i Software

g5 Architecture

\"Lﬁ"/ k for Humans!

Architecture?

* This presentation:
Architecture = structure

* Architecture goal: Maintainability

* Architecture should take all quality goals
Into account!

e ...and tackle them!

Is this a Great Architecture?

ganmakaleio

EEXEnCAON

BN aEsEm

[TGTRTIET
v - ugtano C8BE
A & érjadee el @k Q7 e i

I ,—» oGkal ol fia g !

nmere—|

motrrerst A

oo

U esma a Giet cnw

Hwroos Edimaano

Cavrag

'ﬁE_u‘lunaﬂ

Euprimer -~ BeblGluni

@7 eIy Qi U {al,
|

I E01dosalns o oldel

apuitliipe eny

o OdviG o 00 QuuAECHY pdbidoa Uik nefnd & B CEN GG
= o @ p.a vt g s i fuon| mod eny
© Rnjrse owaNganRdIGnH 6 FTat [N [~ —HeaeR
— e Elﬂdmm\enlsxulsulﬂ [{alc]=]=]
\HBieruInd burgoniciowr
GCocensomadh T
; i :
] BHIA AAQY RIEIBY s g
Cararaoriaie
moangegrr
aInasit
motretiaonlg
it
— eyganaRneaand
(Y e
S
QoY S ol orolesnaanm i
BRAIROf UBPEA . =131}
. a

YO!0011IDe

Yi{id AEE

Y=o

dalmigmecor {

Why are we Doing Architecture?

Human have limited mental
capacity

Humans must be able to
modify the system

Architecture should allow
humans to change a system
with limited knowledge

#SoftwareArchitektur

—.n‘— : B "N L

_S_f’ﬁ_ areef ickl.un

Q 0
’Prof.._,&ryi;im @ewolft

Y ebrwolff

software-architektur.tv

https://software-architektur.tv/2021/07/09/folgebb6.html

Entwicklungsproess + Anwendung
Le manchmal anbitpieren,
000 Leber usammen mit Nuhesn

MM usammenarbeit €
Kommunikahon Q

5‘:; Modularisierung

Is this a Great Architecture?

TR
¢ - uotann CABE
I o 9 CHNAL) [Hmimeso EBE“IMQ"
I bR E e
5 o
aamvalaaleno L I
am =nidocalnd b oldel e
QG‘ Be0 | .
- m s a'mspuiniijoe et
prac @y ey
Bt~ Bl G
PY: B O dae il nenel ge 0
. "mw.. — sl ed enn
" npike ongiLe _ c—hiawep
- s Ritda@iel IpapE
\HRerurab Guigory
ceni Drad _
; o8
il NG RixI8Y i
Cararaoriaie
meany ey
aInas)
BACLIE
elganEmeand
N
ganoy 4 ol orolesnaanm
BRAIROf UBPEA . (=131}
- a

YO!10011IDe @ 1 Aaimgmecori §
YHIE ARE | =

Is this a Great Architecture?

ganmakaleio

ITGTRTTETA N]

'—.-

nmere—

q ke&fadee el @
oGkal ol b an '

Cavrag

'ﬁE_u‘lunaﬂ

motrrerst A
OHEHEMD
W eyma a Gict cow

T

Hamo CAB
O o EE3ENEAON

BN aEsEm

Hwroos Edimaano

I E01dosalns o oldel

apuitliipe eny

% ey G U
Euprimer -~ BeblGluni

8!

l

T T

-For whom?

CawaraOrLaN
meany ey

aGioly

ol orolesnaanm
BRAIR0G UEDERNA .

QI

|

mctetiaoald

elganEmeand

L

L,

it @Eef A

a

YO:0011[De
Yif@ AEE @]

dalmigmecor {

Complexity

Maximum complexity
team can handle
efficiently

Actual complexity of

the system

Is this a Great Architecture?

 Can only review architecture

O O o
when considering the people, @ |‘] m

too.

e |.e.thereis no "absolute
great architecture”!

e Use metrics with carel

Is this a Great Architecture?

* |Interviews: Where are the
problems?

 Support findings by metrics
 Think about improvements

Consider Social Aspects

O O o
 Who changes what? [}}?q‘]\%
)

 What is changed frequently?
 What is changed seldomly?

