Make Life Easy

# **Communication Manual**

## **Closed-Loop Stepper System**

## **AiC-CL Series**

MMD-AiC-CLC1-V1.0-2002KR

Thank you for purchasing an Autonics product. This manual contains information about the product and its proper use, and should be kept in a place where it will be easy to access.

www.autonics.com



## Preface

Thank you for purchasing an Autonics product.

Please familiarize yourself with the information contained in the Safety Considerations section before using this product.

This manual contains information about the product and its proper use, and should be kept in a place where it will be easy to access

## **Communication Manual Guide**

- Please familiarize yourself with the information in this manual before using the product.
- This manual provides detailed information on the product's features. It does not offer any guarantee concerning matters beyond the scope of this manual.
- This manual may not be edited or reproduced in either part or whole without permission.
- This manual is not provided as part of the product package.
   Visit our website (www.autonics.com) to download a copy.
- The manual's content may vary depending on changes to the product's software and other unforeseen developments within Autonics, and is subject to change without prior notice.
   Upgrade notice is provided through out website.
- We contrived to describe this manual more easily and correctly. However, if there are any corrections or questions, please notify us these on our website.

## **Communication Manual Symbols**

| Symbol    | Description                                                                  |
|-----------|------------------------------------------------------------------------------|
| Note      | Supplementary information for a particular feature.                          |
| Å Warning | Failure to follow instructions can result in serious injury or death.        |
| A Caution | Failure to follow instructions can lead to a minor injury or product damage. |
| Ex.       | An example of the concerned feature's use.                                   |
| *1        | Annotation mark                                                              |

## **Safety Considerations**

- Following these safety precautions will ensure the safe and proper use of the product and help prevent accidents, as well as minimizing possible hazards.
- Safety precautions are categorized as Warnings and Cautions, as defined below:

| 🛕 Warning | Warning | Failure to follow these instructions may result in serious injury or death. |
|-----------|---------|-----------------------------------------------------------------------------|
|           | Caution | Failure to follow these instructions may result in                          |

## <u> W</u>arning

 Fail-safe device must be installed when using the unit with machinery that may cause serious injury or substantial economic loss. (e.g. nuclear power control, medical equipment, ships, vehicles, railways, aircraft, combustion apparatus, safety equipment, crime/disaster prevention devices, etc.)

Failure to follow this instruction may result in personal injury, economic loss or fire.

- Do not use the unit in the place where flammable/explosive/corrosive gas, high humidity, direct sunlight, radiant heat, vibration, impact, or salinity may be present.
   Failure to follow this instruction may result in explosion or fire.
- Do not connect, repair, or inspect the unit while connected to a power source.
   Failure to follow this instruction may result in fire or electric shock.
- Install the unit after considering counter plan against power failure.
   Failure to follow this instruction may result in personal injury, or economic loss or fire.
- Check 'Connections' before wiring.
   Failure to follow this instruction may result in fire.
- Do not disassemble or modify the unit.
   Failure to follow this instruction may result in fire or electrical shock.
- Install the driver in the grounded housing or ground it directly.
   Failure to follow this instruction may result in personal injury, fire or electric shock.
- Do not touch the unit during or after operation for a while.
   Failure to follow this instruction may result in burn or electric shock due to high temperature of the surface.
- Emergency stop directly when error occurs.
   Failure to follow this instruction may result in personal injury or fire.

#### Autonics

## <u> </u>Caution

- When connecting the power input, use AWG 18(0.75mm2) cable or over.
- Brake is non-polar. When connecting the brake, use AWG 24 (0.2mm2) cable or over.
   Failure to follow this instruction may result in fire or malfunction due to contact failure.
- To use the motor safely, do not apply external force to the motor.
- It is recommended to use STOPPER for the vertical load.
- Install over-current prevention device (e.g. the current breaker, etc.) to connect the driver with power.

Failure to follow this instruction may result in fire.

- Check the control input signal before supplying power to the driver.
   Failure to follow this instruction may result in personal injury or product damage by unexpected signal.
- Install a safety device to maintain the vertical position after turn off the power of this driver.
   Failure to follow this instruction may result in personal injury or product damage by releasing holding torque of the motor.
- Use the unit within the rated specifications.
   Failure to follow this instruction may result in fire or product damage.
- Use dry cloth to clean the unit, and do not use water or organic solvent.
   Failure to follow this instruction may result in fire or electric shock.
- The driver may overheat depending on the environment.
   Install the unit in the well-ventilated place and forced cooling with a cooling fan.
   Failure to follow this instruction may result in product damage or degradation by heat.
- Keep the product away from metal chip, dust, and wire residue which flowing into the unit.
   Failure to follow this instruction may result in fire or product damage.
- Use the designated motor only.
   Failure to follow this instruction may result in fire or product damage.

## The above specifications are subject to change and somd models may be discontinued without notice.

Be sure to follow cautions written in the instruction manual, user manual and the technical descriptions (catalog, website).

## **Table of Contents**

|   | Prefa | ace            |                                                 | v    |
|---|-------|----------------|-------------------------------------------------|------|
|   | Com   | municati       | ion Manual Guide                                | vi   |
|   | Com   | municati       | ion Manual Symbols                              | vii  |
|   | Safe  | ty Consid      | lerations                                       | viii |
|   | Tabl  | e of Cont      | ents                                            | x    |
| 1 | Co    | mmuni          | cation Specification                            | 11   |
|   | 1.1   | CC-L           | ink Communication Overview                      | 11   |
|   | 1.2   | Com            | munication Specification                        | 11   |
| 2 | Fu    | nction         | ·                                               | 12   |
|   | 2.1   | Syste          | em Configuration                                | 12   |
|   | 2.2   | Rem            | ote I/O Specification                           | 13   |
|   |       | 2.2.1          | Remote I/O in 1 station occupied                | 13   |
|   |       | 2.2.2          | Remote Register in 1 station occupied           | 14   |
|   |       | 2.2.3          | Remote I/O in 2 stations occupied               | 15   |
|   |       | 2.2.4          | Remote Register in 2 stations occupied          | 16   |
|   |       | 2.2.5          | RY Signal Specification                         |      |
|   |       | 2.2.6          | RX Signal Specification                         | 21   |
| 3 | Dri   | iving op       | peration                                        |      |
|   | 3.1   | Swit           | ch setting and LED indication                   | 22   |
|   |       | 3.1.1          | Number of occupied stations                     | 23   |
|   |       | 3.1.2          | Station number, Comm. speed setting             | 23   |
|   |       | 3.1.3          | LED Indication                                  | 24   |
|   | 2.2   | 3.1.4<br>On a  | FND Indication                                  | 24   |
|   | 3.2   | Oper           |                                                 |      |
|   |       | 3.2.1<br>2.2.2 | ± Direction Linear Accel/Deceleration Operation | 27   |
|   |       | 3.2.2          | Absolute Position Movement                      |      |
|   |       | 3.2.4          | Program Mode Operation                          |      |
|   |       | 3.2.5          | Home Search Mode Operation                      | 41   |
| 4 | Ра    | ramete         | r Data Map                                      | 45   |
|   | 4.1   | Prog           | ram Mode Group                                  | 45   |
|   | 4.2   | Opei           | rating Mode Group(Command code: 11h)            | 46   |
|   | 4.3   | Ореі           | rating Group (Command Code: 12h)                | 47   |
|   | 4.4   | Para           | meter Group (Command Code: 13h)                 | 48   |
|   | 4.5   | Hom            | e Search Mode Group (Command Code: 14h)         | 50   |
|   | 4.6   | Mon            | itoring Group                                   | 51   |
|   | 4.7   | Alarr          | n Code                                          | 52   |
|   | 4.8   | Warr           | ning Code                                       | 52   |
|   |       |                |                                                 |      |

## **1** Communication Specification

## 1.1 CC-Link Communication Overview

CC-Link is an industrial network consisting of a RS475 topology. This network is one of the high speed / timely fieldbuses and supports 100m transmission distance and 64 stations at maximum communication speed of 10Mbps.

