Typelevel's
path to
Scala 3

Lars Hupel
Scala Love in the City
2021-02-13

INNO

TYPELEVEL
SCALA

Typelevel.scala

Let the Scala compiler work for you. We provide type classes,
instances, conversions, testing, supplements to the standard
library, and much more.

Projects

er a wide range of domains, from general functional programming to tooling.

Shapeless

typelevel.scala

Let the Scala compiler work for you.

& http:/itypelevel.org = info

[Repositories 62) Packages

Pinned repositories

B cats

Lightweight, modular, and extensible library for
functional programming.

@scala Yrack ¥ ik

B spire
Powerful new number types and numeric
abstractions for Scala.

@sScala Yyisek %237

Q Find arepository...

A People 25

3 fs2

Compositional, streaming I/O library for Scala

@scala Yrisk % 471

[cats-effect

The purely functional runtime system for Scala

@®sScala Yeiik %298

Type: All + Language: All ~

[scalacheck

Property-based testing for Scala

@®scala Yyi7k %363

(] discipline

Flexible law checking for Scala

@scala Yyes2 %43

Typelevel

Founded in 2013 at
Northeast Scala Symposium

Typelevel

Founded in 2013 at
Northeast Scala Symposium

Today: 70+ projects,
vibrant ecosystem

Typelevel projects

Central theme: Scala-idiomatic Functional Programming

Typelevel projects

Central theme: Scala-idiomatic Functional Programming
® ... with as little hassle as possible

Typelevel projects

Central theme: Scala-idiomatic Functional Programming
® ... with as little hassle as possible

® ... with as little runtime overhead as possible

Typelevel projects

Central theme: Scala-idiomatic Functional Programming
® ... with as little hassle as possible
® ... with as little runtime overhead as possible

® ... as safe as possible

Type classes

Supremely useful tool, pioneered in Haskell

Type classes

Supremely useful tool, pioneered in Haskell

class Semigroup a => Monoid a where
mempty :: a
mconcat :: [a] -> a
mconcat = foldr mappend mempty

Type classes

Supremely useful tool, pioneered in Haskell
class Semigroup a => Monoid a where

mempty :: a

mconcat :: [a] -> a

mconcat = foldr mappend mempty
It Just Works™!

Type classes in Scala

... now we just need to encode them in Scala

Type classes in Scala

.. now we just need to encode them in Scala

° multiple inheritance?

Type classes in Scala

.. now we just need to encode them in Scala
° multiple inheritance?

® syntax??

Type classes in Scala

.. now we just need to encode them in Scala
° multiple inheritance?
® syntax??

¢ global confluence???

Type classes in Scala

.. now we just need to encode them in Scala
° multiple inheritance?
® syntax??

¢ global confluence???

The Limitations of Type Classes as Subtyped Implicits
(Short Paper)

Adelbert Chang

adelbertc@gmail.com

Abstract

Type classes enable a powerful form of ad-hoc polymorphism
which provide solutions to many programming design prob-
lems. Inspired by this, Scala programmers have striven to
emulate them in the design of libraries like Scalaz and Cats.

The natural encoding of type classes combines subtyping
and implicits, both central features of Scala. However, this
encoding has limitations. If the type class hierarchy branches,
seemingly valid programs can hit implicit resolution failures.
These failures must then be solved by explicitly passing the
implicit arguments which is cumbersome and negates the
advantages of type classes.

In this paper we describe instances of this problem and
show that they are not merely theoretical but often arise in
practice. We also discuss and compare the space of solutions
to this problem in Scala today and in the future.

N NEY o ~ £ g o4 s . -

the type class resolver automatically searches through the
dictionary of instances to ensure the appropriate instances
are defined.

Scala programmers have sought to emulate type classes
to leverage this kind of ad-hoc polymorphism. The natural
encoding of type classes uses implicits for instance defini-
tion and resolution and subtyping for specifying type class
relationships.

As a running example consider the (stubbed) encoding
of the Functor and Monad type classes. Each type class be-
comes a trait, and relationships between type classes become
subtype relationships. For example, every Monad gives rise
to a Functor, so Monad[F] extends Functor[F].

trait Functor[F[_]] { }
trait Monad[F[_]] extends Functor[F] { }

It is also possible to write functions abstracting over these
tvpne classes

~ A

The rise of the macros

e
N\ .