How Do You Improve
an Architecture?

vious: Optimize Dependencies

[GTRUTETA)

s = ugtano C8BE

| A & érjadee el @k Q7 e i EE3EnCAON
I ,—.. SEINal Gt fia i ' BN aEsEm

XTCrT—

motrrerst A
OHEHEMD

W eyma a Gict cow

I nidonalna o oldela
{ I Al F)
Broos € Grmajario @spbinijos eng

sanmakalene e

Cavrag

M Wwaea @y on G gl
Eutntime - BetlGiuni? ,
| |
o OdviG o 00 QuuAECHY pdbidoa Uik nifnd @ie 8 CENUMGIO
- i S o s i Muan| e ey
" npike oANIEARIENH & YTt (7 S (—Raaay
— e Elﬂdmm\enlsxulsulﬂ [{alc]=]=]
\HBieruInd burgoniciowr
GCocensomadh e
; o :
] BHIA AAQY RIEIBY e pbus
Cararaoriaie
meany ey
QU@
motretiaonlg
it
—_— — OEnEReAarl
o
L,
ALY - forleroralesnaan i
BRAIR0G UEDERNA . (=131}
. a

dalmigmecor {

L
YO:0011[De T I
fiag HEE@] ' 2

Complexity

=== Actual complexity of

e L the system

Maximum complexity

(@)
% tegm can handle
efficiently

Nz

Complexity

=== Actual complexity of

e L the system

o o Maximum complexity
fm\% team can handle
efficiently

¢

Broken?

Team fine with one system

Team: This other system is really bad!
Metric: Other system is well-structured
...but it was handed over to the team.
Team never really learned the system.

What if interviews show that an
architecture with well-structure
dependencies is really broken?

Broken but Well-Structured?

* Well-structure code is not enough
* Developers must understand the system.

 Ever tried to understand a system you
developed a few years back?

Improve People not Software

* Figure out why developers don't
understand the system.

* Educate about the architecture!

Fix: Education

=% Actual complexity of
JEE the system

Maximum complexity
team can handle
efficiently

Learn the System

. Educate the team
Complexity

Reading Code

 Code is read more frequently that written.
 Learn how to read code!

 Felienne Hermans researches this subject.
https://codereading.club/

https://software-
architektur.tv/2021/10/13/epsiode81.html

Legacy: A Social Problem?

Legacy: Traditional Explanation

Software rot

Technical debt

Complexity

Maximum complexity
team can handle
efficiently

==_=-% Actual complexity of
- the system

Legacy: Social Explanation

o 0o o Maximum complexity
[}I]}\ﬂ\k% team can handle
efficiently

— 1 Actual complexity of
- the system

People quit

Complexity

Legacy: A Social Problem

— Actual complexity of
~ the system

Maximum complexity

O O (o)
@W% team can handle
efficiently

THESE people cannot handle
the complexity of THIS

Complexity system efficiently

Fix: Education

=% Actual complexity of
JEE the system

Maximum complexity
team can handle
efficiently

Learn the System

. Educate the team
Complexity

Big Ball of Mud

lcon: Lisa Moritz

Increasing Complexity: Fine?

° Maximum complexity
f)ﬂ}\ m (% team can handle
efficiently

L the system

@

Still maintainable

Cheaper

Complexity some additional

complexity is a given

Increasing Complexity: Fine?

 Must stay efficiently maintainable!

* Careful: Consequences of too low quality
might be disastrous!

 But: There is no such thing as a perfect
system.

Big Ball of Mud: Pattern C..%

A Big Ball of Mud is haphazardly wtLisa Moritz

structured, sprawling, sloppy, duct-tape cmd
bailing wire, spaghetti code jungle.

Why is this architecture so popular?
You need to deliver quality software on time,
and under budget.

Therefore, focus first on features and
functionality, then focus on architecture and

performance' Big Ball of Mud, Brian Foote & Joseph Yoder

http://www.laputan.org/mud/

SOFTWARE-ARCHITERTUR.TV SOFTWARE-ARCHITERTUR TV

https://software-architektur.tv/2023/03/31/folge159.html

Would you like to be called a good
developer?

Would you like to be praised for
being a good developer?

Complexity

Maximum complexity
team can handle
efficiently

Actual complexity of
the system

Good
developers

Average
developers

Complexity

Maximum complexity
team can handle
efficiently

Actual complexity of
the system

Vs. Good Architecture C%

 Good architecture: changeable

* Big Ball of Mud: Not really changeable
 Every architecture has weak spots.

* How many weak spots are acceptable?

Good o 0o o Maximum complexity
developers f)ﬂ}\ m (% team can handle
Average ef'ﬁCiently

developers .
Actual complexity of

the system

Can growing complexity be avoided?
Should it?

