CURRICULUM B.Sc. CYBER SECURITY | ny studies, | 180 ECTS Cre | | | | | | | | | | | | | | | | |-------------|---|--|-----------------------------|---|---|---|--------------------------|---|---|----------------------------|---------------------------------|---|--|--|---------------------------------|--| | | Model 1 | : Program | me Start | October | Model | 2: Progran | nme Start | January | Mod | el 3: Progr | amme Sta | rt April | Mod | el 4: Progra | mme Sta | rt July | | Month | Courses | | | | Courses | | | Courses | | | Courses | | | | | | | Oct | Operating
Systems. | | | | | | | | | | | | | | | | | Nov | Computer Networks, | Mathematic | s: Analysis | Requirements
Engineering | | | | | | | | | | | | | | Dec | and Distributed
Systems | | | Engineering | | | | | | | | | | | | | | | | | | | Operating | | | T | | | | | | | | | | Jan | Introduction to | Introduc | tion to | Statistics -
Probability and | Systems,
Computer | Introduction to | Introduction | | | | | | | | | | | Feb | Academic Work | Programming | with Python | Descriptive
Statistics | Networks, and
Distributed | Academic Work | Programmir
with Pytho | | | | | | | | | | | Mar | | | | Statistics | Systems | | | Statistics | | | | | | | | | | Apr | Intercultural and Ethical Decision- Making Mathematics: Linear Algebra | | System Pentesting
Basics | | | atics: Linear System Pentesting
gebra Basics | | Operating
Systems,
Computer
Networks, and
Distributed | Intercultural and
Ethical Decision-
Making | Mathematic
Linear Algeb | | | | | | | | May | | | | | | | | | Systems | | | | | | | | | Jun | | | | | | | | Lecture- | Free Period | | | | | | | | | Jul | Introduction to Data Protection & Cyber Security | Collabora | tive Work | Introduction to the
Internet of Things | Introduction to Da
Protection & Cybe
Security | | ative Work | Introduction to the
Internet of Things | Introduction to D
Protection & Cyb
Security | | ative Work | Introduction to the
Internet of Things | Operating Systems,
Computer
Networks, and
Distributed Systems | Introduction to
Data Protection &
Cyber Security | Collaborativ
Work | Introduction to
the Internet of
Things | | | | | | | | | | | | | | | Distributed Systems | | | | | Sep | | ı | | | | | | Lecture- | ree Period | | | | | | | | | Oct | Introduction to | Introduction to Object-oriented Network Forensics* Programming with Java | | Cloud Computing | Mathematic | Analysis Requirem | | ents Engineering | Mathemati | cs: Analysis | Requirem | nts Engineering | Mathematics: Analysis | | Requirem | ents Engineering | | Dec | Network Forensics* | | | | | | | | | | | | | | | | | Jan | Algorithms, Data | | | | Algorithms, Data | | | | | | | Statistics - | | | | Statistics - | | Feb | Structures, and
Programming | ITL | aw | Host and Software
Forensics* | Structures, and
Programming | IT | Law | Host and Software
Forensics* | Introduction to
Academic Wor | | uction to
ng with Python | Probability and
Descriptive | Introduction to
Academic Work | | ction to
g with Python | Probability and
Descriptive | | Mar | Languages | | | | Languages | | | | | | . , , | Statistics | | - | - 7 | Statistics | | Apr
May | Theoretical Comp. Sciences & Mathematical Logic | es & IT Project Management | | IT Service
Management | Theoretical Comp. Sciences & IT Project Management Mathematical Logic | | IT Service
Management | Theoretical Com
Sciences &
Mathematical Lo | IT Project I | IT Project Management | | Intercultural an
Ethical Decision
Making | Mathema | Mathematics: Linear S
Algebra | | | | Jun | DevSecOps and | | | | DevSecOps and | | | Lecture- | ree Period
DevSecOps an | | | | DevSecOps and | | | | | Jul | Common Software | Cryptog | graphy | Information
Security Standards | Common Softwa | | graphy | Information
Security Standards | Common Softwa | | ography | Information
Security Standards | Common Softwa | | graphy | Information
Security Standards | | Aug | Weaknesses* | | | Weaknes Weaknes | | aknesses | | Weaknesses* | | Security Standards | Weaknesses* | | Security Standards | | | | | Sep
Oct | 1 | | | | | 1 | | Lecture | ice i enou | | | | | 1 | | | | Nov
Dec | Artificial A
Intelligence | dvanced Data
Analysis | Elective A
Course a | Elective A
Course b | Introduction to
Network Forensic | | oriented
ng with Java | Cloud Computing | Introduction to
Network Forensi | | oriented
ing with Java | Cloud Computing | Introduction to
Network Forensio | | oriented
ng with Java | Cloud Computing | | Jan
Feb | Project: Data
Analysis | | | Elective B
Course d | Project: Data Elective B
Analysis Course c | | Elective B
Course d | Algorithms, Da
Structures, an
Programming | d n | Law | Host and Software
Forensics* | Algorithms, Dat
Structures, and
Programming | IT Law | | Host and Software
