INNOC

Retrieval-
Augmented
Generation

The Architecture
of Reliable Al

RAG: Retrieval-Augmented
Generation

Robert Glaser
Alexander Kniesz
Hermann Schmidt
Marco Steinke

innoQ Deutschland GmbH
KrischerstraBe 100 - 40789 Monheim am Rhein - Germany
Phone +49 2173 33660 - www.INNOQ.com

Layout: Tammo van Lessen with XglATEX
Cover: Murat Akgéz
Typesetting: André Deuerling

RAG: Retrieval-Augmented Generation — The Architecture of
Reliable Al

Published by innoQ Deutschland GmbH

Edition 1- November 2024

Copyright © 2025 INNOQ

Inhaltsverzeichnis

1 Fundamentals of Large Language Models (LLMs)
11 How do LLMswork? . ..o
1.2 Strengths and Limitationsof LLMs
1.3 Comparison of Different Approaches......................
1.4 Misconceptions and Clarifications
1.5 Conclusion and Outlook..........cooiiiiiiiiiiiiiiiiia...
2 Retrieval-Augmented Generation: When World Knowledge
Meets Specialized Knowledge
21 The Limitations of LLMs and RAG as a Solution
2.2 Grounding: Anchoring in Verified Data.....................
2.3 The Motivation Behind RAG ...,
2.4 Conclusion: An LLM with Reliable Data....................

3 Document Ingestion
3.1 Whatis DocumentIngestion?cooiiin.L.
3.2 Why is Document Ingestion so Important?
3.3 Chunking: The Right Granularity for Success..............
3.4 Proper Structuring: More Than Just Text
3.5 Challenges and Best Practicesc.coiiina...
3.6 Conclusion: The Foundation for High-Quality Answers ...

4 Retrieval
41 TheRoleof Retrieval,
4.2 Vector Searcho
43 HybridSearch..... ...
4.4 Overlaps or Windowingvvviviniiiniiiiiiinieinnnnnns
4.5 Limitation
4.6 The LLM Hasthe FinalSay ...,
4.7 General Limitations of Retrieval
4.8 Simple RAG is Just an Intermediate Step

49 Contextual Retrievalo

5 Augmentation
51 The Role of Augmentationcoiiia.L.
5.2 Incorporating Chunks ...
5.3 Document References...........cooviiiiiiiiiiiiiiiian...
5.4 Without References Everything Is Flying Blind
5.5 Prompt Rewriting......oooiiiiiiiii i
5.6 Keep ChunksorNot? ...t

6 Generation
7 Use Cases

8 Technical Challenges in Implementation
8.1 Setting Up and Operating Vector Databases
8.2 Challenges in Creating Embeddings
8.3 Combining Retrieval and Generation
8.4 Scalability and Performance Optimization................
8.5 Data Management and Security ..o
8.6 Bias and Quality Control...............coooiiiiiii
8.7 Cost and Resource Management...........................

8.8 Success Factors and Recommendations...................

9 Our Offering
91 Development, Consulting and Operations.................
9.2 Training: GenAl with RAG for Developers..................

The Authors

1 Fundamentals of Large
Language Models (LLMs)

Generative Al and Large Language Models (LLMs) have revolutionized the world
of artificial intelligence in recent years. They represent not only a technological
breakthrough as a new general-purpose technology but fundamentally change
how we interact with computers and process information. For software develo-
pers and architects, understanding the functionality, strengths, and limitations
of this technology is essential to make informed decisions about its implementa-
tion.

11 How do LLMs work?

At their core, LLMs are highly complex neural networks trained on enormous
amounts of data. They utilize the Transformer architecture with its attention
mechanism to capture and process extensive text relationships in parallel. An
interactive explanation is available through the Transformer Explainer .

The term ,Language“ in ,Large Language Models“ can be misleading. Although
LLMs were originally designed for language and text processing, their applications
are significantly more diverse. Essentially, anything that can be fed into Transfor-
mer models in token form is suitable for processing by LLMs. This includes not
only text but also:

Images

Video

Spoken language

Molecular structures (e.g., proteins)

This versatility makes LLMs powerful tools for a variety of applications that
extend far beyond pure text processing.

The training process of an LLM can be simplified as follows:

https://poloclub.github.io/transformer-explainer/

https://poloclub.github.io/transformer-explainer/

1. Data collection: First, massive amounts of data are gathered from various
sources. This can include texts and other types of data that can be converted
into tokenized form.

2. Preprocessing: The data is cleaned and converted into a uniform format. It is
broken down into ,,tokens“ - small units that can represent words, word parts,
image pixels, audio frames, or other elements depending on the data type.

3. Training: The model learns to predict the next token in a sequence. This
occurs through repeated passes through the training data and adjustment of
the model parameters.

4. RLHF (Reinforcement Learning from Human Feedback): After initial trai-
ning, model behavior is further refined through RLHF. This process, also
known as ,,alignment,“ uses human feedback to adjust the model to generate
responses that better align with human preferences, values, and expectations.
The goal is to bring the AI system more in line with human intentions.

The key to understanding LLMs lies in their ability to predict tokens. They don’t
learn individual facts but capture complex statistical patterns in data. This enables
them to generate context-dependent and often surprisingly coherent outputs,
whether in the form of text, images, or other data types.

1.2 Strengths and Limitations of LLMs

The strengths of LLMs are impressive:

Flexibility: They can be applied to a wide variety of tasks without specific
programming. In doing so, they often make previous Machine Learning (ML)
approaches seem rigid and disrupt numerous traditional ML use cases.
Context understanding: LLMs can capture the context of a request remarkab-
ly well and generate relevant responses.

Creativity: They can generate new ideas and support creative tasks.

Ease of integration: LLMs are straightforward for developers to incorporate,
often through simple API calls.

However, LLMs also have significant limitations:

Lack of explainability: Unlike rule-based systems, the non-deterministic natu-
re of LLMs often makes it difficult to understand how they arrive at a particular
output.

Resource intensity: Training LLMs requires enormous computing power and
energy. But: both training and inference “ costs are coming down, as they are
benefiting significantly from economies of scale.