Practical solution vs “theoretical”

Complexity "Clean" is really hard and

requires lots of effort.

Good

You You are
saved great
the day! developers!

Maximum complexity

O O o
developers f)ﬂ}\ﬂ\(% team can handle
), . .
Average efficiently

developers

Complexity

Actual complexity of
the system

More complexity =
more praise for
good developers?

and job security?

and interesting challenges?

Fellow
INNOQ

@ewolff
http://ewolff.com

DE https://youtu.be/p7r6lE7TkpU
EN https://youtu.be/3MP-4UcAYJU

https://youtu.be/p7r6IE7TkpU
https://youtu.be/3MP-4UcAYJU

Those are not good developers!

Those are not good developers!
| would love to agree!

Java Certification

I'd rather not work in @
project that requires
understanding such
code or where people
write such code.

So why would we ask
for such knowledge?

public class Client {
static void doCalc (byte... a)
System.out.print ("byte...");

static void doCalc(long a, long b) {
System.out.print("long, long"):;

static void doCalc (Byte sl, Byte s2) {
System.out.print ("Byte, Byte"):;

public static void main (String[] args) {
byte b = 5;
doCalc (b, b);

byte...

long, long

Byte, Byte
compilation error

CoOow»

https://blogs.oracle.com/oracleuniversity/post
/test-your-java-knowledge-with-free-sample-
questions

Developer: Naturliche Feinde der
Softwarearchitektur?

Softwarearchitektur beeinflusst den Erfolg eines Projekts erheblich. Aber
ausgerechnet "gute" Entwickler und Entwicklerinnen kdnnen Feinde der
Architektur sein.

Lesezeit: 5 Min. In Pocket speichern) & O 132

(Bild: Pixels Hunter/Shutterstock.com)

20.04.2023 18:52 Uhr | Developer

Von Eberhard Wolff

DE https://www.heise.de/blog/
Entwickler-innen-natuerliche-Feinde-der-Softwarearchitektur-8971097.html

Big Ball of Mud C%

 Developers should really be afraid of
complexity.

 Being able to handle it might actually be
bad.

Micro- / Macro-Architecture

Micro- / Macro-Architecture

 Delegate decisions

* Macro architecture:
Binding for all modules

* Micro architecture:
Potentially different for all modules

e Micro architecture can be left to the
teams

Micro- / Macro-Architecture:
Static Code Analysis

Static Code Analysis

0@ SonarQube - Spring Fram: x

€« Cn

Projects v Measures Issues Rules

(™) Spring Framework

&) https://sonar.spring.io/dashboard/index/20677

Quality Profiles

Quality Gates

ftegots Version 4.3.0.BUILD-SNAPSHOT - 04. Jan 2016 05:19 | Time changes v
Reviews
Time Machine Lines Of Code Files Functions
Issues
261.089 A 3.954 » 27.326 »
TOOLS ~ P p
Java 261.012 Directories Lines Classes Statements Accessors
Components P
il Qi 7 812 560.966 4 4438 99817 a 2449 »
Issues Drilldown
Design
zbrarles Complexity 5o
ompare
4 2,3 /function 10000
\\-, 5000
be -l 4,4 /class 0 . :
1 2 4 6 8 10 12
1 6'2 /file © Functions ()Files
Total: 64085 A
Unit Tests Coverage Unit Test Success
)
69,3% 100,0%
Line Coverage Condition Coverage Failures Errors Tests Skipped
71,4% 64,5% 0 0 15440 a 222
Execution Time
6:32 min »

Eberhard
wd ® =
(R Search I
Technical Debt Issues © Blocker 0
223d A 8789 2 © Critical 3
@ Major 4562 2 N
& Minor 3.997 | —|
© Info 227 A |

Directory Tangle Index
0,0%

Cycles

>0

Dependencies To Cut

Between Directories Between Files

0 0

Should Static Code Analysis be
Part of the Macro Architecture?

* \Vote:
Yes, pre-defined metrics
Yes, teams decides about metrics

No

Micro- / Macro-Architecture
CDelegate decisions

e Macro architecture:

Binding for all modules

* Micro architecture:
Potentially different for all modules

e Micro architecture can be left to the
teams

Should Static Code Analysis be
Part of the Macro Architecture?
¢ IMHO No

 Goals: Teams should act autonomously.
 Teams must deliver a certain quality.

* They decide how to do that.

