

 REMOTE CONTROL AND PROGRAMMING REFERENCE

 for the FLUKE 120 Series

 Industrial ScopeMeter

 ===

 This file contains remote control and programming information
 for the above-mentioned model with use of the PM9080 Optically
 Isolated RS232 Adapter/Cable and the OC4USB Optically Isolated
 USB-RS232 Adapter/Cable.

 It consists of the following chapters:

 1. INSTALLING THE PM9080 and OC4USB

 2. INTRODUCTION TO PROGRAMMING

 3. COMMAND REFERENCE

 APPENDIXES

 APPENDIX A ACKNOWLEDGE DATA
 APPENDIX B STATUS DATA
 APPENDIX C WAVEFORM DATA
 APPENDIX D ASCII 7-BIT CODES

 Version: March 2007

dada
Long TEQUIPMENT

http://www.tequipment.net

 Page 1.1
 ===

 1. INSTALLATION OF THE PM9080 and OC4USB

 PM9080:
 - Connect the PM9080 to the RS232 port of the computer
 as indicated in the PM9080 Instruction Manual.

 - Hook the PM9080 cable to the ScopeMeter as
 indicated in the PM9080 Instruction Manual.

 - Turn on the computer and the ScopeMeter.

 - Make sure that the communication settings match for the
 RS232 port of the computer and the ScopeMeter.

 After power-on, the default settings of the ScopeMeter
 are as follows:

 1200 baud, No parity, 8 data bits, 1 stop bit

 You can modify the baud rate with the PC (Program
 Communication) command. See chapter 3 COMMAND REFERENCE.
 Other settings are fixed.

 You can modify the computer RS232 port settings to match
 the above ScopeMeter settings with the following
 DOS command:

 MODE COM1:1200,N,8,1

 This command assumes that COM1 is the RS232 port used on
 the computer. Replace COM1 in the above command with COM2,
 COM3, or COM4 if one of these ports is used. You can place
 this command in the computer startup file AUTOEXEC.BAT so
 that the default settings for the computer are the same as
 for the ScopeMeter. If you want to use a higher
 data transfer speed (baud rate), let your QBASIC program
 change the settings for both the computer and the
 ScopeMeter. See the example under the PC (Program
 Communication) command in chapter 3 COMMAND REFERENCE.

 OC4USB:
 for the OC4USB installation instructions refer to the
 OC4USB Users Manual on Fluke’s web site www.fluke.com.

 Page 2.1
 ===

 2. INTRODUCTION TO PROGRAMMING

 ** Basic Programming Information **

 When you have installed the PM9080 as described in the
 previous chapter, you can control the ScopeMeter
 from the computer with simple communication facilities, such
 as GWBASIC, QuickBASIC and QBASIC (programming languages from
 Microsoft Corporation).

 All examples given in this manual are in the QBASIC language
 but will also run in QuickBASIC. QuickBASIC allows you to
 make executable files from programs so you can start such
 programs directly from DOS.
 It is assumed that you have knowledge of these programming
 languages. QBASIC is supplied with Microsoft Operating System
 MS-DOS 5.0 and higher, and has an 'on-line' Help function.

 Features of the syntax and protocol for the ScopeMeter
 are as follows:

 - Easy input format with a 'forgiving' syntax:
 All commands consist of two characters that can be
 UPPER or lower case.
 Parameters that sometimes follow the command may be
 separated from it by one or more separation characters.

 - Strict and consistent output format:
 Alpha character responses are always in UPPERCASE.
 Parameters are always separated by a comma
 ("," = ASCII 44, see Appendix D).
 Responses always end with the carriage return code
 (ASCII 13). Because the carriage return code is a
 non-visible character (not visible on the screen or on
 paper), this character is represented as <cr> in the
 command syntax.
 - Synchronization between input and output:
 After receipt of every command, the ScopeMeter
 returns an acknowledge character (digit) followed by the
 carriage return code (ASCII 13). This indicates that the
 command has been successfully received and executed.
 The computer program must always read this acknowledge
 response before sending the next command to the
 ScopeMeter.

 Page 2.2

 ** Commands sent to the ScopeMeter **

 All commands for the ScopeMeter consist of a header
 made up of two alpha characters sometimes followed by
 parameters. Example:

 RI This is the Reset Instrument command. It
 resets the ScopeMeter.

 Some of the commands are followed by one or more parameters
 to give the ScopeMeter more information.
 Example:

 SS 8 This is the Save Setup command. It saves the
 present acquisition settings in memory. The SS
 header is followed by a separator (space),
 then followed by the parameter "8" to
 indicate where to store the settings. The
 meaning of this parameter is described in
 Chapter 3 COMMAND REFERENCE.