Information currency: LLMs are limited to the state of their training data and
cannot access current or internal information without additional mechanisms
such as RAG or Function Calling.

Hallucinations: LLMs can generate plausible-sounding but factually incorrect

information, especially when context is missing.

As a general-purpose technology, listing use cases across industries is both over-
whelming and exciting . Fundamentally, LLMs enable features that were previous-

ly too expensive or simply impossible to implement.

During inference, an LLM generates responses one token at a time-much like someone speaking
spontaneously without pausing to deliberate extensively. This process, often referred to
as ,test time“, involves predicting each subsequent token based on the context provided.
Newer models like OpenAI’s 03 employ an internal reasoning mechanism called a chain-of-
thought (CoT), where additional tokens are generated as intermediate steps to refine the final
answer. Depending on the vendor’s implementation, these CoT tokens may be folded away
(kept hidden), summarized into the final response, or output raw within special markers for
debugging or transparency purposes. In essence, regardless of the specific handling of these
internal tokens, all modern language models rely on sequential token generation to produce
coherent and contextually appropriate responses.

https://www.innoq.com/en/articles/2024/10/generative-ai-in-business-software/

https://www.innoq.com/en/articles/2024/10/generative-ai-in-business-software/

1.3 Comparison of Different Approaches

It’s important to consider LLMs in the context of other Al approaches:

1. Rule-based systems:

Advantages: Predictability, explainability, low resource requirements
Disadvantages: Limited flexibility, labor-intensive manual maintenance

2. Traditional Machine Learning models:

Advantages: Efficient for specific tasks, often more interpretable than LL-
Ms

Disadvantages: Typically require manual feature engineering and elaborate
data preparation, less flexible

3. Large Language Models:

Advantages: High flexibility, ability to generalize, natural language proces-
sing

Disadvantages: High resource requirements, limited explainability, poten-
tial hallucinations

The choice of the right approach depends heavily on the specific task, available
resources, and requirements for explainability and control.

1.4 Misconceptions and Clarifications

A common misconception is that LLMs ,,understand“ what they output. In reality,
they operate on statistical patterns without genuine understanding in the human
sense. This can lead to unexpected results when the model encounters statistically
unfamiliar or ambiguous contexts.

Another critical point is the potential bias in LLMs. Since they are trained on
existing data, they can reproduce societal prejudices and inequalities. Leading
providers like OpenAl or Anthropic employ sophisticated RLHF processes to
minimize this issue, but bias cannot be completely eliminated. This remains a
challenge, especially with smaller or specialized models.

1.5 Conclusion and Outlook

LLMs represent a significant breakthrough in AI but also bring new challenges.
Their effective use requires a deep understanding of their functionality, strengths,

and limitations.

A central question many organizations face is: How can we leverage the capabi-
lities of LLMs with our internal data? This leads us to the concept of Retrieval-
Augmented Generation (RAG), which we will examine in more detail in the follo-

wing chapters.

2 Retrieval-Augmented
Generation: When World
Knowledge Meets Specialized
Knowledge

In the first chapter, we learned about the basic functionalities and strengths of
LLMs. While LLMs have enormous potential to answer generic queries based on
their comprehensive knowledge acquired during training, they show weaknesses
when dealing with current, specialized, or verified information. This is precisely
where Retrieval-Augmented Generation (RAG) comes in - an approach that com-
bines the language capabilities of LLMs with access to dynamic and specific data
sources. This allows world knowledge to be connected with specialized knowledge
to deliver contextual and precise answers while also documenting which data was
used to respond to a prompt.

2.1 The Limitations of LLMs and RAG as a
Solution

LLMs acquire their knowledge from a training dataset and can therefore only
retrieve information that existed up to their last training date. In dynamic envi-
ronments where up-to-date information and expertise are crucial, this is a major
limitation. RAG offers a solution by enabling LLMs to incorporate information
from external and current data sources. This connection to verified knowledge
increases the accuracy and timeliness of the generated content.

2.11 What is RAG?

Retrieval-Augmented Generation combines the language capabilities of an LLM
with a retrieval system that can access relevant data and make it available to the
model. The process works like this:

1. User query: A user submits a query that may require current or specific
information.

2. Retrieval: A retrieval system searches defined external sources, such as da-
tabases or knowledge repositories, and finds matching documents or text
passages.

3. Augmentation: This relevant information is passed to the LLM and serves as
the contextual basis for generating the response.

4. Generation: The LLM uses the additional data to create a well-founded,

contextualized answer.

Through this combination, RAG can deliver answers that contain not only general
knowledge but also highly specific and current information - a significant impro-

vement over pure LLMs.

Prompt .
How Do | X? > — Generation

It’s actually an illusion that the LLM gains additional knowledge through in-context learning. The
provided context influences the calculations in the attention mechanism of the Transformer net-
work. Nevertheless, an LLM cannot calculate anything it doesn’t know. Due to the enormous
size of LLMs, the supply of patterns is virtually inexhaustible and can hardly be pushed to its
limits by context from typical business data. What we perceive as hallucinations is the result of
misguided calculations. RAG provides additional context for more stable, targeted calculations
in our subject area. This creates the illusion that the LLM has ,understood our data.

2.2 Grounding: Anchoring in Verified

Data

A key advantage of RAG is what’s known as ,,grounding“ - anchoring answers

in verifiable data sources. This makes the generated knowledge more precise

and reliable since the answers are based on explicit data sources that users can

trace. This anchoring is crucial in fields like medicine, science, and law, where

accurate and verifiable information is essential. With RAG, generated answers can

be based on a verifiable data foundation, enhancing the reliability and quality of

the information.

2.3 The Motivation Behind RAG

The development of RAG stems from several important factors:

1.

Currency: RAG allows LLMs to access current information through external
sources. Organizations that frequently produce new content - such as rese-
arch reports or market analyses — can always incorporate up-to-date data into
their answers through RAG.

Specialized Knowledge: Many companies possess internal knowledge that is
essential for specific use cases. Through RAG, this specialized knowledge can
be incorporated into answers, increasing the relevance and applicability of the
generated responses in professional contexts.

