
Microservices: Patterns & Antipatterns

Stefan Tilkov 
stefan.tilkov@innoq.com 

@stilkov

Let’s talk about words

Let’s talk about patterns

Pattern: <Name>

Description Approach Consequences

… • …
•

• …

Pattern: Microservices

Description Approach Consequences

Design modules as separate
deployment and operation
units, with large degrees of
freedom for their
implementation

• Former technical detail
(deployment architecture)
as first class architectural
design principle

• Network communication as
hard-to-cross boundary,
enforcing encapsulation

• Isolation
• Autonomy
• Scalability
• Resilience
• Speed
• Experimentation
• Rapid Feedback
• Flexibility
• Replaceability

Pattern: Evolutionary Architecture

Pattern: Evolutionary Architecture

Description Approach Consequences

Architecture is constructed so
it can evolve as much as
possible over the course of
(ideally indefinite) time

• Separation of large domain
into “islands of change”

• Design for replacement, not
for re-use

• Minimization of shared
dependencies

• Cell metaphor: Renewal
over time

• Experimentation with
different micro architecture
approaches possible

Antipattern: <Name>

Description Reasons Consequences

… • …
•

• …
•

Antipattern: Distributed Monolith

Description Reasons Consequences

System made up of arbitrarily
sized, tightly coupled modules
communicating over network
interfaces

• Hype-driven architecture
• Conference-driven

development
• Missing focus on business

domain
• Infrastructure over-

engineering

• “Ripple” effect of changes
• Complex environment
• Massive network overhead
• Performance issues
• Wild mix of technologies,

products & frameworks
• Hard to understand &

maintain

(a.k.a. “Microservices Gone Bad”)

Antipattern: Decoupling Illusion

Stakeholder

Stakeholder

Stakeholder

Antipattern: Decoupling Illusion

Description Reasons Consequences

Functional changes required
by different stakeholders
require changes to
overlapping services

• No alignment of
organization and
architecture

• Fine-grained services
• Too much focus on re-use

• High cost
• High technical complexity
• Reduced or no benefits in

terms of increased agility

Antipattern: Micro Platform

Platform Person

Antipattern: Micro Platform

Description Reasons Consequences

Standardization of service-
internal runtime aspects

• (Perceived) Increased
efficiency

• Easier handling of cross-
cutting concerns

• “Domain allergy”

• Shared dependency on
implementation details

• Bottleneck for changes
• Co-ordinated updates,

evolution, deployment

Antipattern: Entity Service

Order Service

Support Fulfillment BillingCheckout

Antipattern: Entity Service (resolved)

Support Fulfillment BillingCheckout

Order Service

Antipattern: Entity Service

Description Reasons Consequences

Services boundaries are
chosen to encapsulate “wide”
business entities

• Naive domain modeling
• Perceived benefits of

canonical models
• Violation of interface

segregation principle

• Distributed responsibility
Process bottlenecks

• Performance & scalability
issues

• High network overhead

Antipattern: Anemic Service

Process Flow

Presentation

Domain Logic

Data
JDBC in
disguise

Useful
and
specificRe-usable

but low-
level

Antipattern: Anemic Service

Description Reasons Consequences

Services designed to solely
encapsulate data, with logic
left to the caller

• Easily derived from simple
domain (E/R) models

• Reduces effort to agree on
specifics

• Maximizes re-use

• Increased network
overhead

• Useless bottlenecks
• Performance issues

Antipattern: Unjustified Re-Use

Invoice
Handling

Direct
Marketing

E-Mail

Hash Table

Templating

Printing

Spell Check

String
Concatenate

Antipattern: Unjustified Re-Use

Description Reasons Consequences

Extremely generic utility
functions to reduce logic
redundancy

• Generalization drive
• Domain allergy

• Network overhead
• Increased complexity
• Bottlenecks

Antipattern: Domain-last Approach

Biz Unit 1

Ops

Stakeholder

Stakeholder

StakeholderBiz Unit 2 Biz Unit 3

DB Tech 1 Tech 2

Dev

Antipattern: Domain-last Approach

Description Reasons Consequences

Major driver for organizational
structure is roles and technical
capabilities, not business
domain

• Matches classical company
structure

• Division of labor in
divisions, department,
teams

• Projects as exceptions to
change something that
works

• Inter-departmental politics
over business needs

• Conflicting project and
disciplinary hierarchies and
stakeholders

• Blameshifting

Pattern: Autonomous Cells

Stakeholder

Stakeholder

Stakeholder

Biz

Dev

Ops

Biz

Dev

Ops
Biz

Dev

Ops

Pattern: Autonomous Cells

Stakeholder

Stakeholder

Stakeholder

Biz

Dev

Ops

Biz

Dev

Ops
Biz

Dev

Ops

Pattern: Autonomous Cells

Description Approach Consequences

Decentralized, domain-
focused cells with maximum
authority over all aspects of a
set of capabilities

• Decisions are made locally
on all aspects of a solution

• Success is measured via
customer-oriented KPIs

• Cross-functional team with
biz, dev, ops skills

• Customer/end user focus
• Decentralized delivery

capability
• Speed as #1 priority
• “Full-stack” requirement for

developers and other roles
• Redundancy instead of

centralization

Sizing Patterns

Example: Pricing Engine

> Default product prices

> General discounts

> Customer-specific discounts

> Campaign-related rebates
Event Bus/Infrastructure

→FaaS

Pattern: FaaS (Function as a Service)

> As small as possible

> A few hundred lines
of code or less

> Triggered by events

> Communicating
asynchronously

Description: As seen on:
> Any recent Fred George talk

> Serverless Architecture(*)

> AWS Lambda

(*) https://leanpub.com/serverless

Pattern: FaaS (Function as a Service)

> Shared strong infrastructure dependency

> Common interfaces, multiple invocations

> Similarity to actor-based environments

> Emerging behavior (a.k.a. “what the hell just happened?”)