CC-Link simplifies the system, reduces the cost of wiring components, reduces component costs, and plays a major role in reducing wiring air and improving maintainability. It also enables flexible response to expanding multi-vendors.

## **1.2** Communication Specification

| Item    | Specification |          |                                                             |  |  |  |
|---------|---------------|----------|-------------------------------------------------------------|--|--|--|
|         | Communication |          | CC-Link Ver.1.10                                            |  |  |  |
|         | standard      |          |                                                             |  |  |  |
|         | Station typ   | е        | Remote Device station                                       |  |  |  |
|         | Connectior    | n cable  | CC-Link dedicated cable                                     |  |  |  |
|         | Comm.         | Speed    | 156k, 625k, 2.5M, 5M, 10M [bps]                             |  |  |  |
|         | speed         | Setting  | 10 bit rotary switch (0 to 9)                               |  |  |  |
|         | Station       | Number   | 01 to 64                                                    |  |  |  |
|         | number        | Setting  | 10 bit rotary switch (0 to 9) $	imes$ 2                     |  |  |  |
|         | Number        | Occupied | 1 station occupied, 2 stations occupied                     |  |  |  |
|         | of            |          |                                                             |  |  |  |
| CC-Link | occupied      | Setting  | 1 bit DIP switch                                            |  |  |  |
| CC-LINK | stations      |          |                                                             |  |  |  |
|         | Max. transmit |          | Depend on comm. chood                                       |  |  |  |
|         | distance      |          | Depend on comm. speed                                       |  |  |  |
|         | Pomoto I/C    | )        | 1 station occupied: Ryn/RXn 32 points each                  |  |  |  |
|         | Remote 1/0    | )        | 2 stations occupied: Ryn/RXn 64 points each                 |  |  |  |
|         | Pomoto Po     | gistor   | 1 station occupied: RWrn/RWwn 4 words each                  |  |  |  |
|         | Remote Re     | gister   | 2 stations occupied: RWrn/RWwn 8 words each                 |  |  |  |
|         |               |          | Point table read/write, parameter read/write, read only,    |  |  |  |
|         | Command       |          | special command monitor only, network connection,           |  |  |  |
|         |               |          | drive control, motion control, drive status                 |  |  |  |
|         | LED indicat   | tors     | Status LED indicators $\times$ 2 (L.ERR: Red, L.RUN: Green) |  |  |  |

## 2 Function

## 2.1 System Configuration



\* 485

## 2.2 Remote I/O Specification

### 2.2.1 Remote I/O in 1 station occupied

n indicates the address assigned to the master station by the station number setting.

| RY(M→S)      | Signal         | Description         | RX(S→M)     | Signal         | Description            |  |
|--------------|----------------|---------------------|-------------|----------------|------------------------|--|
| RYn0         | Servo On/Off   | Servo On/Off        | RXn0        | Servo On/Off   | Servo On/Off           |  |
| RYn1         | EMG            | Emergency stop      | RXn1        | EMG            | Emergency stop         |  |
| RYn2         | Home           | Home search         | RXn2        | Home End       | Home search end        |  |
| RYn3         | Reset          | Reset               | RXn3        | Alarm          | Alarm                  |  |
| RYn4         | Alarm Reset    | Alarm reset         | RXn4        | In-Position    | In-Position            |  |
| RYn5         | +Run           | + direction running | RXn5        | Warning        | Warning                |  |
| RYn6         | -Run           | - direction running | RXn6        | Running        | Running                |  |
| RYn7         | PR Start       | Program running     | RXn7        | PR Running     | Program running        |  |
| DVn9         | PR Single      | Program single      | DVn0        | PR Single      | Program single step    |  |
| ктно         | Start          | step running        | клно        | Running        | running                |  |
| RYn9         | PR Pause       | Program pause       | RXn9        |                |                        |  |
| ₽Vn∆         | PR Stop        | Program running     | PYnA        | -              | Disable                |  |
| N IIIA       |                | stop                |             |                |                        |  |
| <b>PVn</b> B | ABS            | Absolute position   | RXnB        | ABS Running    | Absolute position      |  |
|              |                | running             |             |                | running                |  |
| RYnC         | INC            | Relative position   | RXnC        | INC Running    | Relative position      |  |
| Kine         |                | running             | TO THE      |                | running                |  |
| RYnD         | Position Reset | Position reset      | RXnD        | Position Reset | Position reset success |  |
|              |                |                     | TOTIE       | Success        |                        |  |
| RYnE         | Read Request   | Read request        | RXnE        | Read Success   | Read success           |  |
| RYnF         | Write Request  | Write request       | RXnF        | Write Success  | Write success          |  |
| RYn0         | STOP           | Stop                | RX(n+1)0    | Read Error     | Read error             |  |
| PV(n+1)1 to  |                |                     | RX(n+1)1    | Write Error    | Write error            |  |
| RV(n+1)F     | -              | Disable             | RX(n+1)2 to |                | Disable                |  |
| 1/1/11/1/1   |                |                     | RX(n+1)F    |                |                        |  |

### 2.2.2 Remote Register in 1 station occupied

m, n indicates the address assigned to the master station by the station number setting.

| RWw           | Description                 | RWr         | Description         |  |
|---------------|-----------------------------|-------------|---------------------|--|
|               | Upper: Read request code    |             |                     |  |
| RWwm+0        | Lower: Read request data    | RWrn+0      | Running step number |  |
|               | number                      |             |                     |  |
|               | Upper: Write request code,  |             |                     |  |
| $DW/wm \pm 1$ | Program single step running | DW/rp+1     | Upper: Alarm Code   |  |
| KWWIIITT      | number                      | IX WITH ' I | Lower: Warning Code |  |
|               | Lower: Write data number    |             |                     |  |
| RWwm+2        | Write Data (lower)          | RWrn+2      | Read Data (lower)   |  |
| RWwm+3        | Write Data (upper)          | RWr3        | Read Data (upper)   |  |

## 2.2.3 Remote I/O in 2 stations occupied

| n indicates the address assigned to the mas | ster station by the station number setting. |
|---------------------------------------------|---------------------------------------------|
|---------------------------------------------|---------------------------------------------|

| RY(M→S)       | Signal             | Description        | RX(S→M)  | Signal     | Description     |
|---------------|--------------------|--------------------|----------|------------|-----------------|
| RY(n+2)0      | OUT0               |                    | RX(n+2)0 | ORG        |                 |
| RY(n+2)1      | OUT1               |                    | RX(n+2)1 | +Limit     |                 |
| RY(n+2)2      | OUT2               |                    | RX(n+2)2 | -Limit     |                 |
| RY(n+2)3      | OUT3               | Output port ON/OFF | RX(n+2)3 | IN0        |                 |
| RY(n+2)4      | OUT4               |                    | RX(n+2)4 | IN1        |                 |
| RY(n+2)5      | OUT5               |                    | RX(n+2)5 | IN2        |                 |
| RY(n+2)6      | OUT6               |                    | RX(n+2)6 | IN3        |                 |
| RY(n+2)7      | Step0              |                    | RX(n+2)7 | IN4        |                 |
| RY(n+2)8      | Step1              |                    | RX(n+2)8 | IN5        |                 |
| RY(n+2)9      | Step2              | Index running step | RX(n+2)9 | IN6        | I/O port status |
| RY(n+2)A      | Step3              | select             | RX(n+2)A | IN7        |                 |
| RY(n+2)B      | Step4              |                    | RX(n+2)B | OUT0       |                 |
| RY(n+2)C      | Step5              |                    | RX(n+2)C | OUT1       |                 |
| RY(n+2)D      | Monitor<br>Request | Monitor request    | RX(n+2)D | OUT2       |                 |
| RY(n+2)E      |                    |                    | RX(n+2)E | OUT3       |                 |
| RY(n+2)F      |                    |                    | RX(n+2)F | OUT4       |                 |
|               |                    |                    | RX(n+3)0 | OUT5       |                 |
| DV(n+2)0      |                    | Dicabla            | RX(n+3)1 | OUT6       |                 |
| RY(11+3)0     | -                  | DISADLE            | RX(n+3)2 | Monitoring | Monitoring      |
| PV(n+3)E      |                    |                    | RX(n+3)3 |            |                 |
| 1.1 (11 - 3)1 |                    |                    | to       | -          | Disable         |
|               |                    |                    | RX(n+3)F |            |                 |

### 2.2.4 Remote Register in 2 stations occupied

m, n indicates the address assigned to the master station by the station number setting.

| RWw    | Description | RWr    | Description            |
|--------|-------------|--------|------------------------|
| RWwm+4 | -           | RWrn+4 | Monitor 1 Data (lower) |
| RWwm+5 | -           | RWrn+5 | Monitor 1 Data (upper) |
| RWwm+6 | Monitor 1   | RWrn+6 | Monitor 2 Data (lower) |
| RWwm+7 | Monitor 2   | RWrn+7 | Monitor 2 Data (upper) |

### 2.2.5 RY Signal Specification

#### Servo On/Off [RYn0]

It is used to rotate the shaft of the motor with external force or to adjust the position manually.