Trustworthiness: With RAG, it’s possible to track which sources have been
incorporated into an answer. This is particularly valuable in critical scenarios
where accuracy and reliability are decisive.

Efficiency and Scalability: RAG makes it possible to efficiently utilize spe-
cialized knowledge without having to constantly retrain the underlying LLM.
Additionally, only relevant information is passed to the LLM, which reduces
costs and response time.

2.4 Conclusion: An LLM with Reliable
Data

RAG bridges the gap between the generic capabilities of an LLM and the requi-
rements for updated, specialized knowledge. By combining LLMs with dynamic,
verified data sources, the model becomes both a comprehensive knowledge pro-
vider and a specialized advisor. This creates a system that can deliver not only
informative but also more well-founded and contextualized answers — a crucial
improvement for many professional and industrial applications.

In the upcoming chapters, we will delve deeper into the components and practical
application of RAG and demonstrate how to implement Retrieval-Augmented
Generation and use it effectively in enterprises.

3 Document Ingestion

For Retrieval-Augmented Generation to be implemented, we must first prepare
selected data, convert it into an appropriate format, and then make it available
to the LLM in the correct format. Document Ingestion is a central step in the
Retrieval-Augmented Generation (RAG) process, as it forms the foundation for
accessing external data sources. The quality of answers that a RAG system can
provide depends significantly on how carefully the document ingestion step is
implemented. In this chapter, we’ll explore how documents are prepared for later
use, what challenges need to be overcome, and why the so-called ,,chunking“ plays
a decisive role.

3.1 What is Document Ingestion?

Document Ingestion is the process of collecting, preparing, and storing docu-
ments so they can be made available to a retrieval system. These documents can
come in various formats and contain different types of content, including PDFs,
websites, database entries, technical documentation, research reports, or FAQs.
The goal of document ingestion is to transform these diverse information sources
into a structured, searchable form that the retrieval system can efficiently and

precisely query.

3.2 Why is Document Ingestion so
Important?

The quality of answers generated by a RAG system largely depends on how well the
underlying documents are prepared and structured. Poor document preparation
can result in missing important information or the retrieval system struggling to
find relevant content. Therefore, document ingestion must be carefully planned
and tailored to the type and structure of the available documents.

Example: To answer questions as precisely as possible, we might divide a book
differently depending on how information is distributed: either page by page

when relevant content is compact, or chapter by chapter when information spans
multiple pages.

Akey challenge is the heterogeneity of documents. Different document types can
have varying structures and contents. A scientific article, for example, is organized
into paragraphs, headings, and citations, while technical documentation might
consist of tables, code snippets, and detailed step-by-step instructions. Proces-
sing all documents using the same approach would therefore be ineffective. This
is where ,,chunking“ comes into play.

3.3 Chunking: The Right Granularity for
Success

,»,Chunking“refers to the process of breaking documents into smaller, contextually

coherent sections (chunks). The size and structure of these chunks is crucial as
they form the units that the retrieval system later accesses. The challenge is fin-
ding the optimal granularity that provides enough context to the retrieval system
without having to search through excessively large blocks of information.

Why is chunking so important? The accuracy of subsequent answers depends
heavily on the relevance and precision of the chunks returned for a query. If we
break documents into chunks that are too large, we risk including irrelevant
information, which dilutes the generated answer. If we break them into chunks

that are too small, the necessary context for a precise answer may be missing.

Adaptation to document structure: A crucial aspect of chunking is adapting
to the structure of each document type. For a scientific article, chunks might
be individual paragraphs or thematic sections. For technical documentation,
chunks could be individual steps in a guide or descriptions of specific functions.
There’s no universal ,,one-size-fits-all“ approach to chunking. Instead, we must
tailor it to the specific document type and planned use cases.

Dynamic chunking: In some cases, implementing dynamic chunking may be
beneficial, where the granularity varies depending on context and task. An
initial classification of document types and structures can help automatically

guide the document ingestion process. Such a flexible approach increases
retrieval precision by better considering context. For example, the same in-
gestion pipeline could split PDFs into pages while dividing HTML files into
paragraphs. Chunks from different documents are processed in specific ways
to prepare them for production use.

3.4 Proper Structuring: More Than Just
Text

Another critical aspect of document ingestion is the proper structuring of content.
Not all information in a document is equally important or relevant. Headings,
bullet points, tables, and highlights often provide important clues about a chunk’s
content focus. Therefore, extracting and preserving metadata and structural infor-

mation during document ingestion is important.

Metadata: Information such as document title, author, creation date, original
page number, and keywords provides the retrieval system with valuable hints
about which chunks are particularly relevant for a specific query.

Content indexing: Beyond breaking content into chunks, indexing is an essen-
tial step. Each chunk is assigned a unique identifier as well as relevant keywords
and contextual properties. This index enables the retrieval system to search
quickly and precisely for the most relevant content, such as by URI or page
number.

3.5 Challenges and Best Practices

Heterogeneous data sources: One of the biggest challenges is handling a
variety of different document types and formats. PDF files, HTML pages, CSV
files, database entries - all these formats require different processing strategies.
The document ingestion process should use good conversion tools and parsers
that change data into a standard, searchable format. Alternatively, it can use
appropriate databases that make different document formats easy to search.

Quality control: Since chunk quality directly influences the quality of ge-
nerated answers, regular verification of document ingestion is essential. It’s
advisable to set up an automated process for validation and quality control
that ensures document ingestion works consistently and correctly.

Long-term maintenance: Document ingestion is not a one-time process. As
information constantly changes and new documents are added, it must be
continuously monitored and adjusted. Automated update and monitoring me-
chanisms ensure that the database remains current, allowing the RAG system
to always access up-to-date, relevant information.

3.6 Conclusion: The Foundation for
High-Quality Answers

Document ingestion is a fundamental and complex step in the RAG process that
decisively influences answer quality. Through careful structuring and preparation
of documents, adapted to their individual characteristics, we lay the foundation
for efficient and precise retrieval. Chunking in particular is a critical factor: it de-
termines how much context is available to the retrieval system and how precisely

information can be extracted.

