3 Phase AC Power Sources

With a unique feature set and competitive price point，our 400XAC Series provides $3 \emptyset$ AC power in a single box．Our exclusive SmartCONFIG feature allows you to switch from $1 \varnothing$ to $3 \varnothing$ or DC output with the push of a button．This maximizes your investment while giving you the AC power that your application needs．The 400XAC Series consists of two models：the 430XAC is a $3 \mathrm{kVA} A C$ power source and the 460XAC is a 6 kVA AC power source．

Features

－Exclusive SmartCONFIG feature allows for push button switch of $1 \varnothing, 3 \varnothing$ ，or DC output
－Single phase input power requirements
－ 50 built－in memory locations with 9 test steps
－Built－in power factor correction（PFC）
－Advanced metering circuits monitor voltage，current， peak current，power，apparent power，reactive power， power factor，and crest factor
－External voltage sensing for accurate metering
－Transient feature simulates voltage variations， brownouts，and transient voltage conditions
－Programmable starting and ending angle of the output sine wave
－Rack mount handle kit included

Standard

－USB／RS－232 Interface
Options
－GPIB Interface
－Ethernet Interface

Applicable Industries

Aerospace

Appliance

Laboratory

DRIVER AVAILABLE

INPUT			430×AC	460XAC
Phase			$1 \varnothing$	$1 \varnothing$ or $3 \varnothing$
Voltage			200-240 VAC	$1 \varnothing: 200 \sim 240 \mathrm{VAC} \pm 10 \%$ 3Ø3W: 200~240 VAC $\pm 10 \%$ $3 \emptyset 4 \mathrm{~W}$: $346 \sim 416 \mathrm{VAC} \pm 10 \%$
Frequency			47-63 Hz	
AC OUTPUT				
Power Rating	1ø2W		3000 VA	6000 VA
	1ø3W		Total 2000 VA (1000 VA per phase)	Total 4000 VA (2000 VA per phase)
	3Ø4W		Total 3000 VA (1000 VA per phase)	Total 6000 VA (2000 VA per phase)
	DC		3000 VA	6000 VA
Max. Current (RMS)	1Ø2W	5-150 V	27.6 A @ $\leq 110 \mathrm{~V}$	55.2 A @ $\leq 110 \mathrm{~V}$
		$5-300 \mathrm{~V}$	13.8 A @ $\leq 220 \mathrm{~V}$	27.6 A @ $\leq 220 \mathrm{~V}$
	1Ø3W	5-150 V	$9.2 \mathrm{~A} @ \leq 110 \mathrm{~V}$ for per phase	$18.4 \mathrm{~A} @ \leq 110 \mathrm{~V}$ for per phase
		5-300 V	4.6 A @ $\leq 220 \mathrm{~V}$ for per phase	9.2 A @ $\leq 220 \mathrm{~V}$ for per phase
	3 34W	5-150 V	$9.2 \mathrm{~A} @ \leq 110 \mathrm{~V}$ for per phase	$18.4 \mathrm{~A} @ \leq 110 \mathrm{~V}$ for per phase
		5-300 V	4.6 A @ $\leq 220 \mathrm{~V}$ for per phase	9.2 A @ $\leq 220 \mathrm{~V}$ for per phase
Inrush Current (peak)	1Ø2W	5-150 V	110.4 A	220.8 A
		5-300 V	55.2 A	110.4 A
	1Ø3W	$5-150 \mathrm{~V}$	36.8 A for per phase	73.6 A for per phase
		5-300 V	18.4 A for per phase	36.8 A for per phase
	$3 \varnothing 4 \mathrm{~W}$	5-150 V	36.8 A for per phase	73.6 A for per phase
		5-300 V	18.4 A for per phase	36.8 A for per phase
Phase			$1 \varnothing 2 \mathrm{~W}, 1 \varnothing 3 \mathrm{~W}, 3 \varnothing 4 \mathrm{~W}$, provided option	
THD (Total Harmonic Distortion)			$<0.5 \%$ (Resistive Load) at $40.0 \sim 70.0 \mathrm{~Hz}$ and output voltage within the 80~140 VAC at Low Range or the 160~280 VAC at High Range. oad) at $70.1 \sim 1000 \mathrm{~Hz}$ and output voltage within the $80 \sim 140$ VAC at Low Range or the $160 \sim 280$ VAC at High Range.	
Crest Factor			≥ 3	
Line Regulation			$\pm 0.1 \mathrm{~V}$	
Load Regulation (Hardware)			$\pm(1 \%$ of output $+1 \mathrm{~V})$ at Resistive Load, $<400 \mu \mathrm{~S}$ response time	
Load Regulation (Software)			$\pm 0.2 \mathrm{~V},<1 \mathrm{~S}$ response time	
DC offset			$\leq \pm 5 \mathrm{mV}$	
Poly-phase mode (364W) for per phase output setting			430XAC	460XAC
Voltage	Range		5.0~300 VAC (phase), 8.6~520 VAC (line), 150/300 V Auto Range	
	Accuracy		$\pm(0.2 \%$ of setting + 3 counts)	
Frequency	Range		$40 \sim 1000 \mathrm{~Hz}$ Full Range Adjust	
	Accuracy		$\pm 0.03 \%$ of setting	
 Ending Phase Angle	Range		0~359 ${ }^{\circ}$	
	Accuracy		$\pm 1^{\circ}(45 \sim 65 \mathrm{HZ})$	
Current Hi Limit	$5 \mathrm{~V} \sim 150 \mathrm{~V}$		0.01~9.20 A	0.01~18.40 A
	5V $\sim 300 \mathrm{~V}$		$0.01 \sim 4.60 \mathrm{~A}$	$0.01 \sim 9.20 \mathrm{~A}$
	Accuracy		\pm (2.0\% of setting +2 counts)	
OC Fold Back Response Time			$<1.4 \mathrm{~s}$	
Ramp-Up Timer (second)	Range		$0.0 \sim 999.9 \mathrm{~s}$	
	Accuracy		$\pm(0.1 \%+0.05 \mathrm{sec})$	
Ramp-Down Timer (second)	Range		$0.0 \sim 999.9 \mathrm{~s}$	
	Accuracy		$\pm(0.1 \%+0.05 \mathrm{sec})$	
Delay Timer	Range		$\begin{gathered} 1 \mathrm{~s} \sim 999.9 \mathrm{~s} \\ 0.1 \mathrm{~m} \sim 999.9 \mathrm{~min} \\ 0.1 \mathrm{~h} \sim 999.9 \mathrm{~h} \end{gathered}$	
	Accuracy		\pm (0.1\% + 0.1 sec)	
Dwell Timer	Range		$0,1 \mathrm{~s} 999.9 \mathrm{~h}$ (0=continuous)	
	Accuracy		$\pm(0.1 \%+0.1 \mathrm{sec})$	
Poly-phase mode (304W) for per phase measurement			430XAC	460XAC
Frequency	Range		$0.0-1000 \mathrm{~Hz}$	
	Resolution		0.1 Hz	
	Accuracy		$\pm 0.1 \mathrm{~Hz}(501-1000 \mathrm{~Hz}$ Accuracy $\pm 0.2 \mathrm{~Hz}$)	
Voltage	Range		$0.0-420.0 \mathrm{~V}$	
	Resolution		0.1 V	
	Accuracy		\pm (0.2\% of reading + 3 counts)	