Forensics* | | | Mar | Seminar: Current | E1 | in C | Elective C | Seminar: Curren | | tive C | Elective C | Languages
Seminar: Curre | | tive C | Elective C | Languages
Theoretical Comp | | | IT Consiso | | Mav | - Topics in Computer
Science | Electi
Cour | | Course f | Topics in Comput
Science | Elec | tive C
irse e | Elective C
Course f | Topics in Compu
Science | | itive C
urse e | Course f | Sciences &
Mathematical Log | | fanagement | IT Service
Management | | Jun | Science | - | | | Lience | - | | Lecture- | ree Period | | | | | | | | | Jul | Bachelor Thesis | | | | | | | | Aug | bacnetor I hesis | | | | | | | | | | bachetor thesis | | | | | | | Sep | | | | | | | | Lecture- | ree Period | | | | | | | | | Oct | | | | | Artificial | Advanced Data | Elective A | Elective A | Artificial | Advanced Data | Elective A | Elective A | Artificial | Advanced Data | Elective A | Elective A | | Nov | | | | | Intelligence | Analysis | Course a | Course b | Intelligence | Analysis | Course a | Course b | Intelligence | Analysis | Course a | Course b | | Dec | | | | | | | | | | | | | | | | | | Jan
Feb | | | | | | | | | Project: Data | | tive B | Elective B | Project: Data | | tive B | Elective B | | Mar | | | | | | | | | Analysis | Cor | urse c | Course d | Analysis | Cou | irse c | Course d | | Apr | | | | | | | | | | | | | Seminar: Curren | | tive C | Elective C | | | | | | | | | | | | | | | Topics in Comput
Science | Cou | irse e | Course f | ₫ visa regulations (not value for thick students). Each block concludes with a two-week exam perparation phase. You can defer those exams to a later date that you do not want to take during this period. This way, you exam phases are always spread evenly over the year. Esceptions to this are courses that count as admission requirements for other courses. Attention: Attendance times may vary slightly depending on public holidays and the federal state holidays the campus is located in. If you are studying Model 2, 3 or 4 you will have to start your Bachelor Thesis before completing your final courses. | Elective A~ | Elective B∼ | Elective C~ | | | | |---|---|---|---|--|--| | IT Security Consulting a) Technical and Operational IT Security Concepts b) Project: Configuration and Application of SIEM Systems* | Business Intelligence
c) Business Intelligence I
d) Business Intelligence II | IT Security Consulting e) Technical and Operational IT Security Concepts f) Project: Configuration and Application of SIEM Systems* | Future Threats e) Threat Modeling" f) Project: Threat Modeling" | Smart Factory
e) Smart Factory I
f) Smart Factory II | | | Social Engineering a) Social Engineering and Insider Threats b) Project: Social Engineering* | Future Threats c) Threat Modeling* d) Project: Threat Modeling* | Social Engineering e) Social Engineering and Insider Threats f) Project: Social Engineering* | Cloud Security e) Security Controls in the Cloud* f) Project: Security by Design in the Cloud* | Production Engineering, Automation and Robotics e) Production Engineering f) Automation and Robotics* | | | Host Forensics a) Static and Dynamic Malware Analysis* b) Seminar: Sandbox Interpretation* | Cloud Security c) Security Controls in the Cloud* d) Project: Security by Design in the Cloud* | Host Forensics e) Static and Dynamic Malware Analysis* f) Seminar: Sandbox Interpretation* | Pentesting e) Principles of Ethical Hacking* f) Project: Pentesting* | Mobile Software Engineering e) Mobile Software Engineering I f) Mobile Software Engineering II | | | DevSecOps a) Techniques and methods for agile software development b) Project: Agile DevSecOps Software Engineering* | Pentesting c) Principles of Ethical Hacking* d) Project: Pentesting* | DevSecOps e) Techniques and methods for agile software developms f) Project: Agile DevSecOps Software Engineering | Industrial Systems Technology e) Software Engineering Principles f) Internet of Things Security* | Microsoft ERP - Dynamics 365 Business Central - Functional Consultant
e) Project: Dynamics 365 Business Central - Financial Company
f) Project: Dynamics 365 Business Central - Business Processes
with Focus on Sales and Distribution | | | Security in Complex Networks a) IT Architecture Management b) Project: IT Security Architecture* | Industrial Systems Technology c) Software Engineering Principles d) Internet of Things Security* | Security in Complex Networks e) IT Architecture Management f) Project: IT Security Architecture* | Cyber Threat Intelligence e) Attack Models and Threat Feeds f) Project: Defense against APTs* | SAP - SAP S/4HAMA Business Process Integration - Application Associate e) Project: SAP S/4HAMA - Financial Company Setup incl. Human Capital Management f) Project: SAP S/4HAMA - Business Processes | | | Network Forensics a) Protocols, Log- and Dataflow-Analysis in Depth* b) Seminar: Threat Hunting, Analysis and Incident Response* | Cyber Threat Intelligence
