
Scaling Data
Lucas Dohmen

Senior Consultant @ INNOQ

1

2/ Motivation

Why?

Scaling
Reads

Scaling
Writes

Geographical
Distribution

Big
Data Sets

Failure
Resistance

Lucas Dohmen

• Senior Consultant at INNOQ

• Everything Web & Databases

• Previously worked at ArangoDB

• http://faucet-pipeline.org

3

http://faucet-pipeline.org

Structure

1. Consistency

2. Scaling

3. Trouble

4

5

Part 1:
Consistency

6/ Consistency

�

Linearizable

7/ Consistency

a b

w w’

Linearizable

7/ Consistency

a b

w w’

r r’

Linearizable

7/ Consistency

a b

w w’

r r’ r r’

Linearizable

7/ Consistency

a b

w w’

r r’ r r’r r’

Linearizable

7/ Consistency

a b

w w’

r r’ r r’r r’

Consistency Models:
Which histories are valid?

8/ Consistency

Read() => a
Write(b)

Read() => b
Read() => b

Read() => a
Write(b)

Read() => a
Read() => a

Read() => b
Write(b)

Read() => b
Read() => b

https://aphyr.com/posts/313-
strong-consistency-models

9/ Consistency

https://aphyr.com/posts/313-strong-consistency-models
https://aphyr.com/posts/313-strong-consistency-models

10/ Consistency

strictly serializable

serializable linearizable

sequentialrepeatable read SI

causal

PRAM

RL

RV

Highly Available Transactions: Virtues and Limitations – Bailis et al.

http://Highly%20Available%20Transactions:%20Virtues%20and%20Limitations

11

Part 2:
Scaling

How do we scale web applications?

• Share nothing between
application servers

• Put behind a load balancer

• Add servers

12/ Scaling Applications

Load Balancer

App App App App

Database

How do we scale web applications?

• Share nothing between
application servers

• Put behind a load balancer

• Add servers

12/ Scaling Applications

Load Balancer

App App App App

Database

Share Nothing for Databases?

• Possible & Underused

• Separate databases for separate
data

• If we need to join data, we need
to join in the application

13/ Scaling / Sharding

MySQL

Redis

Replication

14

Replication
=

Same data on multiple nodes

15/ Scaling / Replication

Single Leader

• Failover

• Read scaling

• No write scaling

16/ Scaling / Replication

Leader

Follower

Sync or Async Replication?

• Trade-off between consistency & speed

• Sync: Every follower we add decreases performance

• Async: If our leader dies and the replication is not done, we have lost
acknowledged data

17/ Scaling / Replication

Examples

• Redis

• MariaDB

• PostgeSQL

• MongoDB

18

Multi Leader

• Failover

• Read & write scaling

19/ Scaling / Replication

Leader

Leader

Write Conflicts

• Two leaders can accept a conflicting write

• We usually resolve them when reading

• Do we have all information we need to resolve a conflict at read
time?

20/ Scaling / Replication

Examples

• CouchDB

• Percona Server for MySQL

• ArangoDB

21

Leaderless

• Failover

• Read & write scaling

22/ Scaling / Replication

Quorum

• Clients write to multiple nodes at once

• When more than n nodes acknowledged the write, the write is
successful (n is the write quorum)

• When we read, we read from m nodes (m is the read quorum)

23/ Scaling / Replication

Examples

• riak

• Cassandra

• aerospike

24

Sharding

25/ Scaling / Sharding

Sharding
=

Each node only has part of the data

26/ Scaling / Sharding

Sharding by Primary Key

27/ Scaling / Sharding

A-G H-L M-Z

Sharding by
Hashed Primary Key

• Equal distribution to all shards

28/ Scaling / Sharding

Combining Replication & Sharding

29/ Scaling

Re
pl
ic
as

Shards

Shard A
Shard A
Shard A
Shard A

Shard A
Shard A
Shard A
Shard B

Shard A
Shard A
Shard A
Shard C

30

Part 3:
Trouble

31/ Trouble

SHARED
MUTABLE
STATE
IS EVIL

Clocks are
monotonic & synchronized

32/ Trouble

Clocks are
monotonic & synchronized

32/ Trouble

leap seconds

Clocks are
monotonic & synchronized

32/ Trouble

leap seconds

NTP fails

Clocks are
monotonic & synchronized

32/ Trouble

leap seconds

NTP fails

NTP Sync ⇒ Going back in time

Clocks are
monotonic & synchronized

32/ Trouble

leap seconds

NTP fails

NTP Sync ⇒ Going back in time

NTP is an estimation

Clocks are
monotonic & synchronized

32/ Trouble

leap seconds

NTP fails

NTP Sync ⇒ Going back in time

NTP is an estimation

33/ Trouble

DO NOT USE
WALL CLOCKS
FOR ORDERING

Solution:
Vector Clocks

34/ Trouble

The network is reliable

35/ Trouble

36/ Trouble

Problem IP TCP

Reordered Messages ✘ ✔
(Sequence Numbers)

Lost Messages ✘ ✔
(ack)

Duplicated Messages ✘ ✔
(Sequence Numbers)

Delayed Messages ✘ ✘

The network is reliable

37/ Trouble

The network is reliable

37/ Trouble

The network is reliable

37/ Trouble

packages can take a
looooong time

The network is reliable

37/ Trouble

packages can take a
looooong time

the network can fail
partially/entirely

38/ Trouble

Node Failure

Node Recovery

Crash Amnesia…
??

Availability

39/ Trouble

Availability vs. Consistency

40/ Trouble

41/ Trouble

YOUR
NODES
WILL
FAIL

YOUR
NETWORK

WILL
FAIL

42/ Trouble

A B

C D

42/ Trouble

A B

C D

You have two choices

• Stop taking requests

• Not available, but consistent

43/ Trouble

• Continue taking requests

• Available, but not consistent

CP AP

A B

C D

A B

C D

a=1a=2
Sorry we’re
CLOSED

44/ Trouble

not possible
with

total availability

possible
with

total or sticky
availability

strictly serializable

serializable linearizable

sequentialrepeatable read SI

causal

PRAM

RL

RV

Highly Available Transactions: Virtues and Limitations – Bailis et al.

http://Highly%20Available%20Transactions:%20Virtues%20and%20Limitations

Wrap-Up

45

Remember!

• Nodes will fail

• The network will fail

• Clocks aren’t reliable

46/ Wrap Up

What are your requirements?

47/ Wrap Up

Scaling Reads Scaling Writes

Geographical
Distribution

Big
Data Sets

Failure
Resistance

Inconsistency

Thank you!

• @moonbeamlabs on Twitter

• Photo Credit

• Slide 5: Shoot N' Design on Unsplash

• Slide 11: Andy Hall on Unsplash

• Slide 30: Hermes Rivera on Unsplash

48

https://unsplash.com/photos/cfR-V1QuEKw?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/horizon?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/kQNIHv9fxlc?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/distribute?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/photos/R1_ibA4oXiI?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/search/photos/trash?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