Specifications - 400XAC Series

Poly-phase mode (3Ø4W) for
per phase measurement

Range	L
	H
Accuracy	

Current (RMS)

Current (peak)		H
	Accuracy	
	Range	
		L
	Accuracy	

H

Power

I measurement

Frequency	Range	
	Accuracy	
Voltage	Range	
	Calculated Formula	
Current (RMS)	Range	L
		H
	Calculated Formula	L
		H
Power	Range	L
		H
	Accuracy	L
		H
Power Factor	Range	
	Resolution	
	Accuracy	
Power Apparent (VA)	Range	L
		H
	Calculated Formula	L
		H
Power Reactive (Q)	Range	L
		H
	Accuracy	L
		H

Single-phase mode (1ø2W)
Setting
Voltage

430XAC

460XAC

Voltage	Range
	Resolution
	Accuracy

Specifications - 400XAC Series

Single-phase mode (1б2W)

Setting

Frequency	Range
	Resolution
	Accuracy
 Ending Phase Angle	Range
	Resolution
Current Limit	Accuracy
	$5 \mathrm{~V} \sim 150 \mathrm{~V}$
	5V $\sim 300 \mathrm{~V}$
	Accuracy

OC Fold Back Response Time
Single-phase mode (102W)
measurement

Frequency	Range
	Accuracy
Current (RMS)	Range
	Range
	Accuracy
Current (peak)	Range
Power	Accuracy
Power Factor	Range
Power	Accuracy
Powaracy	
Apparent	Range
	Accuracy
Power	Range
Reactive (Q)	Accuracy
Crest Factor	Range
	Accuracy

