
Microservices: A Taxonomy

Microservices – Common Traits

• Focused on “one thing”

• Autonomous operation

• Isolated development

• Independent deployment

• Localized decisions

Example: Device Event Handling

• Incoming event validation

• Format transformation

• Fan-out event generation

• Aggregation

• Storage
Event Bus/Infrastructure

→FaaS

Pattern: FaaS (Function as a Service)

• As small as possible

• A few hundred lines of
code or less

• Triggered by events

• Communicating
asynchronously

Description: As seen on:
• Any recent Fred George

talk

• Serverless Architecture

• AWS Lambda

Pattern: FaaS (Function as a Service)

• Shared strong infrastructure dependency

• Common interfaces, multiple invocations

• Application logic in event handler configuration

• Emerging behavior (a.k.a. “what the hell just
happened?”)

• (Possibly) billed per request

• (Possibly) unpredictable response times

Consequences:

Example: Product Detail Page

• Core product data

• Prose description

• Images

• Reviews

• Related content Orchestration

→μSOA

Pattern: μSOA (Microservice-SOA)

• Small, self-hosted

• Communicating
synchronously

• Cascaded/streaming

• Containerized

Description: As seen on:
• Netflix

• Twitter

• Gilt

Pattern: μSOA (Microservice-SOA)

• Close collaboration – common goal

• Need for resilience/stability patterns for invocations

• High cost of coordination (versioning, compatibility, …)

• High infrastructure demand

• Often combined with parallel/streaming approach

• Well suited to environments with extreme scalability
requirements

Consequences:

Antipattern: Decoupling Illusion

Stakeholder

Stakeholder

Stakeholder

Antipattern: Micro Platform

Platform Person

Antipattern: Domain-last Approach

Biz Unit 1

Ops

Stakeholder

Stakeholder

StakeholderBiz Unit 2 Biz Unit 3

DB Tech 1 Tech 2

Dev

Pattern: Autonomous Cells

Stakeholder

Stakeholder

Stakeholder

Biz

Dev

Ops

Biz

Dev

Ops
Biz

Dev

Ops

Pattern: Autonomous Cells

Stakeholder

Stakeholder

Stakeholder

Biz

Dev

Ops

Biz

Dev

Ops
Biz

Dev

Ops

Example: Logistics Application

• Order management

• Shipping

• Route planning

• Invoicing

Frontend→DDDD

Event Bus/Infrastructure

Pattern: DDDD (Distributed Domain-driven Design)

• Small, self-hosted

• Bounded contexts

• Redundant data/CQRS

• Business events

• Containerized

Description: As seen on:
• (undisclosed)

Pattern: DDDD (Distributed Domain-driven Design)

• Loose coupling between context

• Acknowledges separate evolution of contexts

• Asynchronicity increases stability

• Well-suited for to support parallel development

Consequences:

That UI thing? Easy!

Assumption

Reality – Antipattern: Frontend Monolith

Example: E-Commerce Site

• Register & maintain
account

• Browse catalog

• See product details

• Checkout

• Track status

→SCS

Pattern: SCS (Self-contained Systems)

• Self-contained,
autonomous

• Including UI + DB

• Possibly composed of
smaller microservices

Description: As seen on:
• Amazon

• Groupon

• Otto.de

• https://scs-architecture.org

Pattern: SCS (Self-contained Systems)

• Larger, independent systems,
including data + UI (if present)

• Able to autonomously serve requests

• Light-weight integration, ideally via front-end

• No extra infrastructure needed

• Well suited if goal is decoupling of development teams

Consequences:

Pattern: Web-based UI Integration

System 1 System 2

→Links

Pattern: Web-based UI Integration

System 1 System 2

→Redirection

Pattern: Web-based UI Integration

System 1 System 2

→Transclusion

Building Block
0..1

*

One more thing …

One more thing …
We love monoliths –
so let’s build a lot of them!

@stilkov

number of
developers

strength of
decoupling

methods

modules

components

μservices

systems

Separate
separate
things

Join things
that belong
together

Takeaways

1.
There is more than one way

2.
Prioritize intended benefits,
choose matching solutions

3.
Balance autonomy
and control

4.
Create evolvable structures

Stefan Tilkov
@stilkov
stefan.tilkov@innoq.com
Phone: +49 170 471 2625

innoQ Deutschland GmbH

Krischerstr. 100
40789 Monheim am Rhein
Germany
Phone: +49 2173 3366-0

innoQ Schweiz GmbH

Gewerbestr. 11
CH-6330 Cham
Switzerland
Phone: +41 41 743 0116www.innoq.com

Ohlauer Straße 43
10999 Berlin
Germany
Phone: +49 2173 3366-0

Ludwigstr. 180E
63067 Offenbach
Germany
Phone: +49 2173 3366-0

Kreuzstraße 16
80331 München
Germany
Phone: +49 2173 3366-0

@stilkov
That’s all I have.
Thanks for listening!

mailto:stefan.tilkov@innoq.com?subject=
http://www.innoq.com

www.innoq.com

OFFICES

Monheim
Berlin
Offenbach
Munich
Zurich

FACTS

~125 employees
Privately owned
Vendor-independent

SERVICES

Strategy & technology consulting
Digital business models
Software architecture & development
Digital platforms & infrastructures
Knowledge transfer, coaching & trainings

CLIENTS

Finance
Telecommunications
Logistics
E-commerce
Fortune 500
SMBs
Startups

https://www.innoq.com/en/services/strategie-technologie-beratung/
https://www.innoq.com/en/services/digitale-geschaeftsmodelle/
https://www.innoq.com/en/services/softwarearchitektur-entwicklung/
https://www.innoq.com/en/services/digitale-plattformen/
https://www.innoq.com/en/services/trainings/

