
Microservices: A Taxonomy



Microservices – Common Traits

• Focused on “one thing” 

• Autonomous operation 

• Isolated development 

• Independent deployment 

• Localized decisions



Example: Device Event Handling

• Incoming event validation 

• Format transformation 

• Fan-out event generation 

• Aggregation 

• Storage
Event Bus/Infrastructure

→FaaS



Pattern: FaaS (Function as a Service)

• As small as possible 

• A few hundred lines of 
code or less 

• Triggered by events 

• Communicating 
asynchronously

Description: As seen on:
• Any recent Fred George 

talk 

• Serverless Architecture 

• AWS Lambda



Pattern: FaaS (Function as a Service)

• Shared strong infrastructure dependency 

• Common interfaces, multiple invocations 

• Application logic in event handler configuration  

• Emerging behavior (a.k.a. “what the hell just 
happened?”) 

• (Possibly) billed per request 

• (Possibly) unpredictable response times

Consequences:



Example: Product Detail Page

• Core product data 

• Prose description  

• Images 

• Reviews 

• Related content Orchestration

→μSOA



Pattern: μSOA (Microservice-SOA)

• Small, self-hosted 

• Communicating 
synchronously 

• Cascaded/streaming 

• Containerized

Description: As seen on:
• Netflix 

• Twitter 

• Gilt



Pattern: μSOA (Microservice-SOA)

• Close collaboration – common goal 

• Need for resilience/stability patterns for invocations 

• High cost of coordination (versioning, compatibility, …) 

• High infrastructure demand 

• Often combined with parallel/streaming approach 

• Well suited to environments with extreme scalability 
requirements 

Consequences:



Antipattern: Decoupling Illusion
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Antipattern: Micro Platform
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Antipattern: Domain-last Approach
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Pattern: Autonomous Cells
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Pattern: Autonomous Cells
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Example: Logistics Application

• Order management 

• Shipping 

• Route planning 

• Invoicing

Frontend→DDDD

Event Bus/Infrastructure



Pattern: DDDD (Distributed Domain-driven Design)

• Small, self-hosted 

• Bounded contexts 

• Redundant data/CQRS 

• Business events 

• Containerized

Description: As seen on:
• (undisclosed)



Pattern: DDDD (Distributed Domain-driven Design)

• Loose coupling between context 

• Acknowledges separate evolution of contexts 

• Asynchronicity increases stability 

• Well-suited for to support parallel development

Consequences:



That UI thing? Easy!



Assumption



Reality – Antipattern: Frontend Monolith



Example: E-Commerce Site

• Register & maintain 
account 

• Browse catalog 

• See product details 

• Checkout 

• Track status

→SCS



Pattern: SCS (Self-contained Systems)

• Self-contained, 
autonomous 

• Including UI + DB 

• Possibly composed of 
smaller microservices

Description: As seen on:
• Amazon 

• Groupon 

• Otto.de 

• https://scs-architecture.org



Pattern: SCS (Self-contained Systems)

• Larger, independent systems, 
including data + UI (if present) 

• Able to autonomously serve requests 

• Light-weight integration, ideally via front-end 

• No extra infrastructure needed 

• Well suited if goal is decoupling of development teams

Consequences:



Pattern: Web-based UI Integration

System 1 System 2

→Links



Pattern: Web-based UI Integration

System 1 System 2

→Redirection



Pattern: Web-based UI Integration

System 1 System 2

→Transclusion



Building Block
0..1

*



One more thing …



One more thing …
We love monoliths – 
so let’s build a lot of them!



@stilkov
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Separate 
separate 
things

Join things 
that belong 
together



Takeaways



1. 
There is more than one way



2. 
Prioritize intended benefits, 
choose matching solutions



3. 
Balance autonomy 
and control



4. 
Create evolvable structures
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That’s all I have. 
Thanks for listening! 
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