Poly-phase mode (103W) for
per phase output setting

\section*{| Voltage | Range |
| :--- | :--- |
| | Accuracy |
| Frequency | Range |
| | Accuracy |
| $\begin{array}{l}\text { Starting \& } \\ \text { Ending Phase } \\ \text { Angle }\end{array}$ | Range |
| Current RI Limit | $5 \mathrm{~V} \sim 150 \mathrm{~V}$ |
| | $5 \mathrm{~V} \sim 300 \mathrm{~V}$ |
| | Accuracy |}

OC Fold Back Response Time

Poly-phase mode (103W) for per phase measurement

Frequency	Range	
	Accuracy	
Voltage	Range	
	Rccuracy	
	Range	L
		H
Current (RMS)		L
	Accuracy	

430XAC
460XAC
40~1000 Hz Full Range Adjust
0.1 Hz at $40.0 \sim 99.9 \mathrm{~Hz}, 1 \mathrm{~Hz}$ at $100 \sim 1000 \mathrm{~Hz}$
$\pm 0.03 \%$ of setting

0~359 ${ }^{\circ}$
1°

	$\pm 1^{\circ}(45 \sim 65 \mathrm{HZ})$		
$0.01 \sim 27.60 \mathrm{~A}$			$0.01 \sim 55.20 \mathrm{~A}$
$0.01 \sim 13.80 \mathrm{~A}$			$0.01 \sim 27.60 \mathrm{~A}$
	$\pm(2.0 \%$ of setting + 2 counts $)$		
	$<1.4 \mathrm{~s}$		

430XAC
460XAC
$0.0 \sim 1000 \mathrm{~Hz}$
$\pm 0.1 \mathrm{~Hz}(501 \sim 1000 \mathrm{~Hz}$ Accuracy $\pm 0.2 \mathrm{~Hz})$
$0.0 \sim 420.0 \mathrm{~V}$
$\pm(0.2 \%$ of reading +3 counts $)$
$0.05 \mathrm{~A} \sim 39.00 \mathrm{~A}$
$\pm(1 \%$ of reading +5 counts) at $40.0 \sim 500 \mathrm{~Hz}$

0.05 A~78.00

$\pm(1 \%$ of reading +5 counts) at $501 \sim 1000 \mathrm{~Hz}, \pm(1 \%$ of reading +5 counts $)$ at $501 \sim 1000 \mathrm{~Hz}$, CF <1.5 and Current (peak) $\leq 82.8 \mathrm{~A}$

$$
\mathrm{CF}<1.5 \text { and Current (peak) } \leq 165.6 \mathrm{~A}
$$

0.0 A~114.0 A
0.0 A~228.0 A
\pm (1\% of reading +5 counts) at $40.0 \sim 70.0 \mathrm{~Hz}$
\pm (1.5% of reading +10 counts) at $70.1 \sim 500 \mathrm{~Hz}$
$\pm(1.5 \%$ of reading +10 counts $)$ at $501 \sim 1000 \mathrm{~Hz}$ and $\mathrm{CF}<1.5$
0 W~3900 W
0 W~7800 W
\pm (2% of reading +5 counts) at $40.0 \sim 500 \mathrm{~Hz}$ and $\mathrm{PF} \geq 0.2$
\pm (2% of reading +15 counts) at $501 \sim 1000 \mathrm{~Hz}$ and PF ≥ 0.5
0-1.000
W / VA, Calculated and displayed to three significant digits
0 VA~3900 VA
0 VA~7800 VA

VAR~7800 VAR
0 VAR~3900 VAR
V $\times \mathrm{A}$, Calculated value

$\mathrm{V} \times \mathrm{A}$, Calculated value	
$\sqrt{(\mathrm{VA})^{2}-(\mathrm{W})^{2}}$, Calculated value	
0 VAR~7800 VAR	

Ap / A, Calculated and displayed to two significant digits
430XAC 460 XAC

$\pm 0.1 \mathrm{~Hz}(501-1000 \mathrm{~Hz}$ Accuracy $\pm 0.2 \mathrm{~Hz})$ $0.0-420.0 \mathrm{~V}$
\pm (0.2% of reading +3 counts)
$0.005 \mathrm{~A} \sim 1.200 \mathrm{~A}$
$0.005 \mathrm{~A} \sim 2.400 \mathrm{~A}$
1.00 A~13.00 A
$\pm(1 \%$ of reading +5 counts) at $40.0-500 \mathrm{~Hz}$
\pm (1% of reading +5 counts) at $501-1000 \mathrm{~Hz}$,
CF <1.5 and Current (peak) $\leq 3.6 \mathrm{~A}$
$\pm(1 \%$ of reading +5 counts $)$ at $40.0-500 \mathrm{~Hz}$
\pm (1% of reading +5 counts) at $501-1000 \mathrm{~Hz}$,
CF <1.5 and Current (peak) $\leq 27.6 \mathrm{~A}$

