

Should be  
a model of Should be  

aligned with

the team(s) we need

the architecture we want

“Sociotechnical Architecture is
about taking an holistic co-
design approach to technical
and organizational systems,
given the inherent impact they
have on each other.”

Eduardo Da Silva

https://esilva.net

„Team assignments
are the first draft
of the
architecture”

Michael Nygard

Author of „Release It“

8

There are two boundaries to this
and we should align them

Team 
Boundaries

Software 
Boundaries

Robert Frost
„Good fences make good neighbors“

Autonomy

Mastery

Purpose

Autonomy - Mastery - Purpose

We need good boundaries in which teams
can achieve

Bounded Context

A Bounded Context is a boundary for a
model expressed in a consistent language

tailored around a specific purpose

What we want
to achieve in a
Bounded
Context

Learning and
mastering domain

complexity

Conducting
experiments /

Learning

Delivering high 
value software

Autonomy

Mastery

Purpose

Sociotechnical
Architectures are
a lot about
Systems Thinking
as well

To manage a
system effectively, you
might focus on the

interactions of the parts
rather than their behavior

taken separately

Isn’t it about (maybe a reduction / lack of)
interactions?

Autonomy

To manage a
system effectively, you
might focus on the

interactions of the parts
rather than their behavior

taken separately

Domain

Boundaries

Align along domain boundaries

Team 
Boundaries

Software 
Boundaries

“An architect should be thinking:  
 
Which team interaction modes
are appropriate for these two
teams?  
 
What kind of communication do
we need between these two
parts of the system, between
these two teams?“

20

Fundamental Team Topologies 

Complicated Subsystem

Enabling

Platform

Stream-aligned

Complicated Subsystem Team
• Responsible for building and maintaining a part

of the system that is highly dependent on
specialist expertise

• Team manages the complexity of the subsystem
using specific skills and expertise that are
usually difficult to find or recruit.

Enabling Team
• Work alongside the stream-aligned teams 

and support them in the area of knowledge
building and empowerment.

• Have a strong collaborative nature and strive to
understand the problems and shortcomings of
the other teams

• Inhouse consulting team

Platform Team
• Should give stream-aligned teams the

possibility to do their work with a high degree of
autonomy,

• Platform provides self-service APIs, tools and
services as an internal product

Stream-aligned Team
• Tailored to a business area or organizational

capability (Bounded Context)

• Is intended to create customer value quickly,
safely and autonomously without having to
delegate parts of the work to other teams.

Team Interaction Modes

Collaboration

X-as-a-Service

Facilitating

Image taken from the Team Topologies book

Team Interaction Modes

Image taken from the Team Topologies book

Mind the
COGNITIVE
LOAD

of the teams.
We need a
boundary for
this!

Learning and
mastering domain

complexity

Conducting
experiments /

Learning

Delivering high 
value software

25

The  
Bounded Context  
(as a fracture plan)  

is a

team first
boundary

Teams

Team 
Topologies

Services &  
Interfaces

Team

Classifications

Enabling

Collaboration

Team

Boundaries 

„first“

Strategic Domain
Driven Design 
also has a technique
which can be used
to visualize
sociotechnical
relationships:

CONTEXT MAPS

Context Maps in Domain Driven Design address
relationships between Bounded Contexts and teams.

They start „bounded context first“.

29

Dependencies between teams

Team
Dependencies

Mutually
Dependent

• Two software artifacts or systems in two
bounded contexts need to be delivered together
to be successful and work.

• There is often a close, reciprocal link between
data and functions between the two systems.

Free

• Changes in one bounded context do not influence
success or failure in other bounded contexts.

• There is, therefore, no organizational or technical
link of any kind between the teams.

Upstream /
Downstream

• An upstream context will influence the downstream
counterpart while the opposite might not be true.

• This might apply to code but also on less technical
factors such as schedule or responsiveness to
external requests.

These patterns address a diverse variety of
perspectives

30

The context map uses patterns to describe the
contact between bounded contexts and teams

Shared Kernel

Customer / Supplier

Conformist

Anticorruption Layer

Separate Ways

Open / Host Service

Published Language

Partnership

Big Ball Of Mud

Check out DDD
Crew on GitHub

https://github.com/ddd-crew/context-mapping

• Cheat Sheet for all of the patterns and
Team Relationships

• Context Mapping Starter Kit for Miro
(as a downloadable Board Backup)

• Creative Commons

I’ll just mention a few of the patterns here which we will
later pick up for the combination with Team Topologies.

