
Loosely Coupled
Microservices with Grails

Michael Plöd
@bitboss

Interactions between Microserivces

Grails App

A

Grails App

B

Typically RESTful HTTP

Interactions between Microserivces

Grails App

A

Grails App

B

Grails App

C

Grails App

D

Grails App

E

Grails App

F

Interactions between Microserivces

Grails App

A

Grails App

B

Grails App

C

Grails App

D

Grails App

E

Grails App

F

!
"

#$%

Welcome to the

Dark Side

Challenges

!

"

#

$

%

Service Discovery

Timeouts

Errors

Latency

Load Balancing

& Stability

Usual Architecture Patterns

> Event-Driven Architecture

> REST

> SOA

> Microservices / Self-Contained Systems

> CQRS

> Reactive / Actor Model

Domain Events

> Applications can issue Domain Events

> Domain Events are important occurrences in an Domain

> UserVerified

> ShoppingCartCheckedOut

> ShipmentDelivered

> Domain Events are usually based on eventual consistency

> Major driver for high degree of decoupling between
Microservices

Domain Events

Customer 
Notification 
Application

Shipping 
Application

Shipment 
Delivered  

Event

Messaging  
System

Shipment 
Delivered  

Event

An event is something  
that happened in the past

t

now

EventEventEventEventEvent

ShipmentDeliveredEvent  

CustomerVerifiedEvent

CartCheckedOutEvent

CreateCustomerEvent 

WillSaveItemEvent 

DoStuffEvent

An Event is always immutable!

Loan Details
Entered

Financial
Situation
Entered

Personal
Infromation

Entered

Application
Submitted

Credit 
Application

Scoring

…

…

Let’s reuse the ESB
from the failed SOA

project

NO

NO

NO

Talking about Grails

Loan Details
Entered

Financial
Situation
Entered

Personal
Infromation

Entered

Application
Submitted

Use the  
Grails 3  

Event System
for handling of
internal Events

Use  
RabbitMQ  

or  
Kafka  

for handling of
external Events

Options for Events
Event with complete

payload

Event with a REST URL

Empty Event as a Feed
update notification

> The Event contains all relevant data
> Enables complete async processing
> Payload is big and can fill up your message broker

> The Event only contains a URL to a REST-Resource and some minimal
data, that is usually always needed

> Small payload that is fast to transport
> Standard cases work completely asynchronous, more complex cases

might require a synchronous roundtrip (without service lookup though)

> The Event has no payload at all, it is just a notification
> The payload, be it data or a REST URL, is usually contained in an

Atom Feed
> Event is a polling trigger for the feed

https://github.com/mploed/event-driven-spring-boot

Let’s replace the Scoring one
with a Grails 3 Microservice!

https://github.com/mploed/event-driven-grails

THANK YOU
I’ll post links to slides and code on Twitter  

Michael Plöd - innoQ
@bitboss