When Servo On/Off[RYn0] is ON

: it is recognized as Servo Off signal and Servo On/Off[RXn0] is OFF and torque is released due to phase current cutoff from the motor.

Servo indicator, In-Position output and indicator turn OFF.



## Note

Due to the hazard of safety, please use the motor after completely stopped.

#### EMG [RYn1]

Motor stops immediately and occurs the emergency stop alarm. It does not cutoff the current through the motor. EMG signal is not available in case of the motor is stopped. When EMG[RYn1] is ON, EMG[RXn1] is ON.

#### Home [RYn2]

Execute the home search mode.

Home search mode type can be set in parameters and can be set the start speed, max speed, acceleration time and deceleration time through the parameters. During the home search mode operation, Running[RYn6] is ON, when home search is completed, Home End[Rxn2] is ON.

#### Reset [RYn3]

Driver reset operates same as power resupply. When the motor is running, it stops immediately and resets the driver.

#### Alarm Reset [RYn4]

Reset the Alarm.

Only available when Alarm[RXn3] is ON.

#### +RUN [RYn5]

Rotate to CW(+direction). Stop when +RUN[RYn5] is OFF or STOP[RY(n+1)0] is ON.

#### -RUN [RYn6]

Rotate to CCW(-direction).

Stop when -RUN[RYn6] is OFF or STOP[RY(n+1)0] is ON.



#### PR Start [RYn7]

Start program running.

While program is running, Running[RXn6] and PR Running[RXn7] is ON.

#### PR Single Start [RYn8]

Start program single step running.

Execute program single step running depend on index mode step selection [RY(n+2)7 to RY(n+2)C].

While program is running, Running[RXn6] and PR Running[RXn8] is ON.

#### PR Pause [RYn9]

Pause the program running.

When the pause signal is applied during the program mode running, it stops after completing the current step.

"PR Start[RYn7]" command is applied after pause, program running restarts from the next step after the stopped step.

#### PR Stop [RYnA]

Stop the program mode after completing currently operating step.



#### ABS [RYnB]7

Execute absolute position move.

For more information, refer to '3.2.3 절대 위치 이동'.

#### INC [RYnC]

Execute relative position move. For more information, refer to '3.2.2 상대 위치 이동'.

#### Position Reset [RYnD]

Set the current position to '0'.

#### Read Request [RYnE]

If the command code and command data number are written in the read request code [Rwwm+0] and the data read is requested, the read data is displayed in the Remote Register [Rwrn+2 to 3].

When the Read Request Success[RXnE] is not ON and the Read Error[RX(n+1)0] is ON, this is the case that the command was incorrectly input. Please check the entered command.

#### Write Request [RYnF]

#### Request write.

Enter the upper write command[Rwwm+1] and write data number, and enter write data in [RWwm+2 to 3] to request data write execution.

When the Write Request Success[RXnF] is not ON and the Write Error[RX(n+1)1] is ON, this is the case that the command was incorrectly input or the allowable input data range is exceeded. Please check the entered command and data.

Stop [RY(n+1]0]

Stop operation.

 OUT0 to 6 [RY(n+2]0 to 6] Used for output port ON/OFF.

#### STEP0 to 5 [RY(n+2]7 to C]

Set 1 step for index mode running.

The steps can be set 0 to 63 with the combination of 6 bit.

| STEP No. | Step5 | Step4 | Step3 | Step2 | Step1 | Step0 |  |
|----------|-------|-------|-------|-------|-------|-------|--|
| STEP 0   | 0     | 0     | 0     | 0     | 0     | 0     |  |
| STEP 1   | 0     | 0     | 0     | 0     | 0     | 1     |  |
| STEP 2   | 0     | 0     | 0     | 0     | 1     | 0     |  |
|          |       |       |       |       |       |       |  |
| STEP 61  | 1     | 1     | 1     | 1     | 0     | 1     |  |
| STEP 62  | 1     | 1     | 1     | 1     | 1     | 0     |  |
| STEP 63  | 1     | 1     | 1     | 1     | 1     | 1     |  |

#### Monitor Request [RY(n+2]D]

Request monitoring execution.

When entering the Monitoring group's command code write data number on [Rwwm+6 to 7]Monitor1 to 2. The data will be displayed on [Rwrn+4 to 5]Monitor1, [Rwrn+6 to 7]Monitor2

#### 2.2.6 RX Signal Specification

- Servo On/Off [RXn0]
   1: Servo On, 0: Servo Off
- EMG [RXn1]
   Emergency stop status display
- Home End [RXn2]
   Home search operation complete
- Alarm [RXn3]
   Alarm occur
- In-Position [RXn4]
   Operation completed signal
- Warning [RXn5]
   Warning occur
- Running [RXn6]

   In operation
   Program running, +-direction operation, absolute position, relative position operation ON

   PR Running [RXn7]

Program running

- PR Single Running [RXn8]
   Program single step running
- ABS Running [RXnB] Absolute position movement running
- INC Running [RXnC] Relative position movement running
- Position Reset Success [RXnD]
   Current position reset success
- Read Success [RXnE]
   Read execution request complete
- Write Success [RXnF]
   Write execution request complete
- Read Error [RX(n+1)0]
   Read execution request error
- Write Error [RX(n+1)1]
   Write execution request error
- ORG [RX(n+2)0 to RX(n+3)1]
   I/O port status ORG, +Limit, -Limit, IN0 to 7, OUT0 to 6 signal
- Monitoring [RX(n+3)2]
   Monitoring

## 3 Driving operation

### 3.1 Switch setting and LED indication



1: Power connector (CN1: PWR)

- 2: Motor+Encoder connector (CN2: Motor)
- 3: I/O connector (CN3: Signal I/O)
- 4-1: RS485 communication connector (CN4: RS485)
- 4-2: Brake connector (CN5: BRAKE)
- 5-1: Servo On/Off indicator (SERVO, Orange)
- 5-2: In-Position indicator (INP., Yellow)
- 5-3: Power/Alarm indicator (PWR/AL, Green/Red)
- 6: Alarm/Warning status indicator (7 Segment, Red)
- 7: CC-Link status indicator (L.ERR/L.RUN, Red/Green)
- 8. CC-Link station setting DIP switch (SW1)
- 9: CC-Link comm. speed setting rotary switch (B-RATE)
- 10: CC-Link comm. station setting rotary switch (STATION NO.)
- 11. CC-Link connector (CN6: DA DB DG SH FG)

#### 3.1.1 Number of occupied stations

The driver is available to switch the number of occupied stations by switch setting. Set the number of occupied CC-Link stations according to the system used.

Set the switch setting before supply power to the driver.

In case of changing the number of occupied stations, the power must be resupplied to the driver.

| Setting switch | Setting | CC-Link station setting |
|----------------|---------|-------------------------|
|                | ON      | 2 stations occupied     |
|                | OFF     | 1station occupied       |

#### 3.1.2 Station number, Comm. speed setting

The driver is available to set the station number and communication speed by switch setting. Set the switch setting before supply power to the driver.

