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Welcome to the 

Dark Side
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Service Discovery

Timeouts

Errors

Latency

Load Balancing

& Stability



Usual Architecture Patterns

> Event-Driven Architecture 

> REST 

> SOA 

> Microservices / Self-Contained Systems 

> CQRS 

> Reactive / Actor Model



Domain Events

> Applications can issue Domain Events 

> Domain Events are important occurrences in an Domain 

> UserVerified 

> ShoppingCartCheckedOut 

> ShipmentDelivered 

> Domain Events are usually based on eventual consistency 

> Major driver for high degree of decoupling between 
Microservices
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An event is something  
that happened in the past

t

now

EventEventEventEventEvent



ShipmentDeliveredEvent  

CustomerVerifiedEvent 

CartCheckedOutEvent

CreateCustomerEvent 

WillSaveItemEvent 

DoStuffEvent



An Event is always immutable!
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Let’s reuse the ESB 
from the failed SOA 

project
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Talking about Grails
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Use the  
Grails 3  

Event System 
for handling of 
internal Events

Use  
RabbitMQ  

or  
Kafka  

for handling of 
external Events



Options for Events
Event with complete 

payload

Event with a REST URL

Empty Event as a Feed 
update notification

> The Event contains all relevant data 
> Enables complete async processing 
> Payload is big and can fill up your message broker

> The Event only contains a URL to a REST-Resource and some minimal 
data, that is usually always needed 

> Small payload that is fast to transport 
> Standard cases work completely asynchronous, more complex cases 

might require a  synchronous roundtrip (without service lookup though)

> The Event has no payload at all, it is just a notification 
> The payload, be it data or a REST URL, is usually contained in an 

Atom Feed 
> Event is a polling trigger for the feed



https://github.com/mploed/event-driven-spring-boot

Let’s replace the Scoring one 
with a Grails 3 Microservice!

https://github.com/mploed/event-driven-grails



THANK YOU
I’ll post links to slides and code on Twitter  

Michael Plöd - innoQ
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