c) Attack Models and Threat Feeds
d) Project: Defense against APTs* | Network Forensics e) Protocols, Log- and Dataflow-Analysis in Depth* f) Seminar: Threat Hunting, Analysis and Incident Respon | Mobile Threats e) Wireless and Telecom Security* f) Software Architectures of Mobile Devices | Career Development e) Personal Career Plan f) Personal Elevator Pitch | | | | Mobile Threats c) Wireless and Telecom Security* d) Software Architectures of Mobile Devices | Business Intelligence e) Business Intelligence I f) Business Intelligence II | Supply Chain Management
e) Supply Chain Management I
f) Supply Chain Management III | Studium Generale
Internship | | | | | a) software Activectures of Hoose Devices | i) business intelligence ii | i) Supply Chain Ma | | |--|----------------|--|-----------------------------|--|--| | | | | | | | | Course Information | | | | | | | Module | Course Code | Course | ECTS Credits | Type of Exam | | | Operating Systems, Computer Networks, and Distributed Systems* | DLBIBRVS01_E | Operating Systems, Computer Networks, and Distributed Systems* | 5 | Exam | | | Mathematics: Analysis | DLBDSMFC01 | Mathematics: Analysis | 5 | Exam | | | Requirements Engineering | DLBCSRE01 | Requirements Engineering | 5 | Exam | | | Introduction to Academic Work | DLBCSIAW01 | Introduction to Academic Work | 5 | Basic Workbook | | | Introduction to Programming with Python | DLBDSIPWP01 | Introduction to Programming with Python | 5 | Exam | | | Statistics - Probability and Descriptive Statistics | DLBDSSPDS01-01 | Statistics - Probability and Descriptive Statistics | 5 | Exam | | | Intercultural and Ethical Decision-Making | DLBCSIDM01 | Intercultural and Ethical Decision-Making | 5 | Written Assessment: Case Study | | | Mathematics: Linear Algebra | DLBDSMFLA01 | Mathematics: Linear Algebra | 5 | Exam | | | System Pentesting Basics | DLBCSESPB01_E | System Pentesting Basics | 5 | Exam | | | Introduction to Data Protection and Cyber Security | DLBCSIDPITS01 | Introduction to Data Protection and Cyber Security | 5 | Exam | | | Collaborative Work | DLBCSCW01 | Collaborative Work | 5 | Oral Assignment | | | Introduction to the Internet of Things | DLBINGEIT01_E | Introduction to the Internet of Things | 5 | Exam | | | Introduction to Network Forensics* | DLBCSEINF01_E | Introduction to Network Forensics* | 5 | Exam | | | Object-oriented Programming with Java | DLBCSOOPJ01 | Object-oriented Programming with Java | 5 | Exam | | | Cloud Computing | DLBDSCC01 | Cloud Computing | 5 | Exam | | | Algorithms, Data Structures, and Programming Languages | DLBCSL01-01 | Algorithms, Data Structures, and Programming Languages | 5 | Exam/Advanced Workbook | | | IT Law | DLBCSIITL01 | IT Law | 5 | Written Assessment: Case Study | | | Host and Software Forensics* | DLBCSEHSF01_E | Host and Software Forensics* | 5 | Exam | | | Theoretical Computer Sciences and Mathematical Logic | DLBCSTCSML01 | Theoretical Computer Sciences and Mathematical Logic | 5 | Exam | | | IT Project Management | DLBCSEITPAM01 | IT Project Management | 5 | Exam | | | IT Service Management | DLBCSITSM01-02 | IT Service Management | 5 | Exam | | | DevSecOps and Common Software Weaknesses* | DLBCSEDCSW01_E | DevSecOps and Common Software Weaknesses* | 5 | Written Assessment: Written Assignment | | | Cryptography | DLBCSCT01-01 | Cryptography | 5 | Written Assessment: Case Study | | | Information Security Standards | DLBCSEISS01_E | Information Security Standards | 5 | Written Assessment: Case Study | | | Artificial Intelligence | DLBDSEAIS01 | Artificial Intelligence | 5 | Exam | | | Advanced Data Analysis | DLBDSEDA01 | Advanced Data Analysis | 5 | Exam | | | Project: Data Analysis | DLBDSEDA02 | Project: Data Analysis | 5 | Portfolio | | | Seminar: Current Topics in Computer Science | DLBCSSCTCS01 | Seminar: Current Topics in Computer Science | 5 | Written Assessment: Research Essay | | | ELECTIVE A- | | e.g. Security in Complex Networks | 10 | | | | ELECTIVE B- | | e.g. Cloud Security | 10 | | | | ELECTIVE C- | | e.g. Smart Factory | 10 | | | | Bachelor Thesis | | Bachelor Thesis | 9 | BachelorThesis | | | | | Thesis Defense | 1 | Presentation: Colloquium | | ~ Electives: Choose one module with two courses from the Elective A, one module from the Elective B and one module from the Elective C. Every elective module can only be chosen once. * This course comes with admissions requirements. Please consult the module handbook for more information. Note: Elective modules where the minimum number of participants is not reached will only be offered online (distance learning). However, IU ensures that there are always electives on campus.