In case of changing the station number or communication speed, the power must be resupplied to the driver.

Set the CC-Link communication speed with B-RATE switch.

| Setting switch                                                | Setting | Comm. speed (bps) | Setting | Comm. speed (bps) |
|---------------------------------------------------------------|---------|-------------------|---------|-------------------|
| 0<br>7<br>9<br>7<br>3<br>7<br>3<br>7<br>9<br>9<br>9<br>9<br>9 | 0       | 156k              | 5       |                   |
|                                                               | 1       | 625k              | 6       |                   |
|                                                               | 2       | 2.5M              | 7       | Disable           |
|                                                               | 3       | 5M                | 8       |                   |
|                                                               | 4       | 10M               | 9       |                   |

Set the CC-Link station number with STATION NO. switch.

| Setting switch | Setting | Station<br>No. (×10) | Setting switch      | Setting | Station<br>No. (×1) |
|----------------|---------|----------------------|---------------------|---------|---------------------|
|                | 0       | 0×10                 |                     | 0       | 0                   |
|                | 1       | 1×10                 |                     | 1       | 1                   |
|                | 2       | 2×10                 |                     | 2       | 2                   |
| 901            | 3       | 3×10                 | <b>q</b> 0 <i>j</i> | 3       | 3                   |
|                | 4       | 4×10                 |                     | 4       | 4                   |
| ٌ ¥ ي ٩        | 5       | 5×10                 | ا¥ ي ٩              | 5       | 5                   |
| ×10            | 6       | 6×10                 | ×1                  | 6       | 6                   |
|                | 7       | 7×10                 |                     | 7       | 7                   |
| -              | 8       | 8×10                 |                     | 8       | 8                   |
|                | 9       | 9×10                 |                     | 9       | 9                   |

### 3.1.3 LED Indication

| Status<br>indicator | Color  | Function                | Description                              |
|---------------------|--------|-------------------------|------------------------------------------|
|                     |        | PowerIndicator          | Turns ON when the unit operates normally |
|                     | Groop  |                         | after supplying power.                   |
| FWK                 | Green  | Warning indicator       | Flashes when limit signal is input or    |
|                     |        | warning mulcator        | overload status is maintained.           |
| ΔΙ                  | Red    | Alarm indicator         | When alarm occurs, it flashes in various |
|                     | Reu    | Alarminulcator          | ways depending on the situation.         |
| INP.                | Yellow | In-Position indicator   | Turns ON when motor is placed at         |
|                     |        |                         |                                          |
| SERVO               | Orange | Servo On/Off indicator  | Turns ON when Servo is operating, turns  |
| SERVO               | orunge |                         | OFF when servo is not operating.         |
|                     | Groop  |                         | Turns ON when communication operates     |
| L.RUN               | Green  | CC-Link comm. indicator | normally.                                |
| L.ERR               | Red    |                         | Turns ON when communication failure.     |

Each LED display indicates as table below.

#### 3.1.4 FND Indication

#### 3.1.4.1 Normal Status

The station number is displayed in normal status after power is supplied.

#### 3.1.4.2 Alarm Display Function

When alarm occurs, it remains/stops the motor operation or remains/releases the torque. The alarm status can be reset through resupply the power or input "Alarm Reset" or "Reset" after removing the cause of alarm.

The alarm is displayed as Red on the front "AL"LED and able to monitor from the atMotion or CC-Link communication. Also the Alarm status can be checked on the Output Pin by setting the User Output from general output as Alarm.

The types of alarm can be checked with alarm number on the 7 Segment and atMotion or CC-Link communication.

When alarm occurs, it can be checked through the CC-Link Remote I/O Alarm[RXn3] and the alarm code is displayed above Remote Register [RWrn1].

It operates as following alarm table and the LED flashing cycle is 400ms.

#### **Autonics**

| Alarm<br>status | Alarm type                   | Description                                                                                                                                    | Motor<br>status | Torque<br>status |
|-----------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|
| E. I            | Comm. station setting error  | CC-Link station setting error                                                                                                                  |                 |                  |
| ٤.2             | Comm. speed setting error    | CC-Link speed setting error                                                                                                                    |                 |                  |
| С.Э             | Comm. station setting change | CC-Link station setting change                                                                                                                 | Remain          | Remain           |
| Е.Ч             | Comm. speed setting change   | CC-Link speed setting change                                                                                                                   |                 |                  |
| ٤.5             | Comm. failure                | Communication with CC-Link master is disconnected                                                                                              |                 |                  |
| E. I            | Overcurrent error            | When overcurrent flows at motor RUN element                                                                                                    |                 |                  |
| E.2             | Overspeed error              | When motor speed is over 4,000rpm                                                                                                              |                 |                  |
| Е.Э             | Position tracking error      | When the gap between position command value and current position value is over 90°                                                             |                 |                  |
| Е.Ч             | Overload error               | When applying load over the rated load for over 1 sec.                                                                                         |                 |                  |
| E.5             | Overheat error               | When driver inner temperature is over 80°C                                                                                                     |                 |                  |
| E.6             | Motor connection error       | When motor cable connection error occurs at driver                                                                                             |                 |                  |
| Е.Л             | Encoder connection error     | When encoder cable connection error occurs at driver                                                                                           | Stop            | Release          |
| E.8             | Regenerative voltage error   | When regenerative voltage is over 78V                                                                                                          |                 |                  |
| E.9             | Motor misalignment           | When motor is in misalignment                                                                                                                  |                 |                  |
| E.R.            | Command speed error          | When command speed is over 3,500rpm                                                                                                            |                 |                  |
| Е.ь.            | Input voltage error          | When input voltage is out of 24VDC $\pm 10\%$                                                                                                  |                 |                  |
| E.C.            | In-Position error            | When position error (over 1) is kept over 3 sec, after motor stopped                                                                           |                 |                  |
| E.d.            | Memory error                 | When memory error is detected as power supplied                                                                                                |                 |                  |
| E.E.            | Emergency stop               | When emergently stopped with emergency stop command                                                                                            |                 |                  |
| E.F.            | Program mode error           | When 'END' command is not exist at the last step                                                                                               |                 |                  |
| E.G.            | Index mode error             | When step is not selected<br>When other instruction is used but 'INC', 'ABS'<br>When index command is not completed due to the stop<br>command | Stop            | Remain           |
| E.H.            | Home search mode error       | When failed to find home                                                                                                                       |                 |                  |

When E.E. to E.H. alarm occurs, the motor stops, but the current flowing into the motor is not blocked.

#### 3.1.4.3 Warning Display Function

Even though the warning occurs, the operation is still available and remains the torque. If the warning source is removed, it automatically returns without the Alarm Reset.

The warning is displayed as Green on the front "PWR"LED, and able to monitro from the atMotion or CC-Link communication.

The types of warning can be checked with alarm number on the 7 Segment and atMotion or CC-Link communication.

When warning occurs, it can be checked through the CC-Link Remote I/O Warning [RXn5] and the warning code is displayed below Remote Register [RWrn1].

If the limit waring occurs, it will not operate to the same direction as occurred limit and it can be cleared by operating opposite direction from the occurred limit warning.

| Warning     | Warning type     | Description                                 | Motor  | Torque |  |  |  |  |
|-------------|------------------|---------------------------------------------|--------|--------|--|--|--|--|
| status      | warning type     | Description                                 | status | status |  |  |  |  |
| υi          | +Software limit  | When normal direction(CW) software limit is |        |        |  |  |  |  |
| /           | Software unit    | ON                                          |        |        |  |  |  |  |
| υD          | Software limit   | When reverse direction(CCW) software limit  |        |        |  |  |  |  |
| <u> </u>    | -soltware tillit | is ON                                       | Stop   | Pomain |  |  |  |  |
| <b>U</b> D  | +Hardwara limit  | When normal direction(CW) hardware limit is |        |        |  |  |  |  |
| =.9         | Thatuwale lillin | ON                                          |        |        |  |  |  |  |
| 00          | Hardwarolimit    | When reverse direction(CCW) hardware limit  |        |        |  |  |  |  |
| /           |                  | is ON                                       |        |        |  |  |  |  |
|             |                  | When maximum load is kept connected over    |        |        |  |  |  |  |
| <u>4</u> .5 | Overload warning | 10sec                                       | Remain | Remain |  |  |  |  |
|             |                  | (motor or driver can be overheated)         |        |        |  |  |  |  |

It operates as following warning table and the LED flashing cycle is 400ms.

