
Workshop Event Sourcing

Michael Plöd | innoQ

Michael Plöd

Principal Consultant bei innoQ
@bitboss

IncidentSOAPEndpoint

IncidentBusinessService

IncidentDAO

Incident
Business
Model

Client

Incident  
DTO

Incident  
View  
Model

RDBMS

Incident  
ER-Model

Network

Network

Let’s review the
classical old

school N-Tier
architecture

Characteristics

1
We read and write data
through the same layers

IncidentSOAPEndpoint

IncidentBusinessService

IncidentDAO

Incident
Business Model

Client

Incident  
DTO

Incident  
View  
Model

RDBMS

Incident  
ER-Model

Network

Network

R
EA

D

W
R

ITE

2
We use the same model 

for read and write
access

IncidentSOAPEndpoint

IncidentBusinessService

IncidentDAO

Incident
Business Model

Client

Incident  
DTO

Incident  
View  
Model

RDBMS

Incident  
ER-Model

Network

Network

3
We use coarse grained
deployment units that

combine read and write
code

IncidentSOAPEndpoint

IncidentBusinessService

IncidentDAO

Client

RDBMS

4

We change datasets
directly

IncidentRestController

IncidentBusinessService

IncidentDAO

Incident

ID USER_ID DATE TEXT
1 23423 11.03.2014 Mouse is broken
2 67454 12.03.2014 EMail not working
3 93729 12.03.2014 Office license
… … … …

We’ve done that
for ages already and

it’s proven

Many applications will
run smooth and fine

with this kind of
approach

However there are
drawbacks to this kind

of architecture

1 The data model is a compromise

2 You can’t scale read and write independently

3 No data history, no snapshots, no replay

4 Tendency to a monolithic approach

Event Sourcing is an
architectural pattern in
which the state of the

application is being
determined by a

sequence of events

Building Blocks

Applications

Event
Queue

Applications issues
events to a queue

Event
Handler

Event
Store

Events are stored in
the event store

The Event handler is
processing the events

The sequence of events in the queue
is called event stream

t

now

EventEventEventEventEvent

IncidentCreatedEvent  
 
incidentNumber: 1  
userNumber: 23423
timestamp: 11.03.2014 12:23:23  
text: „Mouse broken“
status: „open“

Event Stream Example

IncidentTextChangedEvent  
 
incidentNumber: 1  
text: „Left button of mouse broken“

IncidentClosedEvent  
 
incidentNumber: 1  
solution: „Mouse replaced“
status: „closed“

An event is something  
that happened in the past

t

now

EventEventEventEventEvent

The names of the events are part
of the 

Ubiquitous Language

D D D

ShipmentDeliveredEvent 

CustomerVerifiedEvent

CartCheckedOutEvent

CreateCustomerEvent 

WillSaveItemEvent 

DoStuffEvent

Code Example
public class CustomerVerifiedEvent {
 private String eventId;
 private Date eventDate;
 private CustomerNumber customerNumber;
 private String comment;

 public CustomerVerifiedEvent(CustomerNumber custNum,  
 String comment) {  
 this.customerNumber = cusNum;
 this.comment = comment;
 this.eventDate = new Date();
 }
}

Scope your events based on  
Aggregates

D D D

An Event is always immutable!

There is no deletion of events!

A delete is
just another

event

IncidentCreatedEvent  
 
incidentNumber: 1  
userNumber: 23423
timestamp: 11.03.2014 12:23:23  
text: „Mouse is broken defekt“
status: „open“

IncidentChangedEvent  
 

incidentNumber: 1  
text: „Maus ist Kaputt“

IncidentRemovedEvent  
 
incidentNumber: 1  

The event bus is usually
implemented by a message

broker

t

now

EventEventEventEventEvent

Let’s reuse the ESB
from the failed SOA

project

NO

NO

NO

!
Prefer dumb pipes
with smart
endpoints as a
suitable message
broker architecture

1 Complete rebuild is possible

2 Temporal Queries

3 Event Replay

Well known examples

= 
Version Control Systems 

or
Database Transaction Logs

The Event
Store has a
very high

business value

Aren’t there performance
issues attached to this kind of

data storage?

YES!

Application
State

Think about application state

Application

Event
Queue

Event
Handler

Event
Store

Application
State

The application queries the
pre-processed application

state

CQRS

Command
Query
Responsibility
Separation

IncidentSOAPEndpoint

IncidentBusinessService

IncidentDAO

Incident
Business
Model

Client

Incident  
DTO

Incident  
View  
Model

RDBMS

Incident  
ER-Model

Network

Network

IncidentQueryEndpoint

IncidentQueryService

IncidentQueryDAO

RDBMS

Network

IncidentCommandEndpoint

IncidentCommandService

IncidentCommandDAO

Basically the idea behind CQRS is simple

Code Example

Classic Interface

public interface IncidentManagementService {
Incident saveIncident(Incident i);
void updateIncident(Incident i);
List<Incident> retrieveBySeverity(Severity s);
Incident retriveById(Long id);