Type classes, encoded

In 2015, Michael Pilquist started simulacrum.

Goal: consistent encoding across different projects, O boilerplate

Simulacrum

Input

import simulacrum._

@typeclass trait Semigroup[A] {
@op("|+|") def append(x: A, y: A): A
b

Simulacrum

Output

object Semigroup {
def apply[A](implicit instance: Semigroup[A]): Semigroup[A] = instance

/...
}

Simulacrum

More output
object Semigroup {
trait Ops[A] {
def typeClassInstance: Semigroup[A]
def self: A
def |+|(y: A): A = typeClassInstance.append(self, y)
}

Simulacrum

Even more output
object Semigroup {
trait ToSemigroupOps {
implicit def toSemigroupOps[A](target: A)(implicit tc: Semigroup[A]): Ops[A]
val self = target
val typeClassInstance = tc

}

object nonInheritedOps extends ToSemigroupOps

Simulacrum

Yet more output
object Semigroup {
trait Al10ps[A] extends Ops[A] {
def typeClassInstance: Semigroup[A]
2
object ops {
implicit def toAllSemigroupOps[A](target: A)(implicit tc: Semigroup[A]): ALl10
val self = target
val typeClassInstance = tc

}

But it works!

Simulacrum solved a ton of issues

We can write x |+]| y!

But it works!

Simulacrum solved a ton of issues
We can write x |+]| y!

Used by Cats and tons of third-party
libraries

We're not done yet

Simulacrum didn't solve the performance issue.

We're not done yet

Simulacrum didn't solve the performance issue.

Input
x |+|y

We're not done yet

Simulacrum didn't solve the performance issue.

Output
Semigroup.ops.toAllSemigroupOps(x). |+|(y)

Enter Machinist

Split out of Spire by Erik Osheim in 2014

Enter Machinist

Split out of Spire by Erik Osheim in 2014

Now (2020) archived and re-incorporated into Spire

& typelevel / cats v

<> Code Q@ Issues 1% 1% Pull requests 30 1) Discussions

Cats 3 Roadmap #3757
10 comments

g larsrh 4 days ago

Continued from #2296.

« @joroKr21 suggests that Cats 3 is Scala-3-only.

(») Actions

53 Settings

Member

@f...

+ @LukaJCB and @kailuowang advocated that we only bring break binary compatibility changes to new Scala major versions.

« @kailuowang drafted a plan in 2019.

(] 2 larsrh mentioned this issue 4 days ago

[Meta Thread] Post 1.2 Roadmap #2296

& Closed

Assi

Labe

Miles

Link

Notif

You'r

Type constructor polymorphism

case class EitherT[F[_], A, Bl(value: F[Either[A, B]]) {
/...
}

Type constructor polymorphism

case class EitherT[F[_], A, Bl(value: F[Either[A, B]]) {
/...

}

Scala is the only language that can do that!*

Type constructor polymorphism

Landed in Scala 2.5 by Adriaan Moors (2007)

Type constructor polymorphism

Landed in Scala 2.5 by Adriaan Moors (2007)

Complete game-changer

€€ As soon as you give Scala programmers a new toy, 99
they will start abusing it in ways you can’t imagine.

- ancient Scala proverb

Scala isn't Haskell

Haskell
instance Monad (Either a) where

{- ... -}

Scala isn't Haskell

Haskell

instance Monad (Either a) where
{- ... -}

Scala

implicit val eitherMonad[A]: Monad[({ type A[B] = Either[A, B] })#A] =
/! ...

kind-projector

Even macros can't fix missing syntax.*

We need a compiler plugin!

kind-projector

*

Even macros can't fix missing syntax.

We need a compiler plugin!

implicit val eitherMonad[A]: Monad[Either[A, ?]] = // ...