\* Other warning can be occurred during Overload warning.

### 3.2 Operation

#### 3.2.1 ± Direction Linear Accel/Deceleration Operation

In order to reach the target speed from the current speed, the linear accel/deceleration is possible.

Linked parameter: Acceleration Time, Deceleration Time, Start Speed, Max Speed

| Command | Data   | Description       | Satting data range               | Initial |
|---------|--------|-------------------|----------------------------------|---------|
| code    | number | Description       | Setting data range               | data    |
| 12h     | 01h    | Start Speed       | 1 to 600,000                     | 100     |
| 12h     | 02h    | Max Speed         | 1 to 600,000                     | 5000    |
| 12h     | 03h    | Acceleration Time | 0 to 10,000                      | 100     |
| 12h     | 04h    | Deceleration Time | 0 to 10,000                      | 100     |
| 12h     | 05h    | Position Data     | -2,147,483,648 to +2,147,483,647 | 0       |

% If the speed override is executed during the constant speed operation, the set accel/deceleration time may change.

- In case of arriving to the target position without reaching max. speed due to acceleration time is long and command position is short, the acceleration time may change.
- e.g.) Acceleration Time 500 Deceleration Time 500 Start Speed 300 Max Speed 15000 Linear acel/deceleration operation



#### (1) Start Speed 300 (12Ch)

1st Enter the write command code 12h on the upper side of [RWwm+1] and enter the data number 01h on the lower side.

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |

2nd Enter the write data 300(12Ch) on [RWwm+2].

3rd Set the Write Request[RYnF] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (2) Max Speed 15000 (3A98h)

- 1st Enter the write command code 12h on the upper side of [RWwm+1] and enter the data number 02h on the lower side.
- 2nd Enter the write data 15000(3A98h) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| RWwm+2 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |

3rd Set the Write Request[RYnF] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (3) Acceleration Time 500 (1F4h)

1st Enter the write command code 12h on the upper side of [RWwm+1] and enter the data number 03h on the lower side.

2nd Enter the write data 500(1F4h) on [RWwm+2].

|        | F | Е | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |

3rd Set the Write Request[RYnF] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

4th Check the Write Request Success[RXnF] is ON.

## **Caution**

If Write Request Success[RXnF] is not ON but Write Error[RX(n+1)1] is ON, this is the case that the command is entered wrong or exceeded the availabe data range.

Please check the entered command and data.

#### (4) Deceleration Time 500 (1F4h)

1st Enter the write command code 12h on the upper side of [RWwm+1] and enter the data number 04h on the lower side.

2nd Enter the write data 500(1F4h) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |

3rd Set the Write Request[RYnF] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (5) Linear Accel/deceleration operation

1st Set the linear accel/deceleration operation through  $\pm$ RUN[RYn5 or RYn6] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYn5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |

#### 3.2.2 Relative Position Movement

Relative position movement operates by setting movement distance from current coordinate. (e.g.: program mode INC command)

#### **※** Example of relative position movement

If the designated pulse of the relative position movement command "INC" is set to 9000 pulse and executed 3 times, it moves to the A, B and C points as shown below.



e.g.) Acceleration Time 500 Deceleration Time 500 Start Speed 300 Max Speed 15000 Position 50000 Relative position movement operation



#### (1) Start Speed 300 (12Ch)

1st Enter the write command code 12h on the upper side of [RWwm+1] and enter the data number 01h on the lower side.

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |

2nd Enter the write data 300(12Ch) on [RWwm+2].

3rd Set the Write Request[RYnF] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (2) Max Speed 15000 (3A98h)

- 1st Enter the write command code 12h on the upper side of [RWwm+1] and enter the data number 02h on the lower side.
- 2nd Enter the write data 15000(3A98h) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| RWwm+2 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 |

3rd Set the Write Request[RYnF] ON.

|      | F | Е | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (3) Acceleration Time 500 (1F4h)

- 1st Enter the write command code 12h on the upper side of [RWwm+1] and enter the data number 03h on the lower side.
- 2nd Enter the write data 500(1F4h) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |

3rd Set the Write Request[RYnF] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

4th Check the write Request Success[RXnF] is ON.

### Caution

If Write Request Success[RXnF] is not ON but Write Error[RX(n+1)1] is ON, this is the case that the command is entered wrong or exceeded the available data range.

Please check the entered command and data.

#### (4) Deceleration Time 500 (1F4h)

1st Enter the write command code 12h on the upper side of [RWwm+1] and enter the data number 04h on the lower side.

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |

2nd Enter the write data 500(1F4h) on [RWwm+2].

3rd Set the Write Request[RYnF] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (5) Position 50000 (C350h)

- 1st Enter the write command code 12h on the upper side of [RWwm+1] and enter the data number 05h on the lower side.
- 2nd Enter the write data 50000(C350h) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| RWwm+2 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |

3rd Set the Write Request[RYnF] ON.

|      | F | Е | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (6) Relative position movement operation

1st Set the linear accel/deceleration operation through INC[RYnC] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnC | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### 3.2.3 Absolute Position Movement

Absolute position movement operates by setting movement distance from origin point (coordinate 0). (e.g.: program mode ABS command)

#### **※** Example of absolute position movement

The absolute position movement is "ABS" command, which is command based on the origin point and if it is executed 3 times, it only moves to the A position. To move to the A, B and C points like the example of relative position movement, the designated pulse of the "ABS" command shoud be set each 9000, 18000 and 27000 pulse.



#### (1) Parameter setting is same as INC

#### (2) Absolute position movement operation

1st Set the linear accel/deceleration movement through  $\pm$ RUN[RYn5, 6] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnC | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### 3.2.4 **Program Mode Operation**

The commands stored in each step are operated sequently.

256 steps commands from 0 to 255, can be input through CC-link communication and I/O control or GUI.

If 'Power On Program Start' parameter is enabled, the progrma mode operation will be executed immediately after power supplying.

If the program mode stop command is input during program mode operation, it stops after completing current step and starts from step 0 when program mode operation command is input again.

To stop program mode before completing the current step, the emergency stop ("EMG") Ж is required.

If a pause command is entered during program mode operation, the program pauses after completing the current step. And if the program mode operation command is entered again, the next step from the completed step will be executed.

To end the program mode operation, the program end command "END" must be required at the last step. If there is no prgram end command ("END"), the 'program mode error(*E.F.*)' alarm will occur.



When entering the program mode data, the 01H command must be written first. If 01H command is entered in each step, the remaining parameters 02H to 06H are initialized to 0xF.

The remaining parameters must be entered after entering the command on the corresponding step.

The 02H to 06H command corresponding to the middle parameter will not be written unless the command(01H) is in the corresponding step.

Please input command code in order.

The final step must include END(0AH).

#### e.g.) Step 0

Acceleration Time 1000 **Deceleration Time 1000** Start Speed 50 Max Speed 10000 Position 50000 Relative position movement operation

Step 1

OPT, Next ON, 1000ms

#### Step 2

**END** command



\* This is a program mode saved in GUI program atMotion.

The program mode can be written in GUI and set in CC-Link.

#### (1) Program Mode 00 Step Relative Position Movement Command (01h)

1st Enter the write command code 01h on the upper side of [RWwm+1] and Enter the step number 00h on the lower side.

2nd Enter the relative position movement command(01h) on [RWwm+2].

|        | F | Е | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

- ※ In case of ABS which is operated by continue mode, enter 01h on the upper byte of [RWwm+2].
- 3rd Set the Write Request[RYnF] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (2) Program Mode 00 Step Relative Position Movement Position (06h)

1st Enter the write command code 06h on the upper side of [RWwm+1] and Enter the step number 00h on the lower side.

