
Don’t Fly Blind
Logging and Metrics in Microservice Architectures

Tammo van Lessen | tammo.vanlessen@innoq.com

Alexander Heusingfeld | alexander.heusingfeld@innoq.com

#microxchg #logging #metricswww.innoQ.com

http://www.innoQ.com

The Talk Today

> Motivation

> Distributed Logging

> Distributed Metrics

> Conclusions

Breaking the monolith

If you review a
monolithic application …

© innoQ/Roman Stranghöner

…and look into the
black box…

© innoQ/Roman Stranghöner

…you’ll find it consists
of multiple Bounded
Contexts.

© innoQ/Roman Stranghöner

If you’re able to treat every
Bounded Context as a
separately deployable,
independent component…

© innoQ/Roman Stranghöner

… you’ll have a self-contained
system - which can lead to a  
microservice architecture

Introduction to self-contained systems: https://www.innoq.com/de/links/self-contained-systems-infodeck/

https://www.innoq.com/de/links/self-contained-systems-infodeck/

A Broken Monolith

Architectural Decisions

> Domain Architecture 
 

> Macro Architecture 
 

> Micro Architecture

Logging in a Distributed
Environment

Requirements

> Apply a well-thought logging concept

> Aggregate logs in different formats from
different systems

> Search & Correlate

> Visualize & Drill-down

> Alerting

Use Thread Contexts / MDCs

%-5p: [%X{loginId}] %m%n

ThreadContext.put("loginId", login);
logger.error("Something bad happened!");
ThreadContext.clear();

+ Layout:

ERROR: [John Doe] Something bad happened!
Log:

Use Thread Contexts / MDCs

{
 "@version" => "1",
 "@timestamp" => "2014-04-29T14:21:14.988-07:00",
 "logger" => "com.example.LogStashExampleTest",
 "level" => "ERROR",
 "thread" => "Test worker",
 "message" => "Something bad happened!",
 "Properties" => {
 "loginId" => "John Doe"
 }
}

ThreadContext.put("loginId", login);
logger.error("Something bad happened!");
ThreadContext.clear();

+ JSON Layout

Log:

Define QoS for Log Messages
> Log messages may have different QoS

> Use Markers and Filters to enable fine-
grained routing of messages to dedicated
appenders

> Use Filters and Lookups to dynamically
configure logging

https://www.innoq.com/en/blog/per-request-debugging-with-log4j2/

https://www.innoq.com/en/blog/per-request-debugging-with-log4j2/

Requirements

> Apply a well-thought logging concept

> Aggregate logs in different formats from
different systems

> Search & Correlate

> Visualize & Drill-down

> Alerting

Logstash Architecture

Default ELK-Stack Setup

Shipper /  
Logstash Forwarder

Storage & Search Visualize

https://www.elastic.co/products/logstash

Push

https://www.elastic.co/products/logstash

Distributed Logstash Setup

Shipper /  
Logstash Forwarder

Broker Indexer Storage & Search Visualize

https://www.elastic.co/products/logstash

Push Pull

https://www.elastic.co/products/logstash

Requirements

> Apply a well-thought logging concept

> Aggregate logs in different formats from
different systems

> Search & Correlate

> Visualize & Drill-down

> Alerting

Requirements

> Apply a well-thought logging concept

> Aggregate logs in different formats from
different systems

> Search & Correlate

> Visualize & Drill-down

> Alerting

Filter Log Stream For Alerts
input {
 …
}
filter {
 if [message] =~ /.*(CRITICAL|FATAL|ERROR|EXCEPTION).*/ {
 mutate { add_tag => "alarm" }
 }

 if [message] =~ /.*(?i)ignoreme.*/ {
 mutate { remove_tag => "alarm" }
 }
}
output {
 if [type] == "production" {
 if "alarm" in [tags] {
 pagerduty {
 description => "%{host} - %{log_level}: %{log_message}"
 details => {
 "timestamp" => "%{@timestamp}"
 "host" => "%{host}"
 "log_level" => "%{log_level}"
 "message" => "%{log_message}"
 "path" => "%{path}"
 }
 …
 }
 }
 }
}

Logging is cool…
And I can use it to collect metrics as well, right?

© http://www.flickr.com/photos/dkeats/3128150892/

http://www.flickr.com/photos/dkeats/3128150892/

Logging is cool…
And I can use it to collect metrics as well, right?