Scala Programming Language / SI-2712
implement higher-order unification for type constructor inference

Log In
Details
Type: [#) Improvement Status: %) Open
Priority: ¥ Minor Resolution: Unresolved
Affects Version/s: None Fix Version/s: None
Component/s: Misc Compiler
Labels: None
Environment: tcpoly_infer
Description

implement what's described in "Partial polymorphic type inference and higher-order unification"

object Test {
def meh[M[_1, Al(x: M[A]): MI[A] = x
meh{(x: Int) => x} // should solve ?M = [X] X => X and ?A = Int ...

Issue Links

blocks [@] S1-5993 Unexpected compiler error involving type lambda and implicit conversion

is duplicated by @ SI-6744 It is impossible to pattern match on a case class containing partially applied type constructors
relates to [SI-5075 Anonymous type function is accepted as higher-kinded parameter type, but does not unify with it
Activity

All Comments History | Activity = Commits

® B B

& & b

S1-2712

def foo[F[_], Al(fa: F[A]) = // ...

// doesn't compile!
// Either[_, _] is not an F[_]
foo(x: Either[String, Int])

Unapply

Dependent method types + tons of boilerplate = SI-2712 hack

Unapply

trait Unapply[TC[_[_1]1, MA] {
type M[_]
type A
def TC: TC[M]

def subst: MA => M[A]
}

// okay ...

Unapply

implicit def unapply3MTLeft[TC[_[_11, F[_[_1,_,_1, AA[_], B, C]
(implicit tc: TC[F[AA,?,C]]): Aux3MTLeft[TC,F[AA, B, C], F, AA, B, C] =
new Unapply[TC, F[AA,B,C]] {
type M[X] = F[AA, X, C]
type A = B
def TC: TC[F[AA, ?, C]] = tc
def subst: F[AA, B, C] => M[A] = identity

// the what now?!?!

Seven years later ...

Miles fixes it for Scala 2.12!

Seven years later ...

Miles fixes it for Scala 2.12!

(... and for 210 and 2.11 with a compiler plugin)

Seven years later ...

Miles fixes it for Scala 2.12!

(... and for 210 and 2.11 with a compiler plugin)

XREr X

Type constructors in Dotty

The Dotty team has taken great care to consolidate the current "hacks”

Type lambdas now built in!

TEKNOLOGIHUSE/

Implementing Higher-Kinded Types in Dotty

Martin Odersky, Guillaume Martres, Dmitry Petrashko

EPFL, Switerland: {first.last}@epfl.ch

Abstract

dotty is a new, experimental Scala compiler based on DOT,
the calculus of Dependent Object Types. Higher-kinded
types are a natural extension of first-order lambda calculus,
and have been a core construct of Haskell and Scala. As long
as such types are just partial applications of generic classes,
they can be given a meaning in DOT relatively straightfor-
wardly. But general lambdas on the type level require ex-
tensions of the DOT calculus to be expressible. This paper
is an experience report where we describe and discuss four
implementation strategies that we have tried out in the last
three years. Each strategy was fully implemented in the dotty
compiler. We discuss the usability and expressive power of
each scheme, and give some indications about the amount of

2l o earmbats e ATEE Al Aae Attt orea

proved to be challenging, so much so that we evaluated four
different strategies before settling on the current direct rep-
resentation encoding. The strategies are summarized as fol-
lows:

e A simple encoding in the DOT-inspired [9] core type
structures that can express partial applications and not
much more

e A direct representation that adds support for full type
lambdas and higher-kinded applications, without re-
using much of the existing concepts of the calculus and
the compiler.

e A projection encoding, that encodes higher-kinded types
as first-order generic types using type projections T#A.

