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Classic Data Architecture

> Centralized databases

> …or services that provide data

> Ensures consistency across systems

> …for data model

> ...and updates to data

> Reuse
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Who is using a 
centralized database?



Who likes the
centralized database?



Microservices: 
Definition

> No consistent definition

> Microservices are modules

> Independent deployment units

> E.g. processes, Docker container

> Microservice owned by one team
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Why Microservices?
> Develop a feature

> …bring it into production

> ...with no coordination

> Independent scaling

> Free choice of technology

> Robustness

> Security



Microservices aim for 
decoupling
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Server /
Container

Server / 
Container

Micro
Service

Micro
Service

Order Schema



Microservices & Data

Server /
Container

Server / 
Container

Micro
Service

Micro
Service

Order Schema



Microservices & Data

> Decoupling for data, too

> Separate data storage
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Data Microservices
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Data Microservice

> Change two microservices if new feature 
requires change to data schema

> But: data in one place

> No consistency issues



Data microservice 
limits decoupling.



Encapsulation

> Information hiding

> Hide the internal data structure

> Provide access only through a well defined 
interface

> Data and databases should not be exported
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Separate Databases
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Different Databases
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Different Databases
> “Polyglot persistence”

> Use the best tool for the job

> Technology freedom
– advantage of microservices

> …but extra effort

> Backup, disaster recovery etc.

> Not as easy as e.g. different frameworks 



Separate Schema
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Separate Schemas

> Less effort

> Decoupled data models

> ...but limited independent scaling and 
robustness
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Redundancy!!!







Domain-driven Design



Domain-driven Design

> 2004

> Still very relevant

> By Eric Evans

> Focus on part IV

> Free reference: 
http://domainlanguage.com/
ddd/reference/
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My Domain Model
is a mess!



Bounded Context

> Domain model is only valid for one context

> There is no universal data model!

> See all failed SOA attempts
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Bounded Context

> Microservice =
BOUNDED CONTEXTS

> Changes for new features are local

> …even if data models need to be changed 
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Redundancy?



Redundancy?
Not really



Bounded Context



What about
basic data of an 

order? 



Strategic Design

> How do BOUNDED CONTEXTS relate to each 
other?

> Context can have relationships

> DDD defines several relationship patterns



Shared Kernel

> Subset of a model

> …that two teams share

> Eric Evans: Including code and database

> Microservices: Just sharing a model



Anti-corruption Layer

> Don’t let e.g. a legacy model influence a 
new model

> Isolate model by additional layer

> No need to modify the old system



Context Relationships

> Team = Deployment Unit = BOUNDED CONTEXT

> Context Relationships define how BOUNDED
CONTEXT are used…

> ...and how much teams need to collaborate
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Context Map



Context Map

> Show the different BOUNDED CONTEXT

> …and the relation to each other

> BOUNDED CONTEXT might be microservices

> ...or communication links
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Centralized
Shared Kernel

> Ensures consistency

> ...but needs to be called for a lot of 
operations

> Resilience / performance / transactions

> Have one master as the source of truth
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Decentralized
Shared Kernel

> Might be inconsistent

> ...but all data for all requests is available in 
the local database

> Better resilience…

> ...and performance



How to Replicate 
Data?



Database Replication

> Built into the database

> Replicate schema across database instances

> But: Microservices have separated schemas

> Every Microservice might have different data

> …so database replication is not a good fit



Replication with 
Events



Events

> Later addition to Domain-driven Design

> Events with a business meaning

> Decouple time:
Asynchronous

> Decouple logic:
System can handle event as it pleases
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Events & Data Replication

> Events lead to data replication

> i.e. each system stores information it 
received in an event

> Data stored in separate schema

> Very decoupled

> Hard to repair inconsistencies



More Fun With Events



Event Sourcing

> Internal Structure for Microservice with events

> Current state result of all events

> Calculate state on the fly?
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Event Sourcing

> Event store and snapshot help to repair 
inconsistencies

> Event-based architecture in microservices



CQRS

> Command – Query Responsibility Segregation

> Commands change data

> Query provide data

> Implement in separate modules

> …or even microservices

> ...with potentially different BOUNDED CONTEXTS



Commands vs Events

> Command: Change that data!

> Event: Something has happened

> Component decides if data should be 
changed
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Batch Replication



Batch

> Get all data

> Provide API

> …to decouple schema

> Copy interesting data into local database
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Batch & Data Replication

> Easy to repair inconsistencies

> Batch run at specific points

> i.e. updates take time

> Data not consistent across microservices



CAP: Challenge for 
Replication



CAP Theorem
> Consistency

> All nodes see the same data

> Availability

> Node failures do not prevent survivors 
from operating

> Partition Tolerance

> System continues to operate despite 
arbitrary message loss

C

P A



CAP Theorem: P

> Network partitions do occur

> Even with highly available network 
hardware

> Also: very slow response = partition

> Need to deal with P



CAP Theorem: C or A?

> Node cannot access other nodes

> Might have missed updates

> A, not C:
Answer with a potentially wrong answer

> C, not A:
Don’t answer – the answer might be wrong
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Conclusion



Classic:
Centralized
Database

Microservices:
private

database
decoupling

Data Microservices:
Consistent but

resilience / performance
/ transactions / decoupling?

Database per
Microservice:

Polyglot Persistence

Schema per
Microservice:

Simple infrastructure



Redundant Data or
Bounded Context?
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Decentralize data!