Specifications - 400XAC Series

DC MEASUREMENT		430XAC	460XAC
Voltage	Range	0.0-420.0 V	
	Accuracy	\pm (0.2% of setting +5 counts)	
Current	Range	0.05 A~19.50 A	$0.05 \mathrm{~A} \sim 39.00 \mathrm{~A}$
	Accuracy	\pm (1% of reading +5 counts)	
Power	Range	$0 \mathrm{~W} \sim 3900 \mathrm{~W}$	$0 \mathrm{~W} \sim 7800 \mathrm{~W}$
	Accuracy	\pm (2% of reading +5 counts)	
PROTECTION			
Software OCP		Over Current 110\% of full rated current >1 second	
Output Short Shut Down Speed		<1 second	
Software OPP		When over Power $105 \sim 110 \%$ of full power >5 second. When over Power $>110 \%$ of full power <1 second.	
Software OTP		Temperature over 95 degree C on the power amp and PFC heatsink	Temperature over 120 degree C and PFC heatsin
Software OVP	L	When output frequency $<100 \mathrm{~Hz}$, maximum voltage deviation +5 V When output frequency $101-500 \mathrm{~Hz}$, maximum voltage deviation +15 V When output frequency $501-1000 \mathrm{~Hz}$, maximum voltage deviation +20 V	
	H	When output frequency $<100 \mathrm{~Hz}$, maximum voltage deviation +10 V When output frequency $101-500 \mathrm{~Hz}$, maximum voltage deviation +30 V When output frequency $501-1000 \mathrm{~Hz}$, maximum voltage deviation +40 V	
Software LVP	L	When output frequency $<100 \mathrm{~Hz}$, maximum voltage deviation $-5 \mathrm{~V}>0.5$ second When output frequency $101-500 \mathrm{~Hz}$, maximum voltage deviation $-15 \mathrm{~V}>0.5$ second When output frequency $501-1000 \mathrm{~Hz}$, maximum voltage deviation $-20 \mathrm{~V}>0.5$ second	
	H	When output frequency $<100 \mathrm{~Hz}$, maximum voltage deviation $-10 \mathrm{~V}>0.5$ second When output frequency $101-500 \mathrm{~Hz}$, maximum voltage deviation $-30 \mathrm{~V}>0.5$ second When output frequency $501-1000 \mathrm{~Hz}$, maximum voltage deviation $-40 \mathrm{~V}>0.5$ second	
Reverse Current Protection (RCP)		Over 75W	
GENERAL			
Transient (only for $40 \sim 70 \mathrm{~Hz}$)		Trans-Volt 0.0-300.0 V Resolution 0.1 V Trans-Site $0^{\circ} \sim 359^{\circ}$ Resolution 1° Trans-Time $0.5-999.9 \mathrm{mS}$ Resolution 0.1 mS Trans-Cycle 0-9999, 0-Constant	
Operation Key Feature		Soft key, Numeric key, Rotary Knob	
Remote Input Signal		Test, Reset, Interlock, Recall program memory 1 through 7	
Remote Output Signal		Pass, Fail, Test-in Process	
Key Lock		Yes, Password Driven	
Memory		50 memories, 9 steps/memory	
Ext Trigger		START / END / BOTH / OFF in the Program mode, Output Signal 5 V , BNC type	
Alarm Volume Setting		Range: 0-9;0 OFF, 1 is softest volume, 9 is loudest volume.	
Graphic Display		240×64 dot resolution Monographic LCD/Contrast 9 Levels 1-9	
PFC		PF ≥ 0.97 at Full load	
Efficiency		$\geq 78 \%$ (at Full load)	
Auto Loop cycle		$0=$ Continuous, OFF, 2~9999	
Over Current Fold Back		On/Off, Setting On when output current over setting Hi-A value it will fold back output voltage to keep constant output current is setting Hi -A value, Response time <1400ms	
Safety Agency		CE Listed	
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)		$430 \times 400.5 \times 500 \mathrm{~mm}$	
		$16.93 \times 15.77 \times 19.69$ in	
Net Weight		$105.8 \mathrm{lbs}(48 \mathrm{~kg}$)	$125.6 \mathrm{lbs}(57 \mathrm{~kg}$)
Operation Environment		0-40 $/ 20-80 \% \mathrm{RH}$	

Specifications subject to change

Why We Use Counts

APT publishes some specifications using "counts" which allows us to provide a better indication of the tester's capabilities across measurement ranges. A count refers to the lowest resolution of the display for a given measurement range. For example, if the resolution for voltage is 1 V then 2 counts $=2 \mathrm{~V}$.