 Some commands require several parameters.
 Example:

 WT 9,50,30 This is the Write Time command.
 This command requires three parameters. The
 parameters are separated by a comma, which is
 called the Program Data Separator. You may
 use only one comma between the parameters.
 Also refer to the section 'Data Separators'.

 A code at the end of each command tells the ScopeMeter
 that the command is ended. This is the carriage return
 code (ASCII 13) and is called the Program Message Terminator.
 This code is needed to indicate to the ScopeMeter
 that the command is completed so it can start executing the
 command. Also refer to the section 'Command and Response
 Terminators'.

 Page 2.3

 ** Responses received from the ScopeMeter **

 After each command sent to the ScopeMeter there
 is an automatic response from it, indicated as <acknowledge>
 (which you MUST input), to let the computer know whether or
 not the received command has been successfully executed.
 Refer to the 'Acknowledge' section below.

 There are several commands that ask the ScopeMeter
 for response data. Such commands are called Queries.
 Example:

 ID This is the IDentification query, which asks for
 the model number and the software version of the
 ScopeMeter.

 When the ScopeMeter has received a query, it sends
 the <acknowledge> reply as it does after any command, but
 now it is followed by the queried response data.

 The format of the response data depends upon which query is
 sent. When a response consists of different response data
 portions, these are separated with commas (ASCII code 44).
 Also refer to the section 'Data Separators'.

 All response data, <acknowledge> as well as following
 (queried) response data are terminated with the carriage
 return code (<cr> = ASCII 13). Also refer to the section
 'Command and Response Terminators'.

 Page 2.4

 ** Acknowledge **

 After receiving of a command, the ScopeMeter
 automatically returns the <acknowledge> response to let the
 computer know whether or not the received command has been
 successfully executed.
 This response is a one-digit number followed by <cr> as
 response terminator. If <acknowledge> is 0, it indicates
 that the ScopeMeter has successfully executed the
 command. If the command was a query, the <acknowledge><cr>
 response is immediately followed by the queried response data
 terminated with <cr>.
 If <acknowledge> is 1 or higher, it indicates that the
 ScopeMeter has not executed the command
 successfully. In that case, if the command was a query, the
 <acknowledge><cr> response is NOT followed by any further
 response data.
 There can be several reasons for a non-zero <acknowledge>
 response. For more information see Appendix A.
 In case of an error you can obtain more detailed status
 information by using the ST (STATUS) query.

 Note: YOU MUST ALWAYS INPUT <acknowledge>, EVEN WHEN
 THE COMMAND WAS NOT A QUERY.

 Page 2.5

 ** Data Separators **

 Data Separators are used between parameters sent to the
 ScopeMeter and between values and strings received
 from the ScopeMeter. Comma (",") is used as program
 data separator as well as response data separator:

 - Program Data Separator

 Name Character ASCII Value Comments
 Decimal
 --
 comma , 44 Single comma allowed

 - Response Data Separator

 Name Character ASCII Value Comments
 Decimal
 --
 comma , 44

 Page 2.6

 ** Command and Response Terminators **
 (Message Terminators)

 - Command (Program Message) Terminators

 A code is needed at the end of each command to tell the
 ScopeMeter that the command is ended, and that it
 can start executing the command. This code is called the
 Program Message Terminator. The code needed for the
 ScopeMeter is carriage return (ASCII code 13 decimal).
 Notes:

 1. The carriage return code is a non-visible ASCII
 character. Therefore this code is represented as <cr>
 in the Command Syntax and Response Syntax lines given
 for each command.
 2. The QBASIC programming language, which is used for
 all program examples, automatically adds a carriage
 return to the end of the command output. (In the QBASIC
 language, this is the PRINT #.... statement.)

 After <cr> is recognized by the ScopeMeter, the
 entered command is executed. After EACH command the
 ScopeMeter returns <acknowledge><cr> to the
 computer to signal the end of the command processing (also
 see the section 'Acknowledge'.)

 - Response (Message) Terminators

 The response from the ScopeMeter ends with a
 carriage return (ASCII 13). This is indicated as <cr> in
 the Response Syntax for each command.

 Page 2.7

 ** Typical program sequence **
 An example

 A typical program sequence consists of the following user
 actions:

 1. Set the communication parameters for the RS232 port of
 the computer to match the ScopeMeter settings.

 2. Output a command or query to the ScopeMeter.

 3. Input the acknowledge response from the ScopeMeter.

 If the response value is zero, go to step 4.

