
Self-contained
Systems: A Different 

Approach to
Microservices





http://microservices-buch.de/ http://microservices-book.com/



http://microservices-book.com/primer.html

FREE!!!!



Microservice Definition



Server Server

Microservices: Definition

> Independent deployment units

> E.g. process, VMs, Docker containers

> Any technology

> Any infrastructure

Micro
Service

Micro
Service



Components 
Collaborate

Micro
Service

Micro
Service

Link

Data Replication

REST

Messaging



Online Shop

Order

Catalog

Search

Billing

Customer

HTML /
HTTP



Distributed System



Distributed System
Why??



Why Microservices?

Strong Modularization

Scaling Agile

Sustainable development Replaceable Services
Continuous Delivery

Free choice of technology 

Handle Legacy efficient

Independent Scaling

Robustness

Small teams develop and 
deploy independently

Add services – not code

Small Services

Failure limited to single 
Microservice



Why Microservices?
Scaling Agile

Sustainable development

Continuous Delivery

Free choice of technology 

Handle Legacy efficient

Independent Scaling

Robustness

Organization

Deployment
Units

Technology



Single Developer
Scaling Agile

Sustainable development

Continuous Delivery

Free choice of technology 

Handle Legacy efficient

Independent Scaling

Robustness

Organization

Deployment
Units

Technology



Replace Monolith
Scaling Agile

Sustainable development

Continuous Delivery

Free choice of technology 

Handle Legacy efficient

Independent Scaling

Robustness

Organization

Deployment
Units

Technology



Self-Contained System 
(SCS)



Deployment
monolith

Graphics by Roman Stranghöhner, innoQ
http://scs-architecture.org



Various Domains



User interface
Business logic
Persistence



… a lot of modules, 
components, 
frameworks and 
libraries



With all these 
layers in one 
place, a 
monolith 
tends to 
grow.



Cut Deployment
monolith along 
domains …



… wrap domain in 
separate web 
application …



Self-contained 
System (SCS) –
individually
deployable



Decentralized unit 
communicating with 
other systems via 
RESTful HTTP or 
lightweight 
messaging.



SCS can be 
individually 
developed for 
different 
platforms.



An SCS contains its own 
user interface, specific 
business logic and 
separate data storage



Web user interface 
composed according 
to ROCA principles.

http://roca-style.org



optional API e.g. for
mobile



Logic only shared over 
a well defined 
interface.



Business logic can 
consist of 
microservices



Every SCS brings its 
own data storage
with ist own
(potentially
redundant) data



Redundancies:
tolerable as long as 
sovereignty of data
by owning system is 
not undermined.



Enables polyglot 
persistence

Neo4J
CouchDB

Oracle



Technical decisions can 
be made independently 
from other systems
(programming language, 
frameworks, tooling, 
platform)



Domain scope 
enables 
development, 
operation and 
maintenance of 
SCS by a single 
team.Team 1

Team 2 Team 3



Self-contained 
Systems
should be integrated 
in the web interface



Hyperlinks to navigate between 
systems.

System 1 System 2



System 1 System 2

Redirection

> Use of callback URIs

> As seen e.g. in OAuth flows



Dynamic inclusion of content 
served by another application

System 1 System 2



Synchronous remote 
calls inside the 
business logic should 
be avoided.



Asynchronous Remote 
calls reduce 
dependencies and 
prevent error 
cascades.



Data model’s 
consistency 
guarantees are 
relaxed.



An integrated 
system of systems
like this has many 

benefits.



Resilience is improved 
through loosely 

coupled, replaceable 
systems.



SCSs can be 
individually 

scaled to serve 
varying demands.



No risky big bang to migrate an 
outdated, monolithic system into 

a system of systems.

Version 1Version 2



Migration in small, manageable steps 
which minimize risk of failure and lead to 

an evolutionary modernization
of big and complex systems.



1 *MicroserviceSCS



Conclusion

> SCS: autonomouos web application

> Might consist of Microservices

> Focus on UI Integration

> Almost completet independence

> Coarse-grained architecture approach



Conclusion

> Self-contained systems are Microservices …

> that are not “micro”…

> and don’t have to be “services”

> Many are doing it already!



> http://scs-
architecture.org

> Creative commons

> Source on Github

> Slidedeck