}

CQRS-ified Interfaces

public interface IncidentManagementQueryService {
List<Incident> retrieveBySeverity(Severity s);
Incident retriveById(Long id);

}

public interface IncidentManagementCommandService {
Incident saveIncident(Incident i);
void updateIncident(Incident i);

}

Event Store

EventHandler EventsEvents

Event Sourcing & CQRS

IncidentCommandEndpoint

IncidentCommandService

IncidentCommandDAO

IncidentQueryEndpoint

IncidentQueryService

IncidentQueryDAO

Read Storage

Events

READ

1 Individual scalability and deployment
options

2
Technological freedom of choice for
command, query and event handler
code

3 Excellent Fit for Bounded Context
(Domain Driven Design)

Event Sourcing and CQRS
are interesting architectural
options. However there are

various challanges, that have
to be taken care of

1 Consistency

2 Validation

3 Parallel Updates

YES

!
Systems based on
CQRS and Event

Sourcing are
mostly eventually

consistent

Event Store

EventHandler EventsEvents

Eventual Consistency

IncidentCommandEndpoint

IncidentCommandService

IncidentCommandDAO

IncidentQueryEndpoint

IncidentQueryService

IncidentQueryDAO

Read Storage

Events

READ

BUT

!
You can build a  
fully consistent
system which
follows Event

Sourcing
principles

EventHandler

EventsEvents

Full Consistency
IncidentCommandEndpoint

IncidentCommandService

IncidentCommandDAO

IncidentQueryEndpoint

IncidentQueryService

IncidentQueryDAO

Read Storage

Events
Select * from

Event Store

Your business domain drives the level
of consistency not technology 

Deeper Insight

D D D

Increased (but still eventual)
consistency

EventHandler

EventsEvents

IncidentCommandEndpoint

IncidentCommandService

IncidentCommandDAO

IncidentQueryEndpoint

IncidentQueryService

IncidentQueryDAO

Read Storage

Events
Select * from

Event Store

async

! There is no
standard solution

1 Consistency

2 Validation

3 Parallel Updates

Example Domain
User  

Guid id
String email
String password

RegisterUserCommand ChangeEmailCommand

UserRegisteredEvent  
 
Guid id
Date timestamp
String email
String password

EmailChangedEvent  
 
Guid userId
Date timestamp
String email

We process 2
million+ registrations per

day. A user can change her
email address. However the

emails address must be
unique

?
How high is the

probability that a
validation fails

Which data is required
for the validation

Where is the required
data stored

$
What is the business

impact of a failed
validation that is not

recognized due to
eventual consistency
and how high is the

probability of failure

Your business domain drives the level
of consistency 
Deeper Insight

D D D

1 Validate from Event Store

2 Validate from Read Store

3 Perform Validation in Event
Handler

Never validate
from the event

store

1 Consistency

2 Validation

3 Parallel Updates

Example Domain
User  

Guid id
String email
String password

RegisterUserCommand ChangeEmailCommand

UserRegisteredEvent  
 
Guid id
Date timestamp
String email
String password

EmailChangedEvent  
 
Guid userId
Date timestamp
String email

What happens when Alice
and Bob share an account and

both update the email address at
the same time

? What would we do
in a

„classic old school
architecture“

UserRestController

UserBusinessService

UserDAO

User

ID EMAIL PASSWORD

… … …

2341 alice_bob@xyz.com lksjdaslkdjas

… … …

Update

Pessimistic or optimistic locking

Your business domain drives the
locking quality 
Deeper Insight

D D D

!
Pessimistic
locking on a

data-level will
hardly work in
event sourcing
architectures

EventHandler EventsEvents

Where to „pessimistically“ lock?

Read Storage

Events

Event Store

UserRestController

UserBusinessService

UserDAO

User

Commands

Consider a business lock
with a UserLockedEvent

?
Do you 

REALLY
need a full lock

Most „classic
architecture“ applications
are already running fine

with optimistic locks

Introduce a version field for the domain
entity

User  

Guid id
Long version
String email
String password

RegisterUserCommand ChangeEmailCommand

UserRegisteredEvent  
 
Guid id
Date timestamp
String email
String password

EmailChangedEvent  
 
Guid userId
Date timestamp
String email
Long version

Each writing event
increases the version

UserRegisteredEvent {guid: 12, version: 0,  
 email: alicebob@xyz.com, password: werwe2343}

EmailChangedEvent
version: 0

EmailChangedEvent
version: 1

EmailChangedEvent
version: 1

{guid: 12, version: 1,  
 email: alice_bob@xyz.com, password: werwe2343}

{guid: 12, version: 2,  
 email: alice@xyz.com, password: werwe2343}

EmailChangeFailedEvent

Also here:  
you should be as

consistent as
your domain

requires

Thank You!
Michael Plöd - innoQ

 
Twitter: @bitboss

Slides: https://speakerdeck.com/mploed

http://speakerdeck.com/mploed