 If the response value is non-zero, the ScopeMeter did not
 execute the previous command. Read the error message from
 the following acknowledge subroutine, recover the error,
 and repeat the command or query. (This is not shown in the
 following program example.)

 4. If a query was output to the ScopeMeter, input its
 response.

 5. The sequence of points 2, 3, and 4 may be repeated for
 different commands or queries.

 6. Close the communication channel.

 Refer to the program example on the next page.

 Page 2.8

 'Example of a typical program sequence:

 '***************** Begin example program ****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1

 'This QBASIC program line sets the parameters for the
 'RS232 port (COM1 on the Computer) to match the
 'ScopeMeter power-on default settings. It also opens a
 'communication channel (assigned #1) for input or output
 'through the COM1 port. Your ScopeMeter must be connected
 'to this port. "RB2048" sets the size of the computer
 'receive buffer to 2048 bytes to prevent buffer overflow
 'during communication with the ScopeMeter.

 PRINT #1, "ID"

 'Outputs the IDENTITY command (query) to the ScopeMeter.

 GOSUB Acknowledge

 'This subroutine inputs the acknowledge response from
 'the ScopeMeter and displays an error message if the
 'acknowledge value is non-zero.

 INPUT #1, Response$

 'This inputs the response data from the IDENTITY query.

 PRINT Response$

 'Displays the queried data.

 CLOSE #1

 'This closes the communication channel.

 END

 'This ends the program.

 Page 2.9

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program *****************

 Page 3.1
 ===

 3. COMMAND REFERENCE

 CONVENTIONS

 ** Page layout used for each command **

 - Header

 Each command description starts on a new page with a header
 for quickly finding the command. This header indicates the
 command name and the two-character header used for the
 command syntax. Example:

 ===
 AUTO SETUP AS

 Where AUTO SETUP is a descriptive name for the command
 (this is no syntax!),

 and AS are the first two characters used for
 the command syntax (not the complete
 syntax).

 - Purpose:
 Explains what the command does or what it is used for.

 - Command Syntax:
 Shows the syntax for the command. Parameters are separated
 by commas. Commands are terminated by <cr> (carriage
 return).

 - Response Syntax:
 Shows the format of the response from the ScopeMeter.
 Responses are terminated by <cr> (carriage return).
 Each Response Syntax starts with the <acknowledge>
 response, followed by the query response if the syntax
 relates to a query.

 - Example:
 This is an example QBASIC program which shows how you can
 use the command. The example may also include some other
 commands to show the relation with these commands.
 The following two comment lines (start with ') successively
 indicate the beginning and the end of an example program.

 '***************** Begin example program ****************

 '****************** End example program *****************

 Page 3.2

 Use an MS-DOS Editor and copy the complete program between
 these two lines to a file name with the .BAS extension.
 Start QBASIC and open this file from the FILE menu.
 Long programs (longer than 55 lines) include page breaks.
 Such page breaks are preceded by the ' (remark) character
 to prevent the QBASIC interpreter from interpreting them as
 an incorrect statement.
 When you have connected the ScopeMeter as
 indicated in the PM9080 Instruction Manual, you can start
 the program from the RUN menu.

 Page 3.3

 ** Syntax conventions **

 The Command Syntax and the Response Syntax may contain the
 following meta symbols and data elements:

 UPPERCASE These characters are part of the syntax.
 For commands, lower case is also allowed.

 <...> An expression between these brackets is a
 code, such as <cr> (carriage return) that can
 not be expressed in a printable character, or
 it is a parameter that is further specified.
 Do not insert the brackets in the command!

 [...] The item between these brackets is optional.
 This means that you may omit it for the
 command, or for a response it may not appear.
 Do not insert the brackets in the command!

 | This is a separator between selectable items.
 This means that you must choose only one of
 the items (exclusive or).

 {...} Specifies an element that may be repeated 0 or
 more instances.

 (...) Grouping of multiple elements.

 <binary_character>= 0 to 255

 <digit> = 0 to 9

 <decimal_number>= <digit>{<digit>}

 <float> = <mantissa><exponent>
 <mantissa> = <signed_integer>
 <exponent> = <signed_byte>

 <signed_integer> = <binary_character><binary_character>
 Two bytes representing a signed
 integer value. The first byte is the
 most significant and contains the
 sign bit (bit 7).

 <unsigned_integer>= <binary_character><binary_character>
 Two bytes representing an unsigned
 integer value. The first byte is the
 most significant.