2nd Enter the Position Data 50000(C350h) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| RWwm+2 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (3) Program Mode 00 Step Relative Position Movement Start Speed (02h)

1st Enter the write command code 02h on the upper side of [RWwm+1] and Enter the step number 00h on the lower side.

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |

2nd Enter the Start Speed Data 50(32h) on [RWwm+2].

3rd Set the Write Request[RYnF] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (4) Program Mode 00 Step Relative Position Movement Max Speed (03h)

- 1st Enter the write command code 03h on the upper side of [RWwm+1] and Enter the step number 00h on the lower side.
- 2nd Enter the Max Speed Data 10000(2710h) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| RWwm+2 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |

3rd Set the Write Request[RYnF] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (5) Program Mode 00 Step Relative Position Movement Acceleration Time (04h)

1st Enter the write command code 04h on the upper side of [RWwm+1] and Enter the step number 00h on the lower side.

2nd Enter the Acceleration Time 1000(3e8h) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (6) Program Mode 00 Step Relative Position Movement Deceleration Time (05h)

1st Enter the write command code 05h on the upper side of [RWwm+1] and Enter the step number 00h on the lower side.

|        | F | Е | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |

2nd Enter the Acceleration Time 1000(3e8h) on [RWwm+2].

3rd Set the Write Request[RYnF] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (7) Program Mode 00 Step Relative Position Movement Command (01h)

- 1st Enter the write command code 01h on the upper side of [RWwm+1] and Enter the step number 00h on the lower side.
- 2nd Enter the 상대위치이동 명령(01h) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

※ In case of ABS which is operated by continue mode, enter 01h on the upper byte of [RWwm+2].

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

| 스텝  | 명령                                                                                                   |
|-----|------------------------------------------------------------------------------------------------------|
| 0   | INC [Pos:0 pulse], [Start:50 pps], [Max:10000 pps], [Acc:1000 msec], [Dec:1000 msec], [C Enable:OFF] |
| 1 1 | OPT [Output:4], [Next:ON], [Time:1000 msec]                                                          |
| 2   | END 2 3 4                                                                                            |
| 3   |                                                                                                      |

#### (1) Program Mode 01 Step OPT Command (06h)

1st Enter the write command code 01h on the upper side of [RWwm+1] and Enter the step number 01h on the lower side.

2nd Enter the relative position movement command(06h) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |

3rd Set the Write Request[RYnF] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (2) Program Mode 01 Step OPT output port number (02h)

- 1st Enter the write command code 02h on the upper side of [RWwm+1] and Enter the step number 01h on the lower side.
- 2nd Enter the output port number(04h) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |

3rd Set the Write Request[RYnF] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (3) Program Mode 01 Step OPT Next Step (03h)

1st Enter the write command code 03h on the upper side of [RWwm+1] and Enter the step number 01h on the lower side.

2nd Enter the ON(01h) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (4) Program Mode 01 Step OPT ON Time (04h)

1st Enter the write command code 04h on the upper side of [RWwm+1] and Enter the step number 01h on the lower side.

| 2nd Enter | the On | Time | 1000(3E8h) | ) on | [RWwm+2]. |
|-----------|--------|------|------------|------|-----------|
|           |        |      |            |      | [         |

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |

|      | F | Е | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

스텝 명령 이 INC [Pos:0 pulse], [Start:50 pps], [Max:10000 pps], [Acc:1000 msec], [Dec:1000 msec], [C Enable:OFF] 1 OPT [Output:4], [Next:ON], [Time:1000 msec] 2 ① END 3

#### (1) Program Mode 02 Step END (0Ah)

1st Enter the write command code 01h on the upper side of [RWwm+1] and Enter the step number 02h on the lower side.

2nd Enter the END(0Ah) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### 3.2.5 Home Search Mode Operation

e.g.) General homesearch operation ORG Active Level Low(0) Homesearch Start Speed 10 Homesearch Max Speed 5000 Homesearch Acceleration Time 1000 Homesearch Deceleration Time 1000 Homesearch Method general(0) Homesearch Direction CCW(1)

#### (1) ORG Active Level Low (0)

- 1st Enter the write command code 14h on the upper side of [RWwm+1] and enter the data number 01h on the lower side.
- 2nd Enter the write data 0(0Ch) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

3rd Set the Write Request[RYnF] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (2) Homesearch Start Speed 10 (Ah)

1st Enter the write command code 14h on the upper side of [RWwm+1] and enter the data number 02h on the lower side.

2nd Enter the write data 10(Ah) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (3) Homesearch Max Speed 5000 (1388h)

1st Enter the write command code 14h on the upper side of [RWwm+1] and enter the data number 03h on the lower side.

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| RWwm+2 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |

2nd Enter the write data 5000(1388h) on [RWwm+2].

3rd Set the Write Request[RYnF] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (4) Homesearch Acceleration Time 1000 (3e8h)

- 1st Enter the write command code 14h on the upper side of [RWwm+1] and Enter the step number 04h on the lower side.
- 2nd Enter the Homesearch Acceleration Time 1000(3e8h) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |

3rd Set the Write Request[RYnF] ON.

|      | F | Е | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (5) Homesearch Deceleration Time 1000 (3e8h)

1st Enter the write command code 14h on the upper side of [RWwm+1] and Enter the step number 05h on the lower side.

2nd Enter the Deceleration Time 1000(3e8h) on [RWwm+2].

|        | F | Е | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (6) Homesearch Method General Home Search (0h)

1st Enter the write command code 14h on the upper side of [RWwm+1] and enter the data number 06h on the lower side.

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (7) Homesearch Direction CCW (1h)

1st Enter the write command code 14h on the upper side of [RWwm+1] and enter the data number 07h on the lower side.

#### 2nd Enter the write data 1(1h) on [RWwm+2].

|        | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RWwm+1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| RWwm+2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

3rd Set the Write Request[RYnF] ON.

|      | F | Е | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnF | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### (8) Homesearch Operation [RYn2]

1st Set the Homesearch operation through Home[RYn2] ON.

|      | F | Ε | D | С | В | Α | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| RYnC | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |

## 4 Parameter Data Map

## 4.1 Program Mode Group

| 01h                      | 02h                  | 03h        | 04h          | 05h          | 06h      |  |  |  |  |  |
|--------------------------|----------------------|------------|--------------|--------------|----------|--|--|--|--|--|
| 0x0: Absolute position   | Start speed          | Max speed  | Acceleration | Deceleration | Desition |  |  |  |  |  |
| move (ABS)               | Start speed          | Max. speed | time         | time         | Position |  |  |  |  |  |
| 0x1: Relative position   | Start speed          | Max speed  | Acceleration | Deceleration | Position |  |  |  |  |  |
| move (INC)               | Start speed          | Max. speeu | time         | time         | POSICION |  |  |  |  |  |
| 0x2: Home search (HOM)   | Home search<br>mode  | Don't Care |              |              |          |  |  |  |  |  |
| 0x3: Input condition     | Input port           | Step       |              |              |          |  |  |  |  |  |
| jump (ICJ)               | number               | number to  | Don't Care   |              |          |  |  |  |  |  |
|                          |                      | jump       |              |              |          |  |  |  |  |  |
| 0x4: Input wait (IRD)    | Input port<br>number | Don't Care |              |              |          |  |  |  |  |  |
| 0x5: Output port         | Output port          | On         | Don't Caro   |              |          |  |  |  |  |  |
| ON/OFF (OPC)             | number               |            | Don t care   |              |          |  |  |  |  |  |
| 0x6: Output port ON      | Output port          | Nevt Sten  | ON Time      | Don't Care   |          |  |  |  |  |  |
| pulse (OPT)              | number               | Next Step  | ONTIME       | Don t care   |          |  |  |  |  |  |
| 0x7· lumn ( IMP)         | Step number          | Don't Care |              |              |          |  |  |  |  |  |
|                          | to jump              | Don t care |              |              |          |  |  |  |  |  |
| 0x8: Repeat start (REP)  | Repeat count         | Don't Care |              |              |          |  |  |  |  |  |
| 0x9: Repeat end (RPE)    | Don't Care           |            |              |              |          |  |  |  |  |  |
| 0xA: Program end (END)   | Don't Care           |            |              |              |          |  |  |  |  |  |
| OvP: Desition set (DOS)  | Position             | Don't Cara |              |              |          |  |  |  |  |  |
| UXD: POSITION SET (PUS)  | value                | DontCare   |              |              |          |  |  |  |  |  |
| 0xC: Ready (TIM)         | Delay time           | Don't Care |              |              |          |  |  |  |  |  |
| 0x100: Absolute position |                      |            | Acceloration | Deceleration |          |  |  |  |  |  |
| move (ABS)               | Start speed          | Max. speed | Acceleration | Deceleration | Position |  |  |  |  |  |
| Continue mode            |                      |            | ume          | ume          |          |  |  |  |  |  |
| 0x101: Relative position |                      |            | Accoloration | Deceleration |          |  |  |  |  |  |
| move (INC)               | Start speed          | Max. speed | time         | time         | Position |  |  |  |  |  |
| Continue mode            |                      |            | unie         | unie         |          |  |  |  |  |  |