> Well suited to decomposable/“fuzzy” business problems

Consequences:

Example: Product Detail Page

> Core product data

> Prose description

> Images

> Reviews

> Related content

Orchestration

→μSOA

Pattern: μSOA (Microservice-oriented Architecture)

> Small, self-hosted

> Communicating
synchronously

> Cascaded/streaming

> Containerized

Description: As seen on:
> Netflix

> Twitter

> Gilt

Pattern: μSOA (Microservice-oriented Architecture)

> Close collaboration – common goal

> Need for resilience/stability patterns for invocations

> High cost of coordination (versioning, compatibility, …)

> High infrastructure demand

> Often combined with parallel/streaming approach

> Well suited to environments with extreme scalability requirements

Consequences:

Example: Logistics Application

> Order management

> Shipping

> Route planning

> Invoicing

Frontend

→DDDD

Event Bus/Infrastructure

Pattern: DDDD (Distributed Domain-driven Design)

> Small, self-hosted

> Bounded contexts

> Redundant data/CQRS

> Business events

> Containerized

Description: As seen on:
> (undisclosed)

Pattern: DDDD (Distributed Domain-driven Design)

> Loose coupling between context

> Acknowledges separate evolution of contexts

> Asynchronicity increases stability

> Well-suited for to support parallel development

Consequences:

That UI thing? Easy!

Assumption

Reality

Antipattern: Frontend Monolith

Description Reasons Consequences

Anemic services joined by a
monolithic frontend
application that contains most
of the business logic

• (Perceived) necessary for
homogenous UX

• Very few developers with
frontend knowledge

• (Perceived) lack of frontend
platform standardization

• Architects with focus on
backend

• Strong dependency on
individual frameworks and/
or tooling

• Bottlenecks during
development

• Complex and time-
consuming evolution due
to lack of modularity

Example: E-Commerce Site

> Register & maintain account

> Browse catalog

> See product details

> Checkout

> Track status

→SCS

Pattern: SCS (Self-contained System)

> Self-contained,
autonomous

> Including UI + DB

> Possibly composed
of smaller
microservices

Description: As seen on:
> Amazon

> Groupon

> Otto.de

> https://scs-architecture.org

Pattern: SCS (Self-contained System)

> Larger, independent systems, Including data + UI (if present)

> Able to autonomously serve requests

> Light-weight integration, ideally via front-end

> No extra infrastructure needed

> Well suited if goal is decoupling of development teams

Consequences:

Pattern: Web-based UI Integration

System 1 System 2

→Links

Pattern: Web-based UI Integration

System 1 System 2

→Redirection

Pattern: Web-based UI Integration

System 1 System 2

→Transclusion

Building Block
0..1

*

The final pattern …

Pattern: Monolith

Description Approach Consequences

Highly cohesive, tightly
integrated, single unit of
deployment application

• Standard application
• Internal modularity
• No artificially introduced

distribution
• Single unit of development

and evolution

• Straightforward
development

• Easy to refactor
• Homogeneous technical

choices
• Ideally suited for single

small team

We love monoliths –  
so let’s build a lot of them!

Final
Recommendations

1.
Be careful with silver bullets

2.
Prioritize intended benefits,
choose matching solutions

3.
Create evolvable structures

Stefan Tilkov 
stefan.tilkov@innoq.com 
Phone: +49 170 471 2625

innoQ Deutschland GmbH

Krischerstr. 100
40789 Monheim am Rhein
Germany
Phone: +49 2173 3366-0

innoQ Schweiz GmbH

Gewerbestr. 11
CH-6330 Cham
Switzerland
Phone: +41 41 743 0116

www.innoq.com

Ohlauer Straße 43
10999 Berlin
Germany
Phone: +49 2173 3366-0

Ludwigstr. 180E
63067 Offenbach
Germany
Phone: +49 2173 3366-0

Kreuzstraße 16 
80331 München
Germany
Phone: +49 2173 3366-0

@stilkovThat’s all I have.
thanks for listening!

mailto:stefan.tilkov@innoq.com?subject=
http://www.innoq.com

Image Credit

https://pixabay.com/en/marketing-customer-center-2483856/

https://pixabay.com/en/chaos-room-untidy-dirty-messy-627218/

https://commons.wikimedia.org/wiki/File:Wroclaw_Daily_Market.jpg

https://pixabay.com/en/smartphone-face-man-old-baby-1790833/

About Stefan Tilkov

> CEO/Co-founder & principal consultant 
at innoQ

> Author and frequent conference speaker

> stefan.tilkov@innoq.com

> @stilkov

mailto:stefan.tilkov@innoq.com

About innoQ

> Offices in Monheim (near Cologne), Berlin,
Offenbach, Munich, Zurich

> ~125 employees

> Core competencies: software architecture consulting
and software development

> Privately owned, vendor-independent

> Clients in finance, telecommunications, logistics, e-
commerce; Fortune 500, SMBs, startups

www.innoq.com

