
Microservices
and Erlang/OTP!

Christoph Iserlohn

About me!

Senior Consultant @ innoQ

MacPorts Team member

Agenda!

>  Microservices

>  Erlang / OTP

>  How they fit together

Microservices!

Attempt of definition!

>  A system consisting of small, self-
contained services. All running isolated
from each other, communicating only
over the network.

Monoliths!

old and busted!

“Old Step Van_MG_3279“ by Kool Cats Photgraphy over 3 Million Views. Licensed under CC BY 2.0 !

Microservices!

the new hotness!

“Hot Hot Hot" by flattop341. Licensed under CC BY 2.0 !

VS.!

cognitive dimension!

“Pinky & The Brain" by JD Hancock. Licensed under CC BY 2.0 !

on the service level:
more comprehensible!

"Nasa earth" by NASA ESA - http://www.nasa.gov/. Licensed under Public Domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Nasa_earth.jpg#mediaviewer/File:Nasa_earth.jpg!

on the system level:
unable to see the

big picture
!

"Infant Stars in Orion" by NASA/JPL-Caltech/D. Barrado y NavascuÃ©s (LAEFF-INTA) - http://www.spitzer.caltech.edu/images/2131-sig07-006-Young-Stars-Emerge-from-Orion-s-Head. Licensed
under Public Domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Infant_Stars_in_Orion.jpg#mediaviewer/File:Infant_Stars_in_Orion.jpg!

organisational
dimension!

„Model of graphene structure“ by CORE-MATERIALS. Licensed under CC BY-SA 2.0 !

organized around
business capabilities!

„The Market Economy “ by Baer Tierkel. Licensed under CC BY 2.0 !

cross-functional teams!

„Storm Squad “ by JD Hancock. Licensed under CC BY 2.0 !

„you build it, you run it“!

„_DJM7077“ by nubigena. Licensed under CC BY-ND 2.0 !

technological
dimension!

„Microchip e microciop“ by Fabrizio Sciami. Licensed under CC BY-SA 2.0 !

fault tolerance
resilience!

„broken macbook home key“ by Doctor Rose. Licensed under CC BY-ND 2.0 !

asynchronous
communication!

„Sept 25/10 Old German postbox“ by Judith Doyle. Licensed under CC BY-ND 2.0 !

coarse-grained
interfaces!

„phone“ by raindog808. Licensed under CC BY 2.0 !

sophisticated
monitoring!

"Mission control center" by NASAOriginal uploader was Cjosefy at en.wikipediaLater version(s) were uploaded by TheDJ at en.wikipedia. - http://spaceflight.nasa.gov/gallery/images/shuttle/sts-114/html/jsc2005e09159.htmlTransferred from en.wikipedia.
Licensed under Public Domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:Mission_control_center.jpg#mediaviewer/File:Mission_control_center.jpg!

infrastructure
automation!

„Tesla Robot Dance“ by Steve Jurvetson. Licensed under CC BY 2.0 !

Advantages!

>  fast development cycle

>  it‘s easy to scale

>  flexibility of implementation

>  easy to get started for new developers

>  parts of the system can be replaced

Prerequisites!

>  monitoring the whole system

>  central logging

>  tracing across service boundaries

>  automatic deployment

>  automatic provisioning

Challenges!

>  service boundaries

>  contracts and governance

>  testing and refactoring

>  fallacies of distributed systems

>  support for a dozen technology stacks

Open questions!

>  how big?

>  isn‘t this just SOA?

Summary!

>  it‘s a promising approach,

>  but don‘t start with it mindlessly

Where are we now?!

"Gartner Hype Cycle" by Jeremykemp at en.wikipedia. Licensed under CC BY-SA 3.0 via Wikimedia Commons"
http://commons.wikimedia.org/wiki/File:Gartner_Hype_Cycle.svg#mediaviewer/File:Gartner_Hype_Cycle.svg!

Erlang / OTP!

What is Erlang / OTP?!
>  a general purpose

programming language

>  runtime environment and VM

>  Open Telecom Platform:
libraries, tools and design patterns
for building highly concurrent,
distributed, fault tolerant systems

fault tolerant to software
and hardware errors !