## 4.2 Operating Mode Group(Command code: 11h)

| No.  | Name               | Lower           | Upper  | Initial         | Description                                                                 |
|------|--------------------|-----------------|--------|-----------------|-----------------------------------------------------------------------------|
|      |                    | limit           | limit  | value           |                                                                             |
| 01h  | Limit Ston Mode    | Instant         | Slow   | Instant         | Set stop mode when limit stop                                               |
| 0111 |                    | mstant          | 5100   | mstunt          | (Instant, Slow)                                                             |
| 02h  | Limit Active Level | Low             | High   | High            | Set active level of limit signal                                            |
| 0211 |                    | 2011            |        | 1.1.8.1         | (Low: [L], High: [H])                                                       |
| 03h  | Input Filter       | 10ms            | 1.5ms  | 10ms            | Set software filter for general input (IN0 to IN7)                          |
| 04h  | Software Limit     | Disable         | Enable | Disable         | Set whether to use Software Limit                                           |
|      | Power On Home      |                 |        |                 | Power On Home Search sets whether to                                        |
| 05h  | Soarch             | Disable         | Enable | Disable         | operate home search automatically when                                      |
|      | Search             |                 |        |                 | power is supplied                                                           |
|      | Power On           |                 |        |                 | Power On Program Start sets whether to                                      |
| 06h  | Program Start      | Disable         | Enable | Disable         | operate the saved program automatically                                     |
|      | - rogram otart     |                 |        |                 | when power is supplied                                                      |
|      |                    |                 |        |                 | Set whether to use fixed stop current                                       |
|      |                    |                 |        |                 | - Disable: flow                                                             |
|      |                    |                 |        |                 | this is the upper limit value of the set stop                               |
|      |                    |                 |        |                 | current, and the current changes to 50% of                                  |
| 07h  | Stop Current Fix   | Disable         | Enable | Disable         | the set stop current value according to the                                 |
|      |                    |                 |        |                 | position error                                                              |
|      |                    |                 |        |                 | e.g.) stop current setting: 30%,                                            |
|      |                    |                 |        |                 | flow current : 15%(50% of 30%) to 30%                                       |
|      |                    |                 |        |                 | - Enable: fixed (remain set Stop Current)                                   |
| 08h  | IN0 Active Level   | Low             | High   | High            | Set the active level of general input signal                                |
| 0.01 |                    |                 |        | 11.1            | (LOW: [L], HIgn: [H])                                                       |
| 09h  | INI Active Level   | LOW             | Hign   | High            |                                                                             |
| 0Ah  | IN2 Active Level   | Low             | High   | High            |                                                                             |
| UBN  | IN3 Active Level   | LOW             | Hign   | High            | Set whether the general input "IN 0 to IN 7"                                |
| 0Ch  | IN4 Active Level   | LOW             | Hign   | High            | are activated                                                               |
| 0Dh  | INS Active Level   | LOW             | Hign   | High            |                                                                             |
| UEN  | IN6 Active Level   | LOW             | Hign   | High            |                                                                             |
| 0FN  | IN / ACTIVE LEVEL  | LOW             | Hign   | High            |                                                                             |
| 10h  | Control Mode       | Speed<br>Filter | Gain   | Speed<br>Filter | control or the gain control                                                 |
| 11h  | Motor Direction    | CW              | CCW    | CW              | Set the default rotation direction of the motor                             |
| 12h  | Output Mode        | Holding         | Reset  | Holding         | Set whether to remain or reset the output pins status when the alarm occurs |

| 4.3 | <b>Operating Group</b> | (Command Code: 12h) |
|-----|------------------------|---------------------|
|-----|------------------------|---------------------|

| No.  | Name              | Unit    | Lower limit    | Upper limit    | Initial<br>value | Description                  |
|------|-------------------|---------|----------------|----------------|------------------|------------------------------|
| 01h  | Start Speed       | [nns]   | 1              | 600 000        | 100              | Set the start speed among    |
| 0111 | Start Speed       | [hh2]   | T              | 000,000        | 100              | the 5 parameters             |
| 02h  | May Spood         | [nnc]   | 1              | 600.000        | 1 000            | Set the max speed among      |
| 0211 | Max Speed         | [hh2]   | T              | 000,000        | 1,000            | the 5 parameters             |
|      |                   |         |                |                |                  | Set the acceleration rate,   |
| 03h  | Acceleration Time | [msec]  | 0              | 10,000         | 100              | Up to 5 acceleration time is |
|      |                   |         |                |                |                  | available.                   |
|      |                   |         |                |                |                  | Set the deceleration rate,   |
| 04h  | Deceleration Time | [msec]  | 0              | 10,000         | 100              | Up to 5 deceleration time is |
|      |                   |         |                |                |                  | available.                   |
| 05h  | Position          | [Pulse] | -2,147,483,648 | +2,147,483,647 | 0                | Set the position to be moved |

## 4.4 Parameter Group (Command Code: 13h)

| No. | Name                    | Unit    | Lower limit    | Upper limit    | Initial value  | Description                                                                                                                                                                                                           |
|-----|-------------------------|---------|----------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01h | Pulse per<br>Revolution | -       | 0              | 9              | 0              | Set the number of pulse<br>per motor 1 rotation<br>(0:500, 1:1000, 2:1600,<br>3:2000, 4:3200, 5:3600,<br>6:5000, 7:6400, 8:7200,<br>9:10000)                                                                          |
| 02h | Speed Filter            | -       | 0              | 15             | 8              | Set the motor drive<br>response during<br>operation<br>(0: disable, 1:2ms, 2:4ms,<br>3:6ms, 4:8ms, 5:10ms,<br>6:20ms, 7:40ms, 8:60ms,<br>9:80ms, 10:100ms,<br>11:120ms, 12:140ms,<br>13:160ms, 14:180ms,<br>15:200ms) |
| 03h | Stop Current            | [%]     | 20             | 100            | 50             | When motor stops, set<br>the ratio of supplied<br>current on the motor<br>and current<br>consumption<br>e.g.) set value = 50<br>stop current = 50% of<br>current consumption                                          |
| 04h | Software Limit +        | [pulse] | -2,147,483,648 | +2,147,483,647 | +2,147,483,647 | In position move, set the<br>max. input limit to CW<br>direction                                                                                                                                                      |
| 05h | Software Limit -        | [pulse] | -2,147,483,648 | +2,147,483,647 | -2,147,483,648 | In position move, set the<br>max. input limit to CCW<br>direction                                                                                                                                                     |
| 06h | In-Position<br>Range    | -       | 0              | 15             | 0              | Set the number of<br>position error to identify<br>as In-Position status                                                                                                                                              |
| 07h | Motor Gain              | -       | 0              | 15             | 0              | Set the motor gain                                                                                                                                                                                                    |
| 08h | P Gain                  | -       | 0              | 7              | 1              | When Motor Gain is set<br>as User Setting, set the P<br>Gain                                                                                                                                                          |
| 09h | l Gain                  | -       | 0              | 4              | 1              | When Motor Gain is set<br>as User Setting, set the I<br>Gain                                                                                                                                                          |