Well-designed document ingestion ensures that the RAG system can draw from
a broad and diverse information base, delivering reliable, precise, and contextua-
lized answers. The quality of document ingestion is therefore a central building
block for the success of a RAG architecture and should be implemented with the

utmost care and expertise.

4 Retrieval

41 The Role of Retrieval

The Retrieval step finds relevant chunks for a prompt. These chunks were created
during ingestion and are indexed in a database.

Input: Prompt text
Output: List of chunks (text sections)

Retrieval must balance thoroughness, runtime, and cost. In an interactive appli-
cation, feeding the LLM with 100 chunks of 1,000 tokens each isn’t helpful if it
leads to minute-long wait times. Resources are limited.

Retrieval techniques are rapidly evolving in the LLM space. We must distinguish
between theoretical proposals and practical solutions. We’ll focus on techniques
that work in practice and are easy and cost-effective to implement.

Retrieval itself isn’t new—search has always existed. What’s new is vector search,

which builds on language model concepts.

Prompt

How Do I X?

l N /7

Prompt
How Do | X?

T Chunks T

Corpus

4.1.1 Prompt versus Query

In retrieval contexts, we refer to the query rather than the prompt. In the simp-
lest case, they’re identical, but this approach alone isn’t sufficient for effective
retrieval.

4.2 Vector Search

Nearly all technical articles on RAG cover vector search, also known as Semantic
Search.

The process involves calculating an embedding vector from the query and passing
it to a vector index as a search value. The index calculates the semantic similarity
between the search vector and the embeddings of the chunks, delivering the best
matches. Similarity measures like dot product or cosine similarity can be used.

The specific similarity measure isn’t critical—what matters is that the index
provides a list of chunks sorted by similarity.

We refer to this similarity as a score. A high score suggests potentially high rele-

vance.

4.21 Characteristics

Vector search always returns results, unlike full-text search or traditional database
queries.

For cosine similarity, these theoretical values are noteworthy:

-1: Search vector and comparison vector are perfect opposites
o: Search vector and comparison vector have nothing in common
+1: Search vector is identical to the comparison vector

In practice with document chunks, values typically range between 0.5 and 0.87.
Even questions seemingly unrelated to the topic will fall somewhere in this ran-

ge.

- COSINUS-
"« SIMILARITY

I I
. opposite neutral identical
& orthogonal
GPT-3:12288 dimensions ¥
&

4.2.2 Misconception: More is Better

Some try to maximize vector search scores at all costs, believing this finds more
relevant chunks. One approach is Query Rewriting, where an LLM expands a
simple prompt into a longer, more detailed query.

This naturally increases scores since there’s more material in the query to match
content. However, it doesn’t necessarily deliver more relevant chunks—often the
opposite occurs. By ,fattening“ the query, terms and concepts not in the original
question are added. Are these even relevant? Additionally, the LLM creates slight-
ly different content each time, making search results inconsistent for identical
inputs.

We therefore use the unchanged prompt as the query. Query rewriting may be

valuable if your application has relevant context (e.g., about the current user).

The absolute scores aren’t important—what matters is the relevance ranking
of the matches. The best chunk should be first, the second best next, and so on.
Whether the best score is 0.87 or 0.73 is irrelevant.

4.2.3 Misconception: You Need a Minimum Similarity

It might seem logical to filter results based on a minimum similarity threshold.
This assumption is incorrect. As explained earlier, the absolute value doesn’t
matter. For one query, 0.75 might be ideal, for another 0.80. There’s no universal
threshold. Simply limiting the number of results is more effective.

4.2.4 Misconception: It's All About Vector Search

Vector search is valuable as a supplement, especially for general questions, but
it’s insufficient alone. It must be complemented by full-text search—a point that
most technical literature fails to emphasize clearly. This leads us to our next
topic.

4.3 Hybrid Search

Vector search requires support from full-text search. In fact, full-text search
should be the primary search method!

The two approaches complement each other. Full-text search excels with specific
questions and compensates for embedding vagueness.

Full-text search is a mature technique that needs little explanation. The common
approach uses TF-IDF with BM25, implemented by indexers like Lucene. Similar
to vector search, a full-text index scores results for a search text and delivers the
best matches. Unlike vector search, text search can return empty results.

4.3.1 Multi-stage Text Search Strategy

We employ a multi-stage search strategy that extracts details and alternative
terms from a prompt to form multiple queries.

Stage 1: Prompt = Query

First, the prompt is passed unchanged to the search index.

Stage 2: Keywords, Compounds, Synonyms

Keyword extraction: The LLM extracts keywords from the prompt, considering
professional context to recognize relevant terms.

Compound words: The LLM breaks down compound words into components
(e.g., Hfirefighter“ becomes ,fire“ and , fighter*).

Synonyms: The LLM generates synonyms for all collected words.

These collected keywords are then submitted to the search index.

4.3.2 Full-text Search Takes Priority

If text search returns too few results, we skip the vector search. The likelihood of
finding relevant chunks through semantic search is then practically zero.

4.3.3 Rank Fusion

The two-stage text search and vector search together produce three lists of chunks.
Since scoring differs between text and vector searches, we can’t simply combine
and sort them. Instead, we use Reciprocal Rank Fusion.

The exact formula is readily available elsewhere. The principle is that only the
rank order in a list matters. The top match has rank 1 in its list. During merging,
each occurrence of a chunk in a list increases its overall rank. Chunks appearing
in multiple lists effectively rise to the top.

4.3.4 Top Chunks

After rank fusion, we limit the number of chunks. Our experiments show that a
maximum of 30 chunks is reasonable—larger quantities didn’t improve results.

4.4 Overlaps or Windowing

Experiments revealed that the LLM sometimes prefers to access the chunks
before or after a match—occasionally even favoring these over the match itself.
The match essentially points to valuable surrounding content.

After ranking, we add one chunk before and two chunks after the match to the list.
We apply a filter so only chunks with a cosine similarity to the match of > 0.82
are included. This threshold requires experimental determination. Furthermore,
only the top 10 chunks undergo this process.