Implementing Higher-Kinded Types in Dotty

Martin Odersky, Guillaume Martres, Dmitry Petrashko
EPFL, Switerland: {first.last}@epfl.ch

doti

o the compiler.

e A direct representation that adds support for full type
lambdas and higher-kinded applications, without re-
Ab using much of the existing concepts of the calculus and

evaluated four
ent dirdct rep-
narized as fol-

types a natural extension of first-order lambda calculus,
and have beema core construct of Haskell and Scala. As long
as such types are justpartial applications of generic classes,
they can be given a meaning in DOT relatively straightfor-
wardly. But general lambdas om~the type level require ex-
tensions of the DOT calculus to be € ssible. This paper
is an experience report where we describe and. discuss four
implementation strategies that we have tried out iirthe last
three years. Each strategy was fully implemented in the do

compiler. We discuss the usability and expressive power of
each scheme, and give some indications about the amount of

2l o earmbats e ATEE Al Aae Attt orea

IOWS?

e A simple encoding in the DOT-inspired [9] core ty
structures that can express partial applications and no
much more

e A direct representation that adds support for full type
lambdas and higher-kinded applications, without re-
using much of the existing concepts of the calculus and
the compiler.

e A projection encoding, that encodes higher-kinded types
as first-order generic types using type projections T#A.

Scala 2 macros

Landed in Scala 2.10 (2012)

Enabled lots of innovation across the board

Scala 2 macros

Landed in Scala 2.10 (2012)
Enabled lots of innovation across the board

Sadly, not available any more in Dotty

@ scodec/scodec-bits v @ Watch ~

Yy Star
<> Code (1) lssues 2 i Pullrequests 2 (») Actions [Wiki > Releases 58
¥ main v+ scodec-bits / core / shared / src / main / Q Add file v ¥ Download
mpilquist Upgrade to Scala 3.0.0-M3 v 519638 on Dec 17,2020 D History -%-

scala-2.11/scodec/bits

scala-2.12/scodec/bits

scala-2.13/scodec/bits

scala-2/scodec/bits

scala-3.0.0-M1/scodec/bits

scala-3.0.0-M2/scodec/bits

scala-3.0.0-M3/scodec/bits

scala/scodec/bits

Convert build to sbt-spiewak

Convert build to sbt-spiewak

Convert build to sbt-spiewak

avoid using type parameters on Left or Right
Prepare for M3

Upgraded to Scala 3.0.0-M2 (#252)
Upgrade to Scala 3.0.0-M3

Scalafmt, build updates

5 months ago
5 months ago
5 months ago
2 months ago
2 months ago
2 months ago
2 months ago

3 months ago

98

Migration of scodec

First supported version: Dotty 0.22.0%

Migration of scodec

First supported version: Dotty 0.22.0%

Requires complete reimplementation between Scala 2 and Dotty

Scala 3.0.0 is near!

v language features

v’ simulacrum

v many major Typelevel projects
v release train

Scala 3.0.0 is near!

v language features

v’ simulacrum

v many major Typelevel projects
v release train

Still lots to do (Monix, http4s, ...)

Q& A INNOQ

www.innog.com

Lars Hupel

N lars.hupel@innog.com
W @larsr_h

LARS HUPEL

Senior Consultant
innoQ Deutschland GmbH

Lars is known as one of the founders of the Type-
level initiative which is dedicated to providing
principled, type-driven Scala libraries in a friendly,
welcoming environment. A frequent conference
speaker, they are active in the open source com-
munity, particularly in Scala.

Sovurces

® https://twitter.com/ohbadiah/status/299937487713878016
® https://twitter.com/travisbrown/status/300015411125174273

® https://secure.trifork.com/dl/techmesh-london-2012/slides/JohnHughes_and_PhilipWadler_and_
SimonPeytonJones_KeynoteHaskellPracticalAsWellAsCool.pdf

® https://www.reddit.com/r/shiba/comments/e6ecle/angry_shiba/

® https://pixabay.com/vectors/people-jump-silhouette-group-male-4894818/

https://twitter.com/ohbadiah/status/299937487713878016
https://twitter.com/travisbrown/status/300015411125174273
https://secure.trifork.com/dl/techmesh-london-2012/slides/JohnHughes_and_PhilipWadler_and_SimonPeytonJones_KeynoteHaskellPracticalAsWellAsCool.pdf
https://secure.trifork.com/dl/techmesh-london-2012/slides/JohnHughes_and_PhilipWadler_and_SimonPeytonJones_KeynoteHaskellPracticalAsWellAsCool.pdf
https://www.reddit.com/r/shiba/comments/e6ec1e/angry_shiba/
https://pixabay.com/vectors/people-jump-silhouette-group-male-4894818/