### **Autonics**

| No. | Name                  | Unit | Lower limit | Upper limit | Initial value | Description             |  |
|-----|-----------------------|------|-------------|-------------|---------------|-------------------------|--|
| 0Ah | IN0 function setting  | -    | 0           | 21          | 0             |                         |  |
| 0Bh | IN1 function setting  | -    | 0           | 21          | 0             |                         |  |
| 0Ch | IN2 function setting  | -    | 0           | 21          | 0             |                         |  |
| 0Dh | IN3 function setting  | -    | 0           | 21          | 0             | General input "INO" to  |  |
| 0Eh | IN4 function setting  | -    | 0           | 21          | 0             | "IN7" function assigned |  |
| 0Fh | IN5 function setting  | -    | 0           | 21          | 0             |                         |  |
| 10h | IN6 function setting  | -    | 0           | 21          | 0             |                         |  |
| 11h | IN7 function setting  | -    | 0           | 21          | 0             |                         |  |
| 12h | OUT0 function setting | -    | 0           | 4           | 0             |                         |  |
| 13h | OUT1 function setting | -    | 0           | 4           | 0             |                         |  |
| 14h | OUT2 function setting | -    | 0           | 4           | 0             | Conoral output "OUTO"   |  |
| 15h | OUT3 function setting | -    | 0           | 4           | 0             | to "OUT6" function      |  |
| 16h | OUT4 function setting | -    | 0           | 4           | 0             | assigned                |  |
| 17h | OUT5 function setting | -    | 0           | 4           | 0             |                         |  |
| 18h | OUT6 function setting | -    | 0           | 4           | 0             |                         |  |

## 4.5 Home Search Mode Group (Command Code: 14h)

| No. | Name                                | Unit    | Lower Limit    | Upper Limit    | Initial<br>value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|-------------------------------------|---------|----------------|----------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01h | ORG Active<br>Level                 | -       | Low            | High           | Low              | Signal level setting to recognize<br>input of home sensor as ON state<br>(Low: [L], High: [H])                                                                                                                                                                                                                                                                                                                                                                   |
| 02h | Home Search<br>Start Speed          | [pps]   | 1              | 600,000        | 500              | Start speed setting during home search                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 03h | Home Search<br>Max Speed            | [pps]   | 1              | 600,000        | 10,000           | Max speed setting during home search                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 04h | Home Search<br>Acceleration<br>Time | [msec]  | 1              | 10,000         | 1000             | Acceleration time setting during home search                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 05h | Home Search<br>Deceleration<br>Time | [msec]  | 1              | 10,000         | 1000             | Deceleration time setting during home search                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 06h | Home Search<br>Method               | _       | 0              | 3              | 0                | <ul> <li>Selection of home search method</li> <li>0: move by the set home search<br/>direction and end when home<br/>sensor is ON</li> <li>1: In case of home search<br/>command, it moves to the set<br/>home search direction and<br/>ends when limit sensor is ON</li> <li>2: home search operation to the<br/>position designated by the user</li> <li>3: torque home search operation<br/>according to the set value in<br/>'Home Search Torque'</li> </ul> |
| 07h | Home Search<br>Direction            | -       | CW             | ссw            | CW               | Rotation direction setting of the motor during home search                                                                                                                                                                                                                                                                                                                                                                                                       |
| 08h | Home Search<br>Offset               | [pulse] | -2,147,483,648 | +2,147,483,647 | 0                | After home search, move<br>additional distance of the setting<br>value and stop                                                                                                                                                                                                                                                                                                                                                                                  |
| 09h | Home Search<br>Position Set         | [pulse] | -2,147,483,648 | +2,147,483,647 | 0                | After home search, change position value as this setting value                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0Ah | Home Search<br>Torque               | [%]     | 20             | 100            | 50               | In case of running torque home<br>search, calculate 80% of torque(%)<br>rated current as 100%<br>e.g. 1) setting value: 40%, motor:<br>56L                                                                                                                                                                                                                                                                                                                       |

| No. | Name | Unit | Lower Limit | Upper Limit | Initial<br>value | Description                         |
|-----|------|------|-------------|-------------|------------------|-------------------------------------|
|     |      |      |             |             |                  | Torque stop current = 3.5 x 0.8 x   |
|     |      |      |             |             |                  | 0.4                                 |
|     |      |      |             |             |                  | = 1.12 [Arms]                       |
|     |      |      |             |             |                  | e.g. 2) setting value: 100%, motor: |
|     |      |      |             |             |                  | 42S                                 |
|     |      |      |             |             |                  | Torque stop current = 1.7 x 0.8 x 1 |
|     |      |      |             |             |                  | = 1.36 [Arms]                       |

## 4.6 Monitoring Group

| Command |             | Diamlay Damaa              | Initial               |       |
|---------|-------------|----------------------------|-----------------------|-------|
| Code    | Description |                            |                       | value |
| 101h    | Rotation    | 0 to 1 000                 | 0                     |       |
| 10111   | speed       | 0104,000                   |                       |       |
| 102h    | Logical     | 0 to 600 000               | 0                     |       |
| 10211   | speed       | 010000,000                 |                       |       |
| 103h    | Actual      | 0 to 600 000               | 0                     |       |
| 10511   | speed       | 010000,000                 |                       |       |
| 104h    | Logical     | -2 147 483 648 to +2 147 4 | 0                     |       |
| 10411   | position    | -2,147,403,040 to +2,147,4 |                       |       |
| 105h    | Actual      | -2 147 483 648 to +2 147 4 | 0                     |       |
| 10511   | position    | -2,147,403,040 to +2,147,4 |                       |       |
|         |             | 0: Standby mode            | 4: Program mode       |       |
| 106b    | Operation   | 1: Index mode              | 5: Home search mode   | _     |
| 10011   | mode        | 2: Jog mode                | 6: General mode       |       |
|         |             | 3: Continuous mode         | 7: Program pause mode |       |

## 4.7 Alarm Code

| FND indicator | Description                  | Alarm Code |
|---------------|------------------------------|------------|
| E. I          | Comm. station setting error  | 1          |
| 5.2           | Comm. speed setting error    | 2          |
| С.Э           | Comm. station setting change | 3          |
| E.4           | Comm. speed setting change   | 4          |
| ٤.5           | Comm. failure                | 5          |
| E. I          | Overcurrent error            | 6          |
| E.2           | Overspeed error              | 7          |
| Е.Э           | Position tracking error      | 8          |
| Е.Ч           | Overload error               | 9          |
| E.5           | Overheat error               | 10         |
| E.6           | Motor connection error       | 11         |
| ר.ד           | Encoder connection error     | 12         |
| E.8           | Regenerative voltage error   | 13         |
| E.9           | Motor misalignment           | 14         |
| E.R.          | Command speed error          | 15         |
| Е.ь.          | Input voltage error          | 16         |
| E.C.          | In-Position error            | 17         |
| E.d.          | Memory error                 | 18         |
| E.E.          | Emergency stop               | 19         |
| E.F.          | Program mode error           | 20         |
| E.G.          | Index mode error             | 21         |
| E.H.          | Home search mode error       | 22         |

## 4.8 Warning Code

| FND indicator       | Description      | Warning Code |
|---------------------|------------------|--------------|
| . 기 +Software limit |                  | 1            |
| <u>7</u> .5         | -Software limit  | 2            |
| <u>7</u> .3         | +Hardware limit  | 3            |
| <u> </u>            | -Hardware limit  | 4            |
| <u>.</u> 5          | Overload warning | 5            |



\* Dimensions or specifications on this manual are subject to change and some models may be discontinued without notice.