4.5 Limitation

For interactive applications, we limit LLM input to approximately 25,000 tokens.
This equals about 40 pages of densely written PDF content. With the OpenAI API
using GPT-40 (Oct. 2024), this results in roughly 15-second runtimes for detailed

aAnswers.

4.6 The LLM Has the Final Say

In practice, the LLM in the generation step has its own ,,opinions“about relevance
when processing chunks with the prompt.

In our experience, the top 10 chunks are generally preferred, but beyond that, the
pattern becomes unpredictable. Surprisingly, chunks ranked around position 20
are sometimes selected. The distribution varies completely with each prompt.

Sometimes vector search high-scorers are preferred; other times text search re-
sults prove more relevant. This observation led us to combine complementary
search strategies rather than focusing exclusively on vector search optimiza-
tion.

4.7 General Limitations of Retrieval

Retrieval can only provide a subset of chunks. It cannot perform comprehensive
searches like database queries.

Questions like ,,find all...“ or ,what is the summary of...“ are inevitably answered
partially. Including more chunks for broad questions creates unnecessary burden
for specific queries.

We attempted to classify questions as ,broad“ or ,narrow,“ but this wasn’t re-
liably effective. Furthermore, this approach merely shifts the limitation without
providing complete answers.

Retrieval cannot perform aggregation.

4.8 Simple RAG is Just an Intermediate
Step

Retrieval is clearly inefficient. We send material to the LLM via force feeding in
hopes that it’s relevant.

The next development stage will allow the LLM to decide whether it needs retrie-
val. This represents an Agentic Workflow requiring Function Calling, which could
theoretically make retrieval dynamic and on-demand. Whether this works reliably

remains uncertain.

An LLM doesn’t know what it doesn’t know. Force feeding bypasses this pro-
blem at the cost of efficiency.

4.9 Contextual Retrieval

Anthropic introduced Contextual Retrieval . This technique ,fattens® all chunks
with additional context during ingestion. The search process is then duplicated by
using both the additional context and the chunks. Otherwise, the process follows
the methodology described above.

https://www.anthropic.com/news/contextual-retrieval

https://www.anthropic.com/news/contextual-retrieval

4.9.1 Ingestion

An LLM receives the entire document and a chunk as context. It’s instructed to
classify the chunk content in the document’s context. The result is included in
the embedding alongside the chunk. Anthropic uses the prompt:

Please give a short succinct context to situate this chunk
within the overall document for the purposes of improving search
retrieval of the chunk.

(Source: Anthropic Cookbook” on Contextual Retrieval)

This additional context references the chunk and is stored and indexed similar-
ly.

4.9.2 Retrieval

Retrieval is performed identically for both the chunks and the additional contexts.
Anthropic also employs hybrid search with full text (BM25) and vector. After rank
fusion and top selection, an optional reranking model may reorder the chunks by

relevance.

4.9.3 Considerations

During ingestion, the entire document and chunk are placed in context, which
can be problematic depending on the model and material.

Embedding models have limited context sizes. The embedding processes both
the chunk and extra context. With PDF pages as chunks, content-rich pages
may approach maximum context size. The extra context might exceed this
limit.

Generating additional context can significantly increase processing time.

https://github.com/anthropics/anthropic-cookbook/tree/main/skills/contextual-embeddings

https://github.com/anthropics/anthropic-cookbook/tree/main/skills/contextual-embeddings

5 Augmentation

5.1 The Role of Augmentation

The term means enhancement. The LLM’s context is enhanced with the chunks
found during the retrieval step. This is where the complete message list that will
be passed to the LLM is prepared.

Input:

List of chunks

System message

Prompt

If applicable, list of messages from a previous dialogue

Output:

List of messages to the LLM (the context) consisting of system message, chunk
texts, previous dialogue, last prompt

5.2 Incorporating Chunks

There are various recommendations on where and how chunks should be incor-
porated. With OpenAI models, we’ve had good results placing them in the system
message. For Anthropic, it’s recommended to use the first user message. Generally,
Anthropic provides more specific formatting guidelines than OpenAl. When in
doubt, follow their recommendations.

We incorporate chunks as follows:

<data>
[document_id:sampledocument.pdf]
[pagenumber:123]

...additional metadata...

Here begins the text of the chunk.
</data>

The XML tags work just as effectively as triple backticks ““. The metadata can be
referenced in instructions in the system message to provide precise citations. This
task is actually more challenging than it appears.

5.3 Document References

For our use case, we needed to provide exact page numbers for references. That’s
why our chunking was based on PDF pages. The more common chunking methods,
which don’t account for page boundaries, weren’t suitable for our needs.

Crafting a reliable instruction in the system message proved difficult. Even minor
changes in wording had significant effects. We eventually settled on the following
format:

IMPORTANT: Use references to the source everywhere
in the format [id:document_1id,page:pagenumber].
Write the references directly after the statement
where the source is used.

Each paragraph must contain at least one reference.
Each statement must include a reference.

Always include file extensions with document_id.
Use the original text of the document_id.

Leave ae, oe, ue unchanged.

This format works consistently with GPT-40. GPT-40 mini tends to lose track of
the task when dealing with larger chunk lists.

5.4 Without References Everything Is
Flying Blind

How can you determine if the chunks were ultimately relevant to the LLM if
you don’t generate references? This feedback is crucial! It allows us to fine-tune
our retrieval process. Without references, you're essentially flying blind. It also
doesn’t help to manually evaluate the chunks yourself. As mentioned in the re-
trieval chapter, the LLM has the final say. What constitutes relevant versus
irrelevant content isn’t intuitively obvious.

5.5 Prompt Rewriting

Consider a scenario where someone enters only a keyword, such as ,present
value.“ What should the LLM do with that? We first task the LLM with checking
whether the prompt is a complete sentence. If not, we have the LLM rewrite the
prompt into a question that incorporates our technical context. This rewritten
prompt works behind the scenes and isn’t shown to users.

