
INFODECK
Self-Contained

Systems

I N FODECK



A monolith contains 
numerous things inside  
of a single system …



Various Domains



User interface 
Business logic 
Persistence



… as well as a lot of 
modules, components, 
frameworks and libraries.



With all these layers in one 
place, a monolith tends to 
grow.



With all these layers in one 
place, a monolith tends to 
grow.



If you cut a monolithic 
system along its very 
domains …



… and wrap every domain 
in a separate, replaceable 
web application …



… then that application 
can be referred to as a 
self-contained system 
(SCS).



On its outside, an SCS is a 
decentralized unit that is 
communicating with other 
systems via RESTful HTTP 
or lightweight messaging.



Therefore self-contained 
systems can be individually 
developed for different 
platforms.



An SCS contains its own  
user interface, specific  
business logic and  
separate data storage



The user interface consists 
of web technologies that 
are composed according to  
ROCA principles.



Besides a web interface a 
self-contained system can 
provide an optional API.



The business logic part 
only solves problems that 
arise in its core domain. 
This logic is only shared 
with other systems over a 
well defined interface.



The business logic can 
consist of microservices to 
solve domain specific 
problems.



Every SCS brings its own 
data storage and with it 
redundant data depending 
on the context and 
domain.



These redundancies are 
tolerable as long as the 
sovereignty of data by its 
owning system is not 
undermined.



This enables polyglot 
persistence, which means a 
database can be chosen to 
solve a domain specific 
problem rather than to 
fulfill a technical urge.

Neo4J Oracle

CouchDB



Inside of a self-contained 
system a bunch of 
technical decisions can be 
made independently from 
other systems, such as 
programming language, 
frameworks, tooling or 
workflow.



The manageable domain 
specific scope enables the 
development, operation 
and maintenance of an 
SCS by a single team.

Team 1

Team 3Team 2



Self-contained Systems 
should be integrated over 
their web interfaces to 
minimize coupling to other 
systems.



Therefore simple hyperlinks can be used to 
navigate between systems.

System 1 System 2



A redirection can be used to ensure 
navigation works in both directions.

System 1 System 2



Hyperlinks can also support the  
dynamic inclusion of content that is served by 
another application into the web interface of a 

self-contained system.

System 1 System 2



To further minimize 
coupling  
to other systems, 
synchronous remote calls 
inside the business logic 
should be avoided.



Instead remote API calls 
should be handled 
asynchronously to reduce 
dependencies and prevent 
error cascades.



This implies that – 
depending on the desired 
rate of updates – the data 
model’s consistency 
guarantees are relaxed.



An integrated  
system of systems 

like this has many benefits.



Overall resilience is improved through loosely 
coupled, replaceable systems.



Some systems can be individually  
scaled to serve varying demands.



It is not necessary to perform a risky big bang 
release to migrate an outdated, monolithic 

system into a system of systems.

Version 1



It is not necessary to perform a risky big bang 
release to migrate an outdated, monolithic 

system into a system of systems.

Version 2



Instead a migration can happen in small, 
manageable steps which minimize the risk of 

failure and lead to an evolutionary modernization  
of big and complex systems.



Instead a migration can happen in small, 
manageable steps which minimize the risk of 

failure and lead to an evolutionary modernization  
of big and complex systems.



In reality a system of systems consists of 
individually developed software and  

standard products.



A product that fits well in a system of systems 
can be chosen by the following aspects: It has to 
solve a defined set of tasks and provide the same 
integration mechanisms that a self-contained 

system offers.



This ensures that products can be replaced safely 
by other products once their  

lifetime has ended.



This ensures that products can be replaced safely 
by other products once their  

lifetime has ended.



If a product with such integration mechanisms 
can not be found, it should at least be possible to 
extend that product with uniform interfaces that 

integrate well with the rest of the system.



Krischerstr. 100

40789 Monheim am Rhein

Germany

+49 2173 3366-0

Ohlauer Str. 43

10999 Berlin

Germany

+49 2173 3366-0

Ludwigstr. 180E

63067 Offenbach

Germany

+49 2173 3366-0

Kreuzstr. 16

80331 München

Germany

+49 2173 3366-0

Hermannstrasse 13

20095 Hamburg

Germany

+49 2173 3366-0

Gewerbestr. 11

CH-6330 Cham

Switzerland

+41 41 743 0116

innoQ Deutschland GmbH innoQ Schweiz GmbH

www.innoq.com

You can find more interesting content about self-
contained systems, microservices, monoliths, REST or 
ROCA at https://www.innoq.com


If you have questions or feedback please do not hesitate 
to contact us info@innoq.com

https://www.innoq.com/
mailto:info@innoq.com