...with or without static code analysis.

Trust

* | trust the teams to deliver quality
* They will choose the means to do that.

 That might or might not include static
code analysis

Limit: Trust

« Teams may not be trusted.

 E.g. external teams that are known to
deliver poor quality.

 Manage quality via static code analysis?

Goodhart’'s Law

 Every measure which becomes a target
becomes a bad measure.

* https://en.wikipedia.org/wiki/Goodhart%
27s law

Micro- / Macro-Architecture:
Requirements Approach

Requirements: Different Approach

* Document that talks about requirements
...and how to handle them.

Chapters

Scaling: Requirements

7 Requirements o Plgn for growth!

Scaling Socaib)
ossiIble
solutions | ® Refer to the
Security business goals for
details.
Vork with * Business goals are

Multiple Teams .
usually increased.

* Prepare for
unplanned peaks!

Scaling: Possible Solutions

Scaling <

Security

Work with
Multiple Teams

Requirements

Possible
Solutions

Scale up
Horizontal scaling
Sharding

Graceful
degradation

Asynchronous
iIntegration

Scaling: Possible Solutions

Requirements

Possible
Solutions

 Description
+ List of experts

+ Advantages /
disadvantages

Requirements: Take Away

Communicates trade-offs — the essence
different solutions.

Allows teams to make their own
decisions — the essence of architecture.

Actually focuses on supporting teams.
More autonomy

Trust

* Trust teams fully to solve the problem
...or speak up.

 Support teams.

 Control?

Micro- / Macro-Architecture:
Conclusion

When Chose What?

 Depends on persons, culture, and trust
« Some need to be controlled ()

* Some want to be told what to do
Guidance / support

* Some want to decide by themselves
Really autonomous teams

What is important e e
ACCELERATE

Building and Scaling High Performing
Technology Organizations

is enabling teams

to make changes to their
products or services

without depending on other
teams or systems.

Nicole Forsgren, PhD
Jez Humble, and Gene Kim

with forewords by Martin Fowler and Courtney Kissler

t contributed by Steve Bell and Karen Whitley Bell

Inverse Conway

Inverse Conway Maneuver

* Architecture should drive organization
* |.e.set up the organization
* Architecture will follow

Developers, Designers ...

Order

Order Process @@ @@

Delivery OO ®)
Invoicing SIOISOI®

Order

Order Process

Delivery

Invoicing

Inverse Conway: Simplification

* |nverse Conway changes the org chart
 Org chartis not communication!

 Assumption: Org chart team will collaborate
on module & communicate more internally

 Does it work that way?

e What if members of different teams sit in
the same room?

Inverse Conway: Simplification

Do you think people will just follow @
reorg?

Do you think people in the same room will
work more closely together?

Why | am doing the presentation? What
Is the news?

We know but we don't use the knowledge

Irritating the Organization

Sociology: "irritating” organizations.
New org chart: irritation

Can
Can

ead to new communication structure
ead to org chart teams working on

modules.
Might also be completely ignored.

https://software-
architektur.tv/2020/09/10/folge016.html

Inverse Conway: Assumptions

* People will follow the org chart.

* People will communicate according to the
org chart.

* Too simplistic

What Now?

Conclusion

* Architecture is for people to better
understand software.

* So: There is no absolute good / bad
architecture.

* |t depends on people.

Understand Your Problem!

 Software or Humans?
* Legacy because humans left?
e ...and maybe not even a big ball of mud

Fix the Organization?

* | want to develop software
* ...not fix the organization
* Agile has the same problem

Live with It

* |If you don't want to / can't fix the
organization, you will have to live with it.

* You might need to adjust your
architecture

Humans, not Robots

 Computers should be deterministic
* (Yes, | know it doesn't seem like it)
e Humans are not deterministic.

* Don't simplify like the inverse Conway
Maneuver!

* Actually, we all know but we are not
explicit about this.

Psychological Safety

* Without feedback no progress

 So: Need to create an environment where
people feel safe to provide and receive

feedback
* Psychological safety

Organisation #

e Folge 163 - Kommunikation im Entwicklungsprozess mit Rebecca Temme

» Folge 147 - Wie reil3t man den Elfenbeinturm ein? mit Anja Kammer

» Folge 141 - Auftragstaktik - Agilitat beim Militar? mit Sénke Marahrens

» Folge 125 - Organisation und Architektur - ein Beispiel

» Folge 115 - Data Mesh - nur ein neuer Datenanalyse-Hype?