5.6 Keep Chunks or Not?

Should we retain the chunks collected during the previous retrieval? We believe
not, for several reasons:

The dialogue already contains the LLM’s response to the prompts. You can
reference previous content without keeping the underlying chunks.
Managing context size becomes complicated if chunks aren’t discarded. Which
ones should you keep? What happens when the user changes topics?

Each new pass becomes slower and more expensive.

The LLM often ignores chunks from retrieval when the prompt refers to the
dialogue history. For example, with a prompt like ,,Make a PowerPoint slide
outline from this for me.“

As is often the case, it’s unwise to make assumptions about how the LLM works.
You’ll frequently be mistaken.

6 Generation

Generation is the third stage in a RAG architecture and helps expand the boun-
daries of traditional natural language processing (NLP). While the retrieval part
extracts relevant information from sources, generation transforms this informa-
tion into coherent, fluent, and contextually appropriate text outputs.

Basic Principles of Generation

Generation in a RAG system uses an LLM with Transformer architecture. These
Transformers are specifically optimized to create human-like text. The most well-
known example is GPT (Generative Pre-trained Transformer), which has learned
to reproduce both syntax and semantics of natural language through extensive
pre-training on large text corpora. The strength of such a model lies in its ability
to fill knowledge gaps with plausible information - a capability enabled by finely
tuned language modeling mechanisms.

Text Generation Process

The generation process begins with input that, in RAG systems, comes from the
retrieval component and is combined with a system prompt during augmentation
to form a final prompt. This input is generally called a prompt. Different types of
prompts exist, such as system and user prompts, which the LLM processes differ-
ently. For clarity, we’ll refer to these as messages. A prompt therefore consists of

various messages.

In RAG, the prompt has two main components: text passages from retrieval that
provide context, and the system message containing instructions for the model.
These instructions might specify that the LLM should only use information from
the provided text passages.

The LLM uses this prompt to establish an initial state for text production. Most
modern LLMs like GPT-40 have been specifically trained for this user-LLM inter-
action and understand how to appropriately weight different statements.

From this initial state, text generation proceeds token by token. The system
continuously considers previously generated text to ensure it creates an under-
standable and coherent output.

Challenges and Optimization

A key concern in generation is ensuring quality and relevance. Several techni-
ques help with this, including beam search, which evaluates multiple possible text
continuations. Top-k sampling limits selection to only the most probable tokens
for the next position. The more widely known temperature adjustment controls
how creative versus predictable the word choices should be. These methods help
balance creativity and relevance by intelligently constraining the selection of
possible words, thus avoiding inappropriate or uninteresting outputs.

Important note: While an LLM can be configured to avoid undesirable outputs,
there are no absolute guarantees—the model might still generate such content

despite precautions.

However, more reliable safeguards can be implemented through guardrails around
the LLM. These include input and output guardrails that protect both the LLM
from users and users from potentially problematic LLM outputs.

Integration into the Business Environment

In business contexts, the adaptability of generation systems to specific needs is
particularly valuable. RAG represents one good approach for this. Another option
is fine-tuning, which can adapt the model to correctly use industry-specific termi-
nology. This process offers significant advantages for applications like automated
customer service, marketing content creation, or personalized user interactions.
However, fine-tuning requires caution, as it permanently adjusts the model’s
weights. These adjustments can only be modified through additional, iterative
fine-tunings, which can become a considerable cost factor, both initially and
over time. In environments where the underlying data changes frequently, a RAG
system is typically recommended. These approaches aren’t mutually exclusive
and can be combined when necessary.

7 Use Cases

Customer Support

In the field of customer support, RAG systems represent a transformative ap-
proach by enhancing traditional chatbots with the ability to retrieve and gene-
rate contextually relevant and well-structured responses. For example, in the
automotive industry, a RAG system can access extensive workshop knowledge
and technical manuals. When a customer inquires about specific troubleshooting
solutions or maintenance procedures, the system retrieves relevant data from its
repository. Combined with an LLM, this produces tailored answers that effec-
tively address support issues. This capability significantly improves the quality of
customer interactions and satisfaction while simultaneously reducing resolution
times.

Unlike conventional rule-based systems, which often fall short when handling
nuanced questions or complex queries, RAG-powered solutions adapt by retrie-
ving relevant information and presenting it concisely. This adaptability is crucial
in areas such as e-commerce or technical support, where products and services
evolve rapidly and knowledge bases must be continuously updated to remain

relevant.
Document Processing in Logistics

Logistics companies routinely handle vast quantities of documents including
invoices, shipping manifests, and compliance forms. LLMs and RAG systems
can significantly streamline document processing workflows by automating the
extraction and interpretation of relevant data. These systems can quickly analyze
diverse documentation sources to identify key shipping details, optimize data
processing procedures, and enhance the accuracy of logistical operations. By
increasing processing speed, they reduce manual effort and minimize human
error, enabling more efficient supply chain management.

Medical Applications

In healthcare, information is critical for timely and accurate decision-making.
RAG can play a vital role by providing physicians and nursing staff with access
to current information such as drug interactions or clinical research findings. For

example, when medical professionals inquire about potential drug interactions,
a RAG system can immediately deliver precise, comprehensive, and scientifically
supported information from the latest medical research and databases. This facili-
tates informed decisions, improves patient management, and ensures better care

outcomes.
Considerations for Non-Recommendation

While RAG offers numerous benefits across various domains, it is not a universal
solution. Its dependence on retrievable data makes it unsuitable for environments
requiring immediate real-time processing and decision-making. Scenarios such
as air traffic control or financial trading demand rapid responses based on con-
tinuous, second-by-second data and complex decision-making capabilities that
RAG cannot provide.

Furthermore, RAG’s effectiveness depends on the quality and scope of underlying
databases. In contexts requiring high interpretive abilities or creative decision-
making, such as strategic management or artistic creation, RAG might prove insuf-
ficient. In highly sensitive environments with strict data protection requirements,
caution is warranted, as data retrieval components may introduce potential secu-
rity risks.

In summary, RAG systems excel in scenarios requiring the retrieval and generati-
on of contextually accurate information from text-based resources. Their integra-
tion into customer support, logistics, and healthcare demonstrates their potential

to transform data-intensive processes.