Watch
out!

© http://www.flickr.com/photos/dkeats/3128150892/

http://www.flickr.com/photos/dkeats/3128150892/

Metrics

Kinds of Metrics

Kinds of Metrics

> Business Metrics

Kinds of Metrics

> Business Metrics

> Application Metrics

Kinds of Metrics

> Business Metrics

> Application Metrics

> System Metrics

Why should a developer care?

Types of Metrics

Gauges
A gauge is an instrument that measures
a value.

©
 h

ttp
s:

//
se

cu
re

.fl
ic

kr
.c

om
/p

ho
to

s/
pr

ofi
le

re
ha

b/
49

74
58

96
04

/

https://secure.flickr.com/photos/profilerehab/4974589604/

Counters
A counter is a simple incrementing and
decrementing integer.

©
 h

ttp
s:

//
se

cu
re

.fl
ic

kr
.c

om
/p

ho
to

s/
m

w
ic

ha
ry

/2
27

30
99

93
9/

https://secure.flickr.com/photos/mwichary/2273099939/

Meters
A meter measures the rate at which a
set of events occur.

©
 h

ttp
s:

//
w

w
w

.fl
ic

kr
.c

om
/p

ho
to

s/
sp

rin
gfi

el
dh

om
er

/1
24

43
20

89
9

https://www.flickr.com/photos/springfieldhomer/1244320899

Histograms
A histogram measures the distribution
of values.

©
 h

ttp
s:

//
se

cu
re

.fl
ic

kr
.c

om
/p

ho
to

s/
bo

ul
te

r/
39

98
84

23
25

/

https://secure.flickr.com/photos/boulter/3998842325/

Timers
A timer is a histogram over a duration.

©
 h

ttp
s:

//
se

cu
re

.fl
ic

kr
.c

om
/p

ho
to

s/
ps

d/
46

86
98

89
37

/

https://secure.flickr.com/photos/psd/4686988937/

Distributed Metrics Architecture

Measure
Collect &
Sample

Store
Query &
Graph

Anomaly
Detection

Alerting

CEP

Dashboards

Grafana for Technicians

© http://grafana.org/

http://grafana.org/

Grafana for Technicians

© http://grafana.org/

http://grafana.org/

Dashing for Management Dashboards

©
 h

ttp
s:

//
sh

op
ify

.g
ith

ub
.io

/d
as

hi
ng

/

https://shopify.github.io/dashing/

+ producer unaware of target

+ multiple targets possible

+ flexible interval

- might miss short-lived services

- requires service-discovery

P
T

P

Push

+ event-based de-/registration

+ routable event stream

+ producer pushes when ready

- producer aware of target

- packet-loss might be missed

Pull
P

T

P

vs.

Some Recommendations

> Think about what metrics are of importance
for operating your application

> Consider retention policies

> Carefully design your dashboards

> Think about non-standard graph types

Sample architecture

Conclusions

> Create and document concepts for logging and metrics

> Collect & aggregate distributed logs and metrics

> Create dashboards tailored for your audience

> Correlate your data to make conscious decisions

> Don’t create your very own big data problem

Prevent the apocalypse!

Logging shows events.

Metrics show state.

Don't fly blind!

© http://www.flickr.com/photos/pasukaru76/5067879762

http://www.flickr.com/photos/pasukaru76/5067879762

Tammo van Lessen | @taval
tammo.vanlessen@innoq.com

Alexander Heusingfeld | @goldstift
alexander.heusingfeld@innoq.com

Thank you!
Questions?

Comments?

innoQ Deutschland GmbH

Krischerstr. 100
D-40789 Monheim am Rhein
Germany
Phone: +49 2173 3366-0

innoQ Schweiz GmbH

Gewerbestr. 11
CH-6330 Cham
Switzerland
Phone: +41 41 743 0116www.innoq.com

Ohlauer Straße 43
D-10999 Berlin
Germany
Phone: +49 2173 3366-0

Ludwigstr. 180 E
D-63067 Offenbach
Germany
Phone: +49 2173 3366-0

Kreuzstr. 16
D-80331 München
Germany
Telefon +49 2173 3366-0

https://www.innoq.com/en/talks/

mailto:alexander.heusingfeld@innoq.com?subject=
http://www.innoq.com