Schufa

OHS

33

Open-host Service

WebService

The Open-host Service is a public API

•One API for several consumers

• No point-to-point API

• Has a common, general purpose model
and functionality

• The team providing the Open-host
Service is an upstream team

Bank 
A

Bank 
B

U

DD

Anticorruption Layer
The Anticorruption Layer translates one
model to another one

• Transforms an external model from
another team / bounded context /
system to another internal one

• Reduces the amount of coupling to a
single layer

• The team implementing an
Anticorruption Layer is always
downstream

Credit Sales Funnel

Scoring

OHS

ACL

U

D

Credit 
Application

Person 
Scoring
Credit 
Scoring
Security 
Scoring

35

Conformist
The Conformist slavishly adheres to the
upstream model

• There is no model-to-model
transformation

• Motivation: Simplicity, contracts, force
or delight (for the upstream model)

• The team implementing a Conformist
is always downstream

Credit Sales Funnel

Scoring

OHS

CF

U

D

Credit 
Application

36

Shared Kernel
Shared Kernel is a subset of a domain
model that two teams share

• „Physically“ shared artifact between
two teams

• Examples: shared JARs or database

• High degree of coupling requires a high
amount of coordination between the
involved teams

• Shared Kernel is no Anti-Pattern but
use with caution

Credit Sales Funnel

Scoring

Credit 
ApplicationSK

Scoring
Credit 
Sales 
Funnel

Partnership
Partnership is about cooperative
relationships between teams

• Establishes a process for coordinated
planning of development and joint
management of integration

• Not technical at all, Partnership is
plain organizational

• Recommended for teams which
depend on a Shared Kernel

We want to adjust
something

Ok, let’s
coordinate  
our efforts

Customer-Supplier
A Customer-Supplier development gives
the downstream team some influence

• Downstream requirements factor into
upstream planning. Therefore, the
downstream team gains some
influence over the priorities and tasks
of the upstream team

• Customer-Supplier is organizational

• Mind „vetoing customer“ and customer
against an OHS as anti-patterns

Credit Sales Funnel

Scoring

CUS

SUP
U

D

We need
more fields in the

application

Ok

System ABC

Upstream

Downstream

System Y

Open Host Service

Anticorruption Layer

You can visualize
different perspectives

Customer

Supplier
• Call Relationship

• Team Relationship - Level 1

• API Level

• Model Propagation

• Team Relationship - Level 2

40

The patterns address various aspects
Team 

Relationships
Model 

Propagation
API / „technical“

Open-host Service (✅) ✅

Anticorruption Layer ✅

Conformist ✅

Shared Kernel ✅ (✅)

Partnership ✅

Customer-Supplier ✅

Separate Ways ✅ (✅)

Published Language ✅ (✅)

Big Ball Of Mud ✅

41

Some of the patterns map to team dependencies

Team
Relationships

Mutually
Dependent

• Partnership

• Shared Kernel

Free
• Separate Ways

• Published Language

Upstream /
Downstream

• Customer-Supplier

• Anticorruption Layer

• Conformist

• Open-host Service

Teams

Team 
Topologies

Context 
Maps

Domain Models

Services &  
Interfaces

Governance

Team

Dependencies

Team

Classifications

Enabling

Collaboration
„Organizational 

Solutions“
Team

Boundaries 
„first“

Context

Boundaries 

„first“

YES

you can combine Team Topologies and Context Maps

How „aligned“ are stream-aligned teams?

How „aligned“ are stream-aligned teams?

Example: not so aligned

How „aligned“ are stream-aligned teams?

Example: aligned

How „complicated“ is the responsibility of
a complicated subsystem team?

How „complicated“ is the responsibility of
a complicated subsystem team?

Learning

with context maps we can dig into the boundaries of
teams in order to see how they are mapped to their
internal responsibilities / software boundaries and if

this suits the type of team (stream-aligned, …)

A Complicated Subsystem Team providing a
service (X-aa-S) to a Stream-aligned team

Let’s dig deeper into this relationship with
DDD’s Context Maps

+

Other examples

How does a Team Topologies collaboration
look like in detail?

Let’s drill down into the collaboration and
detect something really ugly

YOU DON’T WANT THIS!

From a Systems Thinking perspective
which aims at understanding a system as
a whole combining Team Topologies with
Context Maps makes sense

• Team Topologies give us a great starting point by

focussing on teams and their core relationships

• Context Maps allow us to dig deeper into the
interactions of those relationships and add another
perspective with their focus on Bounded Contexts

• Combining both allows us to really understand a
system as a whole

Value Exchange with Customer

Customers

Product

Organization

(digital)

Product

Money (or maybe data?)

Value

Value Exchange with Customer

What enables

maximum

Value Exchange

(Product)

How are

we doing it

(Tech / Arch)

Who is

doing this

(Teams)

Collaborative 
Modeling Bounded  

Contexts
Team Topologies 
Context Maps

Krischerstr. 100

40789 Monheim

+49 2173 3366-0

Ohlauer Str. 43 
10999 Berlin

 

Ludwigstr. 180E 
63067 Offenbach

 

Kreuzstr. 16 
80331 München

 

Hermannstrasse 13 
20095 Hamburg

 

Erftstr. 15-17

50672 Köln

 

Königstorgraben 11

90402 Nürnberg

innoQ Deutschland GmbH

www.innoq.com
Thanks!

Michael Plöd

Twitter: @bitboss

LinkedIn: https://www.linkedin.com/in/michael-ploed/

Book Voucher: 7.99 instead of (min) 9.99

http://leanpub.com/ddd-by-example/c/speakerdeck

http://leanpub.com/dhttp://leanpub.com/ddd-by-example/c/speakerdeckdd-by-example/c/ddd-europe

