
Migrating from Grails 2 to Grails 3
Michael Plöd - innoQ

Grails 3 is the most major and  
radical change in the history of Grails

+ =

HOW 
TO 
MIGRATE

HOW 
TO 
MIGRATE

A Grails
application usually
consists of the 
application and  
various plugins

HOW 
TO 
MIGRATE

An application
usually integrates
with many
standard and
some self written
plugins

Don’t add
complexity. Wait
until your major
external plugins
have been migrated

Grails 3 has different file / directory locations

Grails 2 Grails 3
grails-app/conf/BuildConfig.groovy build.gradle

grails-app/conf/Config.groovy grails-app/conf/application.groovy

grails-app/conf/UrlMappings.groovy grails-app/controllers/UrlMappings.groovy

grails-app/conf/BootStrap.groovy grails-app/init/BootStrap.groovy

scripts src/main/scripts

src/groovy src/main/groovy

src/java src/main/groovy

test/unit src/test/groovy

test/integration src/integration-test/groovy

web-app src/main/webapp or src/main/resources/

*GrailsPlugin.groovy src/main/groovy

Files that are not present in Grails 2.x

New File Explanation

build.gradle Gradle build script

gradle.properties Gradle build properties

grails-app/conf/logback.groovy Logging has been extracted from Config.groovy and
is now being defined via Logback

grails-app/conf/application.yml You can now also configure your application with
YAML

grails-app/init/PACKAGE_PATH/Application.groovy The Application class that is used by Spring Boot to
start the Grails 3 application

Unneeded files after a successful migration

Obsolete File Explanation

application.properties Moved to build.gradle (for application name and
version)

grails-app/conf/DataSource.groovy Merged to application.yml

lib Dependency resolution should be used to resolve
JAR files

web-app/WEB-INF/applicationContext.xml Removed, beans should now be defined in grails-app/
conf/spring/resources.groovy

src/templates/war/web.xml No longer needed for Grails 3. Do customization via
Spring

web-app/WEB-INF/sitemesh.xml Removed, sitemesh filter is no longer present

web-app/WEB-INF/tld Removed, can be restored in src/main/webapp or src/
main/resources/WEB-INF

Before and after
interceptors have been
removed 
 
They need to be
replaced by standalone
interceptors

General migration steps 1/2

Grails 2

Grails 3
create-app
create-plugin

src/java  
src/groovy

src/main/groovy

grails-app

grails-app

test/unit
test/integration

test-unit
src/integration-
test/groovy

General migration steps 2/2

Grails 2

Grails 3
Fix Build
(imports)

Config.groovy to application.groovy

BuildConfig

build.gradle
Merge DataSource.groovy

Move log4j config to Logback

C  
L  
E 
A 
N  
U  
P

Move URLMappings.groovy

Step 1 
Migrate Plugins

Mind the Plugin directory
on the Grails Website. 
 
It focusses on Grails 1.x -
2.x plugins 

Grails 3 Plugins are on
Bintray

Steps to take for plugin migration

There are several steps you have to take for migrating a plugin
• Create a new Grails 3 plugin
• Copy Sources
• Handle the plugin descriptor
• Add dependencies to the build
• Modify package imports
• Migrate configuration
• Register ArtefactHandler definitions
• Migrate code generation scripts
• Delete unnecessary files

Handle Plugin Descriptor

You must copy the Plugin descriptor from the Grails2 application to  
src/main/groovy/grails/plugins/[pluginname] 

After that you have to add the correct package declaration to the plugin descriptor

package grails.plugins.recaptcha

class RecaptchaGrailsPlugin {
 …
}

Register Artefact Handler Definitions

If you have ArtefactHandler definitions written in Java you have to declare them in

src/main/resources/META-INF/grails.factories  

This step can be ignored for Groovy based ArtefactHandlers, Grails detects them.

grails.core.ArtefactHandler=grails.plugins.quartz.JobArtefactHandler

Migrate code generation scripts

Old Gant code generation scripts have to be replaced by Code Generation Scripts
or Gradle tasks.

Simple code generation can easily be migrated to the new code generation API

More complex tasks are better of with a migration to Gradle tasks

Simple code generation example

includeTargets << grailsScript("_GrailsCreateArtifacts")
target(createJob: "Creates a new Quartz scheduled job") {
 depends(checkVersion, parseArguments)
 def type = "Job"
 promptForName(type: type)

 for (name in argsMap.params) {
 name = purgeRedundantArtifactSuffix(name, type)
 createArtifact(name: name, suffix: type, type: type, path: "grails-app/jobs")
 createUnitTest(name: name, suffix: type)
 }
}

setDefaultTarget 'createJob'

Gradle Tasks for complex generation scripts

import …
class RunQueryCommand implements ApplicationCommand {
 @Autowired
 DataSource dataSource

 boolean handle(ExecutionContext ctx) {
 def sql = new Sql(dataSource)
 println sql.executeQuery("select * from foo")
 return true
 }
}

> grails create-command run-query

Command can be added to classpath in build.gradle

buildscript {
 …
 dependencies {
 classpath "org.grails.plugins:myplugin:0.1-SNAPSHOT"
 }
}
…
dependencies {
 runtime "org.grails.plugins:myplugin:0.1-SNAPSHOT"
}

> grails run-query

Step 2 
Migrate Application

Steps to take for application migration

There are several steps you have to take for migrating a application
• Create a new Grails 3 application
• Copy Sources
• Add dependencies to the build
• Migrate Configuration
• Migrate web.xml Modifications to Spring
• Migrate static assets not handled by Asset pipeline
• Migrate Tests
• Delete unnecessary files

Step 3  
Test intensively

Let’s migrate an application

Recap - Migration Steps

Plugins App Test

THANK YOU!
Michael Plöd - innoQ
Follow me on Twitter: @bitboss

