
Data Architecture –
Not Just for 

Microservices
Eberhard Wolff

@ewolff
Fellow



http://continuous-delivery-buch.de/



http://microservices-buch.de/ http://microservices-book.com/



http://microservices-book.com/primer.html

FREE!!!!



Classic Data Architecture

> Centralized databases

> …or services that provide data

> Ensures consistency across systems

> …for data model

> ...and updates to data

> Reuse



Classic Data Architecture

Billing Order
Process CRM

Order



Who is using a 
centralized database?



Who likes the
centralized database?



Microservices: 
Definition

> No consistent definition

> Microservices are modules

> Independent deployment units

> E.g. processes, Docker container

> Microservice owned by one team



Microservices: Definition

Server /
Container

Server / 
Container

Micro
Service

Micro
Service



Why Microservices?
> Develop a feature

> …bring it into production

> ...with no coordination

> Independent scaling

> Free choice of technology

> Robustness

> Security



Microservices aim for 
decoupling



Microservices & Data

Server /
Container

Server / 
Container

Micro
Service

Micro
Service

Order Schema



Microservices & Data

Server /
Container

Server / 
Container

Micro
Service

Micro
Service

Order Schema



Microservices & Data

> Decoupling for data, too

> Separate data storage



Data Microservices

Server /
Container

Server / 
Container

Micro
Service

Micro
Service

Order Data
Microservice



Data Microservices

Server /
Container

Micro
Service

Order Data
Microservice

Customer Data
Microservice

Remote calls
influence

performance
availability

No transaction
across customer 

and order



Data Microservice

> Change two microservices if new feature 
requires change to data schema

> But: data in one place

> No consistency issues



Data microservice 
limits decoupling.



Encapsulation

> Information hiding

> Hide the internal data structure

> Provide access only through a well defined 
interface

> Data and databases should not be exported



Violates Encapsulation

Billing Order
Process CRM

Order
Shared

data model

Logic



Violates Encapsulation

Server /
Container

Server / 
Container

Micro
Service

Micro
Service

Order Data
Microservice Shared

data model

Logic



Separate Databases

Server /
Container

Server / 
Container

Micro
Service

Micro
Service

Order Order



Different Databases

Server /
Container

Server / 
Container

Micro
Service

Micro
Service

neo4j Oracle



Different Databases
> “Polyglot persistence”

> Use the best tool for the job

> Technology freedom
– advantage of microservices

> …but extra effort

> Backup, disaster recovery etc.

> Not as easy as e.g. different frameworks 



Separate Schema

Server /
Container

Server / 
Container

Micro
Service

Micro
Service

Oracle
Schema Schema



Separate Schemas

> Less effort

> Decoupled data models

> ...but limited independent scaling and 
robustness



Billing Order
Process CRM

OrderOrder Order



Redundancy!!!







Domain-driven Design



Domain-driven Design

> 2004

> Still very relevant

> By Eric Evans

> Focus on part IV

> Free reference: 
http://domainlanguage.com/
ddd/reference/



Order

Shipping address
Tracking #
Items
Item Categories
Priority shipping
Customs #
Account #

...
Credit card #

Order #



My Domain Model
is a mess!



Bounded Context

> Domain model is only valid for one context

> There is no universal data model!

> See all failed SOA attempts



Order

Shipping address

Tracking #

Items

Item Categories

Priority shipping

Customs #

Account #

...

Credit card #

Order #

Customs

Order

Recommen-
dations

Order

Tracking

Order

Shipping
address
Tracking #

Item
Categories

Priority
shipping

Customs #

Payment

Order

Account #
Credit card #



Billing Order
Process CRM

OrderOrder Order



Bounded Context

> Microservice =
BOUNDED CONTEXTS

> Changes for new features are local

> …even if data models need to be changed 



Billing Order
Process CRM

OrderOrder Order



Redundancy?



Redundancy?
Not really



Bounded Context



What about
basic data of an 

order? 



Strategic Design

> How do BOUNDED CONTEXTS relate to each 
other?