"BSoD in Windows 8" by Microsoft - Transferred from en.wikipedia to Commons.. Licensed under Public Domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:BSoD_in_Windows_8.png#mediaviewer/File:BSoD_in_Windows_8.png!

distributed systems!

"BalticServers data center" by Fleshas - I took this photo. Licensed under CC BY-SA 3.0 via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:BalticServers_data_center.jpg#mediaviewer/File:BalticServers_data_center.jpg!

non-stop running -
continous operation

over years!

"CEV-ISS" by NASA - http://www.nasa.gov/mission_pages/exploration/spacecraft/cev_hi_res.html. Licensed under Public Domain via Wikimedia Commons - http://commons.wikimedia.org/wiki/File:CEV-ISS.jpg#mediaviewer/File:CEV-ISS.jpg!

Principles!
>  lightweight concurrency

>  asynchronous communication

>  isolation

>  error handling

>  simple high-level language

>  tools not solutions or products

Erlang – the language!
>  high-level functional language

>  prolog inspired syntax

>  dynamically typed / safe

>  pattern matching everywhere

>  recursion

>  immutable data and variables

-module(factorial).!

-export([factorial/1]).!

!

factorial(N) when N >= 0 -> factorial(N,1).!

!

factorial(0,Acc) -> Acc;!

factorial(N,Acc) -> factorial(N-1,N*Acc).!

Concurrency!
>  millions of processes on one machine

>  processes are isolated

>  processes are used for everything:
>  concurrency

>  managing state

>  parallelism

>  no global data

Message passing!

>  asynchronous

>  primitives:
>  fire & forget send

>  selective receive

>  more complex interactions can be built
on top of these primitives

-module(pingpong).
-export([start/1]).

start(N) when N > 0 ->
 Pong = spawn(fun pong/0),
 ping(N, Pong).

ping(0,Pong) ->
 Pong ! exit,
 ok;
ping(N, Pong) ->
 Pong ! {self(), ping},
 receive
 pong ->
 io:format("Pid ~p: got pong. ~p pings left~n", [self(), N-1])
 end,
 ping(N - 1, Pong).

pong() ->
 receive
 {From, ping} ->
 io:format("Pid ~p: got ping from ~p~n", [self(), From]),
 From ! pong,
 pong();
 exit ->
 ok
 end.
!

Error handling!
>  avoid error checking code everywhere

>  let it crash

>  process based:
>  link - bidirectional

>  monitor - unidirectional

>  supervision trees

Supervision trees!

Supervision trees!

Supervision trees!

Supervision trees!

Distribution!

>  loosely coupled nodes

>  mostly transparent

>  TCP/IP based

OTP!

>  helps creating:
>  servers

>  finites state machines

>  event handler

>  supervisors

>  releases and upgrades

Hot code loading!

>  module is unit of code handling

>  exists in two variants: old and current

>  controlled take over

Instrumentation!
>  can trace almost everything:

process events, send & receive
messages, function calls

>  process introspection:
memory, mailbox, links, cur. function...

>  interactive shell

>  SNMP based OAM

Summary!

>  everything you need for building highly
concurrent, distributed, robust systems

>  but not well suited for number crunching
or maximum perfomance requirements

Where are we now?!

"Gartner Hype Cycle" by Jeremykemp at en.wikipedia. Licensed under CC BY-SA 3.0 via Wikimedia Commons"
http://commons.wikimedia.org/wiki/File:Gartner_Hype_Cycle.svg#mediaviewer/File:Gartner_Hype_Cycle.svg!

Microservices
& Erlang/OTP:

how they fit together!

How they fit together!

>  Erlang / OTP has everything you need
to build production-ready Microservices

How they fit together!

>  fault tolerance / resilience

>  async communication is the default

>  amazing monitoring capabilites

>  tools for upgrading / downgrading
running systems

„Green Day 2010 Tour“ by Daniel D‘Auria. Licensed under CC BY-SA 2.0 !

Thank you!!

>  Questions ?

>  Comments ?

Christoph Iserlohn
christoph.iserlohn@innoq.com