» Folge 110 - Conway's Law

» Folge 106 - Anne Herwanger, Alexandra Hoitz, Stefan Link - Resiliente Organisation und resiliente
Software Architektur - live von der OOP

» Episode 101 - Kenny Baas-Schwegler, Gien Verschatse, Evelyn Van Kelle - Facilitating Collaborative
Design Decisions - Live from OOP

e Folge 96 - Organisation, Architektur - Was ich im Stream gelernt habe

» Folge 91 - Sven Johann - Cross-funktionale Teams zielgerichtet in den Abgrund stlirzen

» Episode 82 - Avraham Poupko & Kenny Baas-Schwegler - The Influence of Culture on Software
Design

» Epsiode 80 - Microservices, Inverse Conway Maneuver, and Flow with James Lewis - Live from
Software Architecture Gathering

» Folge 73 - Das Spotify-Modell gibt es gar nicht!

» Folge 63 - Kim Nena Duggen zu Soft Skills fir Software-Architekt:innen

» Folge 16 - Gerrit Beine zu Sozialwissenschaften und Software-Architektur

e Folge 2 - Organisation und Architektur

https://software-architektur.tv/tags.html#Organisation

Send email to jax2023@ewolff.com

Slides

+ Service Mesh Primer EN

+ Microservices Primer DE / EN

+ Microservices Recipes DE / EN

+ Sample Microservices Book DE / EN

+ Sample Practical Microservices DE/EN
+ Sample of Continuous Delivery Book DE

Powered by Amazon Lambda

& Microservices

EMail address logged for 14 days,
wrong addressed emails handled manually

	Folie 1:
	Folie 2: Architecture?
	Folie 3: Is this a Great Architecture?
	Folie 4: Why are we Doing Architecture?
	Folie 5
	Folie 6
	Folie 7: Is this a Great Architecture?
	Folie 8: Is this a Great Architecture?
	Folie 9
	Folie 10: Is this a Great Architecture?
	Folie 11: Is this a Great Architecture?
	Folie 12: Consider Social Aspects
	Folie 13
	Folie 14: Obvious: Optimize Dependencies
	Folie 15: Traditional Fix: Reduce Complexity
	Folie 16: Traditional Fix: Reduce Complexity
	Folie 17: Broken?
	Folie 18
	Folie 19: Broken but Well-Structured?
	Folie 20: Improve People not Software
	Folie 21: Fix: Education
	Folie 22: Reading Code
	Folie 23
	Folie 24: Legacy: Traditional Explanation
	Folie 25: Legacy: Social Explanation
	Folie 26: Legacy: A Social Problem
	Folie 27: Fix: Education
	Folie 28
	Folie 29: Increasing Complexity: Fine?
	Folie 30: Increasing Complexity: Fine?
	Folie 31: Big Ball of Mud: Pattern
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37: Vs. Good Architecture
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43: Java Certification
	Folie 44
	Folie 46: Big Ball of Mud
	Folie 47
	Folie 48: Micro- / Macro-Architecture
	Folie 49
	Folie 50: Static Code Analysis
	Folie 51: Should Static Code Analysis be Part of the Macro Architecture?
	Folie 52: Micro- / Macro-Architecture
	Folie 53: Should Static Code Analysis be Part of the Macro Architecture?
	Folie 54: Trust
	Folie 55: Limit: Trust
	Folie 56: Goodhart’s Law
	Folie 57
	Folie 58: Requirements: Different Approach
	Folie 59: Chapters
	Folie 60: Scaling: Requirements
	Folie 61: Scaling: Possible Solutions
	Folie 62: Scaling: Possible Solutions
	Folie 63: Requirements: Take Away
	Folie 64: Trust
	Folie 65
	Folie 66: When Chose What?
	Folie 67
	Folie 68
	Folie 69: Inverse Conway Maneuver
	Folie 70: Developers, Designers …
	Folie 71: Chaos
	Folie 72: Order
	Folie 73: Order
	Folie 74: Order
	Folie 75: Inverse Conway: Simplification
	Folie 76: Inverse Conway: Simplification
	Folie 77: Irritating the Organization
	Folie 78: Inverse Conway: Assumptions
	Folie 79
	Folie 80: Conclusion
	Folie 81: Understand Your Problem!
	Folie 82: Fix the Organization?
	Folie 83: Live with It
	Folie 84: Humans, not Robots
	Folie 85: Psychological Safety
	Folie 86
	Folie 87