> Context can have relationships

> DDD defines several relationship patterns



Shared Kernel

> Subset of a model

> …that two teams share

> Eric Evans: Including code and database

> Microservices: Just sharing a model



Anti-corruption Layer

> Don’t let e.g. a legacy model influence a 
new model

> Isolate model by additional layer

> No need to modify the old system



Context Relationships

> Team = Deployment Unit = BOUNDED CONTEXT

> Context Relationships define how BOUNDED
CONTEXT are used…

> ...and how much teams need to collaborate



Coordination
Effort

Shared BOUNDED CONTEXT

SHARED KERNEL

CUSTOMER / SUPPLIER

ANTICORRUPTION LAYER

CONFORMIST

SEPARATE WAYS



Context Map



Context Map

> Show the different BOUNDED CONTEXT

> …and the relation to each other

> BOUNDED CONTEXT might be microservices

> ...or communication links



Order ProcessRegistration

Basic
Customer 

Data
Basic

Customer 
Data

Customer 
Order
Data

Delivery
Customer 

Order
Data

Billing

Anticorruption
Layer

Mainframe
Customer

Data

Customer 
Order
Data

Customer 
Order
Data

Basic Customer
Data +

Customer Order 
Data

= Shared Kernel



Billing Order
Process

CRM

Shared
Kernel
Order

Additional
data

Additional
data

Additional
data

Order
Data



Centralized
Shared Kernel

> Ensures consistency

> ...but needs to be called for a lot of 
operations

> Resilience / performance / transactions

> Have one master as the source of truth



Billing Order
Process

CRM

Shared
Kernel
Order

Shared
Kernel
Order

Shared
Kernel
Order

Additional
data

Additional
data

Additional
data



Decentralized
Shared Kernel

> Might be inconsistent

> ...but all data for all requests is available in 
the local database

> Better resilience…

> ...and performance



How to Replicate 
Data?



Database Replication

> Built into the database

> Replicate schema across database instances

> But: Microservices have separated schemas

> Every Microservice might have different data

> …so database replication is not a good fit



Replication with 
Events



Events

> Later addition to Domain-driven Design

> Events with a business meaning

> Decouple time:
Asynchronous

> Decouple logic:
System can handle event as it pleases



Billing Order
Process

CRM

Shared
Kernel
Order

Shared
Kernel
Order

Shared
Kernel
Order

Additional
data

Additional
data

Additional
data

New Order Event



Events & Data Replication

> Events lead to data replication

> i.e. each system stores information it 
received in an event

> Data stored in separate schema

> Very decoupled

> Hard to repair inconsistencies



More Fun With Events



Event Sourcing

> Internal Structure for Microservice with events

> Current state result of all events

> Calculate state on the fly?



Event Queue

Event

Event

Event

Event
Handler

Event
Handler

Event
Store

Snapshot



Event Sourcing

> Event store and snapshot help to repair 
inconsistencies

> Event-based architecture in microservices



CQRS

> Command – Query Responsibility Segregation

> Commands change data

> Query provide data

> Implement in separate modules

> …or even microservices

> ...with potentially different BOUNDED CONTEXTS



Commands vs Events

> Command: Change that data!

> Event: Something has happened

> Component decides if data should be 
changed



Command
Queue

Command

Command

Command

Command
Handler

Query
Handler

Command
Store

Database



Batch Replication



Batch

> Get all data

> Provide API

> …to decouple schema

> Copy interesting data into local database



Billing Order
Process

CRM

Shared
Kernel
Order

Shared
Kernel
Order

Shared
Kernel
Order

Additional
data

Additional
data

Additional
data

BatchBatch API API



Batch & Data Replication

> Easy to repair inconsistencies

> Batch run at specific points

> i.e. updates take time

> Data not consistent across microservices



CAP: Challenge for 
Replication



CAP Theorem
> Consistency

> All nodes see the same data

> Availability

> Node failures do not prevent survivors 
from operating

> Partition Tolerance

> System continues to operate despite 
arbitrary message loss

C

P A



CAP Theorem: P

> Network partitions do occur

> Even with highly available network 
hardware

> Also: very slow response = partition

> Need to deal with P



CAP Theorem: C or A?

> Node cannot access other nodes

> Might have missed updates

> A, not C:
Answer with a potentially wrong answer

> C, not A:
Don’t answer – the answer might be wrong



Billing Order
Process

CRM

Shared
Kernel
Order

Shared
Kernel
Order

Shared
Kernel
Order

Additional
data

Additional
data

Additional
data

New Order Event

inconsistent or unavailable



Conclusion



Classic:
Centralized
Database

Microservices:
private

database
decoupling

Data Microservices:
Consistent but

resilience / performance
/ transactions / decoupling?

Database per
Microservice:

Polyglot Persistence

Schema per
Microservice:

Simple infrastructure



Redundant Data or
Bounded Context?

Batch

Database
Replication

Events

Redundancy?
Context Map and
Context Relations Replication

CAP

Event
SourcingCQRS

e.g. Shared
Kernel



Decentralize data!


