
Wait, what? Our microservices 
have actual human users?

Stefan Tilkov, innoQ
@stilkov

μS μS

μS

μS μSμS

Frontend

So you want to do microservices …
What is this thing?

What is this line?

Is it the same as
this one?

Where does it run?

Challenging Assumptions

Assumption:
Orchestration is cheap

No.

“Really remote” vs. “almost local”

μS μS

μS

μS μSμS

Inside DC; 
Latency: μs

Frontend Typically Internet; 
Latency: ms

“Backend for Frontend”

μS μS

μS

μS μSμS

BFF

Frontend

http://samnewman.io/patterns/architectural/bff/

Assumption:
Channels matter

Not as much

as you think

Multiple BFFs for different clients

μS μS

μS

μS μSμS

BFF

Frontend

BFF

Frontend

BFF

Frontend

Imagine more
arrows here

Multiple channels – facing every user

Browse product Pick recommendation Buy Check status Comment

Users expect a seamless
experience across channels 

– everything accessible,
everywhere.

Build services that actually do something

Process Flow

Presentation

Domain Logic

Data
JDBC in
disguise

Useful
and
specificRe-usable

and low-
level

Assumption:
Services matter most

(a.k.a. “SOAs Original Sin”)

UIs matter

more.

μS

μS

μS μSμS

Frontend

μS

Frontend + services in a
backend architect’s mind

μS

μS
μS μSμS

Frontend

μS

Frontend + services in the
real world

Redundancy with Multiple BFFs

μS

μS
μS μSμS

μS

Frontend A Frontend B Frontend C

Ideal world UI componentization

μS

μS

μS μSμS

μS

FEμS μSFE

Not all μS
need a UI

“Vertical” 
Responsibility

SCS: Self-contained Systems
http://scs-architecture.org

Assumption:
Frontend technology is an

implementation detail

Not at all.

Backend Platform

More than one platform

μS

μS

μS μSμS

μS

Frontend Platform

FEμS μSFE

Microservices backend platform goals

> As few assumptions as possible

> No implementation dependencies

> Small interface surface

> Based on standards

> Parallel development

> Independent deployment

> Autonomous operations

Backend Platform

What’s the frontend platform analogy?

> As few assumptions as possible

> No implementation dependencies

> Small interface surface

> Based on standards

> Parallel development

> Independent deployment

> Autonomous operations

Backend Platform

Frontend Platform

Rendered on
Client

Rendered on
Server

DesktopMobile Set top

Web App Native App

Frontend, we’ve got frontends

Frontend

Hybrid

Web UI Integration: Links

System 1 System 2

Web UI Integration: Redirection

System 1 System 2

Web UI Integration: Transclusion

System 1 System 2

Web UI Integration: Web Components?

System 1 Component

The browser as a platform

> Independent applications

> Loosely coupled

> Separately deployable

> Based on standard platform

> Updated on the fly

> Any device

Backend Platform

Frontend Platform

How to get away with “just” the Web

> Mobile first

> Responsive design

> Progressive enhancement

> Shared assets

> Pull vs. push

> Sacrifice (some) efficiency

Small frontends, loosely coupled

Simple two-step secret to improving the performance of any website,
according to Maciej Ceglowski (@baconmeteor):

“1. Make sure that the most important 
 elements of the page download and 
 render first.
2. Stop there.”

http://idlewords.com/talks/website_obesity.htm

Rendered on
Client

Rendered on
Server

DesktopMobile Set top

Web App Native App

What about other approaches?

Frontend

Hybrid

✔

✔ ✔

?

Assumption:
Frontend monoliths are OK

Sometim
es.

Native frontends resemble server monoliths
Goals:

> As few assumptions as possible

> No implementation dependencies

> Small interface surface

> Based on standards

> Parallel development

> Independent deployment

> Autonomous operations

Constraint:

> Only internal modularization

Solution (sort of):

> Organizational structure

> Platform interfaces

> Release trains

> Discipline

Rendered on
Client

Rendered on
Server

DesktopMobile Set top

Web App Native App

What about other “modern” web apps?

Frontend

Hybrid

✔

✔ ✔

(✔)?

Assumption:
JS-centric web apps can 

be as good as native apps

They shouldn’t be as bad!

“Web service”1)
> Use HTTP as transport

> Ignore verbs

> Ignores URIs

> Expose single “endpoint”

> Fails to embrace the Web

1) in the SOAP/WSDL sense

“Web app”2)
> Uses browser as runtime

> Ignores forward, back, refresh

> Does not support linking

> Exposes monolithic “app”

> Fails to embrace the browser

2) built as a careless SPA

The web-native way of distributing logic

Process Flow

Presentation

Domain Logic

Data

Server

Client > Rendering, layout, styling 
on an unknown client

> Logic & state machine on server

> Client user-agent extensible via 
code on demand

HTML & Hypermedia

> In REST, servers expose a hypermedia format

> Option 1: Just use HTML

> Option 2: Just invent your own JSON-based, incomplete clone

> Clients need to be RESTful, too

> Option 1: Use the browser

> Option 2: Invent your own, JS-based, buggy, incomplete implementation

$('.multiselect', context).each(function() {  
 $(this).multiselect({  
 selectedList: 2,  
 checkAllText: "Alle",  
 uncheckAllText: "Keinen"  
 }).multiselectfilter({label:"",  
 width:"200px"});  
});

<div class="filter-column">  
 <label for="project">Project</label>  
 <select class="multiselect" id="project"  
 name="project" size="5" multiple>  
 <option>DISCOVER</option>  
 <option>IMPROVE</option>  
 <option >MAGENTA</option>  
 <option>ROCA</option>  
 <option>ROCKET</option>  
 </select>  
</div>

Why choose a monolith if you don’t have to?

Any sufficiently complicated JavaScript client application
contains an ad hoc, informally-specified, bug-ridden,
slow implementation of half a browser.

(Me, with apologies to Phillip Greenspun)

ROCA: Resource-oriented Client Architecture
http://roca-style.org

Disclaimer: Not a fan of SPAs (see https://medium.com/p/f08bb4ff9134

If you’re a fan of single page apps, 
at least build more than one

> Don’t reinvent browser integration features

> Accept some inefficiency

> Trade-off for framework independence

> Avoid modularity à la Java EE, OSGi etc.

Summary

Few organizations are in the
business of delivering APIs

– UIs matter

Frontend monoliths are
just as good, or bad,

as backend monoliths

Nothing beats the browser
with regards to modular

frontend delivery

Stefan Tilkov 
stefan.tilkov@innoq.com 
Phone: +49 170 471 2625

innoQ Deutschland GmbH

Krischerstr. 100
40789 Monheim am Rhein
Germany
Phone: +49 2173 3366-0

innoQ Schweiz GmbH

Gewerbestr. 11
CH-6330 Cham
Switzerland
Phone: +41 41 743 0116www.innoq.com

Ohlauer Straße 43
10999 Berlin
Germany
Phone: +49 2173 3366-0

Ludwigstr. 180E
63067 Offenbach
Germany
Phone: +49 2173 3366-0

Kreuzstraße 16 
80331 München
Germany
Phone: +49 2173 3366-0

Thank you.
Questions? 
Comments?

@stilkov

Image credit: The Noun Project 
Marek Polakovic, Arthur Shlain, Karthick Nagarajan

mailto:stefan.tilkov@innoq.com?subject=
http://www.innoq.com