When implementing RAG, it’s essential to carefully evaluate each use case. Legal
data protection requirements and the quality of available data should be thorough-
ly considered. A well-designed proof-of-concept can help determine whether RAG
is the optimal solution or if simpler alternatives would suffice. Through targeted
testing and analysis, organizations can ensure RAG systems are deployed where
they deliver maximum value.

8 Technical Challenges in
Implementation

Implementing RAG comes with various technical challenges. These range from
effectively managing large volumes of data, optimizing retrieval and generation
processes, to questions of scalability and data security. In this chapter, we examine
the key technical hurdles that can arise when implementing a RAG system and
provide guidance on how to overcome these challenges.

8.1 Setting Up and Operating Vector
Databases

A central component in the RAG approach is the retrieval system, which can be im-
plemented using vector databases and relational databases. Vector databases are
specifically designed for storing and quickly querying high-dimensional vectors,
such as those created by embeddings. The following challenges arise:

Storage requirements: As embeddings are created for each document in the
database, storage needs can quickly grow. Selecting a database that scales well
and offers efficient storage management is therefore essential.

Query speed: Fast response times during retrieval are crucial for finding re-
levant documents in real-time. Techniques like Approximate Nearest Neighbor
(ANN) help accelerate searches, though at the cost of accuracy. Instead of exact
matches, only the closest entries from the vector database are retrieved.

Indexing and updating: Documents are continuously added and updated.
This means that the vector database must be regularly refreshed to always pro-
vide current information. Additionally, outdated documents must be removed
from the vector database.

8.2 Challenges in Creating Embeddings

RAG uses embeddings to map the semantic content of documents, creating the
foundation for the retrieval process. The following challenges arise:

Quality of embeddings: Different models and API providers offer varying em-
bedding qualities. Choosing the right embedding model is crucial for obtaining
the most accurate representation of documents.

Consistency: To find relevant documents for a prompt, both the documents
in the vector database and the prompt must be processed with the same
embedding model. If the embedding model changes, all entries in the database
must be re-indexed with the new model.

Performance and API costs: Creating embeddings through model provider
APIs incurs costs. Smaller embedding models cost significantly less but are
also much less effective at retrieving relevant documents. It’s necessary to de-
termine which model offers acceptable costs without compromising retrieval

quality.

8.3 Combining Retrieval and Generation

One of the biggest challenges in implementing RAG is effectively incorporating
retrieved information into the generation process. This requires seamless integra-
tion of the ,Retrieval“ and ,,Generation“ modules with respect to the following
aspects:

LLM context size: All LLMs have a limited context length. If the retrieved
documents or text fragments exceed this length, relevant content must be
selected or summarized. An intelligent selection strategy is crucial here to
avoid overloading the model with irrelevant information and unnecessarily
increasing costs.

Model limitations: The LLM should use the received information to generate
an answer. However, the LLM doesn’t know whether the information is actually
suitable or what additional information might be missing.

Controlling answer quality: The quality of the generated answer heavily
depends on the relevance of the retrieved information. Testing and adjusting
retrieval parameters are often necessary to obtain consistent and reliable ans-

WErs.

8.4 Scalability and Performance
Optimization

Processing large volumes of data and integrating real-time queries pose signifi-
cant challenges to the scalability and performance of a RAG system:

Throughput: In heavily used applications, query frequency in the vector data-
base and generation load on the LLM can increase dramatically. Load balancing
and providing sufficiently scalable resources are essential to ensure consistent
response times. Running the models in-house is challenging, as LLMs require

specialized hardware.

Caching mechanisms: To save resources and increase speed, a caching system
can be implemented to store frequently requested or similar answers. This
reduces the need for repeated queries and generations.

Optimization of API requests: Using APIs like the OpenAl API for genera-
tion and embedding creation comes with costs that can be reduced through
optimized requests. Techniques such as batch processing and caching can also
contribute to cost reduction.

8.5 Data Management and Security

RAG systems often access sensitive or protected information, especially in cor-
porate applications that tap into internal data sources. Various challenges in data

security arise:

Access controls: It’s essential to ensure that only authorized users have access
to the retrieval system and the processed data. Finely tuned access manage-
ment is crucial to protect sensitive data.

Compliance and auditability: Depending on the industry, data is subject to
specific compliance requirements. A RAG system must ensure that all retrieved
and generated data complies with applicable regulations and can be audited if

necessary.

8.6 Bias and Quality Control

Although RAG offers a way to base LLM answers on verified information, quality

control remains a challenge:

Bias in generation: Since LLMs are based on statistical patterns, they can
reproduce societal biases. RAG can partially mitigate this through verified
external data, but continuous monitoring and fine-tuning are necessary.

Evaluation of answer quality: The quality and accuracy of generated answers
are critical. Regular testing, such as through quality metrics or human feedback,
is necessary to adjust and improve the system. It’s also helpful to compare
answer quality for different interpretations of the system prompt and refor-
mulations of user queries, an approach known as ,,Prompt Evaluation.“

8.7 Cost and Resource Management

Implementing a RAG system can consume significant computational and financial
resources. The following aspects are important to control costs:

Efficient use of cloud resources: Many RAG systems use cloud services for
managing vector databases and generating answers. Demand-based provisio-
ning and serverless approaches can help reduce operating costs.

Monitoring and cost control: Comprehensive monitoring is crucial to con-
tinuously track performance and costs. Tools for monitoring API usage and
optimization strategies contribute to cost reduction.

8.8 Success Factors and
Recommendations

The technical implementation of a RAG system comes with several challenges
that can be overcome through careful planning and selection of appropriate tools
and strategies. The key success factors are:

The right embedding model for fast and relevant results.

Deep domain knowledge to recognize which documents are truly relevant
and to retrieve them for matching queries.

Integration of a robust security concept to protect sensitive data.

Regular quality control and fine-tuning to minimize bias and improve ans-
wer quality.

9 Our Offering

9.1 Development, Consulting and
Operations

Generative Al enables your business to implement features that were previously
impossible or cost-prohibitive, and to digitize manual processes more rapidly.

IT is an enabler for business. It makes sense to leverage generative Al to stream-
line repetitive and time-consuming activities to maintain delivery capabilities.
Throughout this process, humans always remain ,,in the loop.“

We’re happy to support you with your development projects—from initial explo-
ration, through product development, to all operational aspects.

More information: https://www.innoq.ai

9.2 Training: GenAl with RAG for
Developers

In this training, we explore how to enhance LLMs with your organization’s pro-
prietary data, focusing on the Retrieval-Augmented Generation (RAG) architectu-
re. The goal of this course is to familiarize you with all components of a basic RAG
architecture. Through step-by-step experiments, we introduce each component
individually. By the end of the training, you’ll create a fully functional chatbot
that can work effectively with your own documents.

More information and dates: https://www.socreatory.com/de/trainings/genAl

INNO

We provide honest consulting, innovative thinking, and passionate development.
The result: Successful software solutions, infrastructures, and business models.

As a technology company, we specialize in strategy and technology consulting,
software architecture and development, methodology and technology training,
and platform infrastructures.

With over 160 employees across locations in Germany and Switzerland, we help
companies and organizations conceptualize and implement complex projects and
enhance existing software systems.

We actively contribute to open source projects and the iSAQB e.V., and share
our knowledge and experience at conferences and meetups, as well as through
numerous books and technical articles.

Visit us: www.innoq.com

The Authors

Robert Glaser

Robert Glaser leads Data and AI at INNOQ. With
roots in software engineering and a passion for crea-
ting user-friendly web applications, he now guides
companies through the AI landscape, helping them

develop strategies and products for challenging tech-
nical problems. Fascinated by practical uses of gene-
rative AI in software, he hosts the podcast “AI und
jetzt,” discussing AI’s potential across industries.
Robert bridges tech and business, advocating user-
centric digitization. Off duty, he enjoys exploring the
local food scene.

Alexander Kniesz

Alexander started in 2017 as a working student. Since
2021 he now works as a consultant at INNOQ. Since
his master’s degree in data science, his focus is on
topics like data processing, machine learning, and AL
With those specializations, he is also interested in

other software development topics to help bringing
ML into production. Therefore he also assists in
topics like Machine Learning Operations.

Hermann Schmidt

Hermann Schmidt is a Senior Consultant at INNOQ.
After more than two decades as a developer and
architect focusing on the “how” of software develo-
pment, Hermann has shifted his focus to the “what”
and “who”. As a facilitator, he is particularly inte-
rested in team dynamics, development processes,
innovation processes, and methods. The problems
hiding in the cloud between business and develop-
ment have his attention. Recently, the appearance
of large language models have ignited a spark that
reminds him of his days as a 17-year-old in high
school, sitting in awe and excitement in front of the
only computer, writing his first programs.

Marco Steinke

Marco Steinke works as Consultant at INNOQ, whe-
re he specializes in software architecture. His pro-
fessional interests also encompass artificial intelli-
gence, with a particular emphasis on the design and
incorporation of Al systems.

Retrieval-Augmented Generation (RAG) erméglicht es,
die Fdhigkeiten von Large Language Models fir unter-
nehmensinternes Wissen zu erschlieBen. Das erméglicht
nicht nur Antwortsysteme wie Chatbots, sondern

auch die Umsetzung von zuvor schwierigen oder
unméglichen Features auf der Grundlage von internen,
unstrukturierten Daten.

In diesem Primer fUhren wir systematisch in die
Konzepte und Architektur von RAG ein. Wir behandeln
sowohl theoretische Grundlagen als auch praktische
Implementierungsaspekte wie Chunking, Embedding
und Vektordatenbanken. AuBerdem teilen wir unsere
Praxiserfahrung aus echten Projekten.

Fir Softwarearchitekt:innen und -entwickler:innen,
die einen kompakten, aber fundierten Einstieg

ins Thema suchen und den Einsatz von RAG in der
eigenen Organisation bewerten wollen.

innoq.com

	1 Fundamentals of Large Language Models (LLMs)
	1.1 How do LLMs work?
	1.2 Strengths and Limitations of LLMs
	1.3 Comparison of Different Approaches
	1.4 Misconceptions and Clarifications
	1.5 Conclusion and Outlook

	2 Retrieval-Augmented Generation: When World Knowledge Meets Specialized Knowledge
	2.1 The Limitations of LLMs and RAG as a Solution
	2.2 Grounding: Anchoring in Verified Data
	2.3 The Motivation Behind RAG
	2.4 Conclusion: An LLM with Reliable Data

	3 Document Ingestion
	3.1 What is Document Ingestion?
	3.2 Why is Document Ingestion so Important?
	3.3 Chunking: The Right Granularity for Success
	3.4 Proper Structuring: More Than Just Text
	3.5 Challenges and Best Practices
	3.6 Conclusion: The Foundation for High-Quality Answers

	4 Retrieval
	4.1 The Role of Retrieval
	4.2 Vector Search
	4.3 Hybrid Search
	4.4 Overlaps or Windowing
	4.5 Limitation
	4.6 The LLM Has the Final Say
	4.7 General Limitations of Retrieval
	4.8 Simple RAG is Just an Intermediate Step
	4.9 Contextual Retrieval

	5 Augmentation
	5.1 The Role of Augmentation
	5.2 Incorporating Chunks
	5.3 Document References
	5.4 Without References Everything Is Flying Blind
	5.5 Prompt Rewriting
	5.6 Keep Chunks or Not?

	6 Generation
	7 Use Cases
	8 Technical Challenges in Implementation
	8.1 Setting Up and Operating Vector Databases
	8.2 Challenges in Creating Embeddings
	8.3 Combining Retrieval and Generation
	8.4 Scalability and Performance Optimization
	8.5 Data Management and Security
	8.6 Bias and Quality Control
	8.7 Cost and Resource Management
	8.8 Success Factors and Recommendations

	9 Our Offering
	9.1 Development, Consulting and Operations
	9.2 Training: GenAI with RAG for Developers

	The Authors