 Page 3.4
 ===

 ** Overview of commands for the ScopeMeter **

 COMMAND PAGE
 COMMAND NAME HEADER NUMBER

 AUTO SETUP AS 3.5
 ARM TRIGGER AT 3.7
 CLEAR MEMORY CM 3.9
 CPL VERSION QUERY CV 3.11
 DEFAULT SETUP DS 3.13
 GET DOWN GD 3.15
 GO TO LOCAL GL 3.17
 GO TO REMOTE GR 3.20
 IDENTIFICATION ID 3.21
 INSTRUMENT STATUS IS 3.23
 PROGRAM COMMUNICATION PC 3.26
 PROGRAM SETUP PS 3.28
 QUERY MEASUREMENT QM 3.32
 QUERY PRINT QP 3.35
 QUERY SETUP QS 3.39
 QUERY WAVEFORM QW 3.40
 READ DATE RD 3.54
 RESET INSTRUMENT RI 3.56
 RECALL SETUP RS 3.58
 READ TIME RT 3.61
 SWITCH ON SO 3.63
 SAVE SETUP SS 3.64
 STATUS QUERY ST 3.65
 TRIGGER ACQUISITION TA 3.68
 WRITE DATE WD 3.70
 WRITE TIME WT 3.72

 Page 3.5
 ===
 AUTO SETUP AS

 Purpose:

 Invokes an automatic setup for the active mode. The result
 of this command is the same as pressing the AUTO key
 on the ScopeMeter.

 Note: You can select the items that are affected by the
 AUTO SET procedure via the USER OPTIONS key on
 the ScopeMeter.

 Command Syntax:

 AS<cr>

 Response Syntax:

 <acknowledge><cr>

 Example:

 The following example program sends an AUTO SETUP command to
 the ScopeMeter. Connect a repetitive signal on
 INPUT A to see the effect of AUTO SETUP.

 ‘ Page 3.6

 '***************** Begin example program *****************

 CLS 'Clears the PC screen.

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "AS" 'Sends AUTO SETUP command.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 CLOSE #1
 END

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.7
 ===
 ARM TRIGGER AT

 Purpose:

 Resets and arms the trigger system for a new acquisition.
 This command is used for single shot measurements.
 When the AT command is given while an acquisition is in
 progress, this acquisition is aborted and the trigger
 system is rearmed.

 Command Syntax:

 AT<cr>

 Response Syntax:

 <acknowledge><cr>

 Example:

 The following example program arms the trigger system of
 the ScopeMeter with the AT command.
 This means that after this command the ScopeMeter starts an
 acquisition when a trigger occurs from the signal (when
 exceeding the trigger level) or from a TA (Trigger
 Acquisition) command.
 After the AT command it is assumed that the signal amplitude
 is sufficient to trigger the acquisition. If it is not, you
 can use the TA (TRIGGER ACQUISITION) command to force the
 acquisition to be triggered. But this is not useful if you
 want the acquisition to be started on a signal edge for
 synchronization purposes.

 Also see the example program for the IS command, which also
 uses the AT command for a single shot application.

 '***************** Begin example program *****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "AT" 'Sends the ARM TRIGGER command.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 CLOSE #1
 END

'

' Page 3.8

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.9
 ===
 CLEAR MEMORY CM

 Purpose:

 Clears all saved setups, waveforms, and screens from
 memory.

 Command Syntax:

 CM<cr>

 Response Syntax:

 <acknowledge><cr>

 Example:

 ‘ Page 3.10

 '***************** Begin example program *****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1,"CM" 'Sends the Clear Memory command.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 CLOSE #1
 END

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.11
 ===
 CPL VERSION QUERY CV

 Purpose:

 Queries the CPL interface version.

 Command Syntax:

 CV<cr>

 Response Syntax:

 <acknowledge><cr>[<version><cr>]

 where,

 <version> is an ASCII string representing the year this
 version has been created.

 Example:

 ‘ Page 3.12

 '***************** Begin example program *****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1,"CV" 'Sends CPL VERSION query.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 INPUT #1,VERSION$ 'Inputs queried data.
 PRINT "CPL Version "; VERSION$ 'Displays version data.
 END

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program ******************

dada
Long TEQUIPMENT

http://www.tequipment.net

 Page 3.13
 ===
 DEFAULT SETUP DS

 Purpose:

 Resets the ScopeMeter to the factory settings at
 delivery, except for the RS232 communication settings such
 as baud rate, to keep the communication alive.
 A Master Reset (refer to the Users Manual) performs the
 same, but also resets the RS232 communication settings to
 the default values.

 Command Syntax:

 DS<cr>

 Response Syntax:

 <acknowledge><cr>

 Note: Wait for at least 2 seconds after the
 <acknowledge> reply has been received, to let
 the ScopeMeter settle itself before you send the
 next command.

 Example:

 ‘ Page 3.14

 '***************** Begin example program *****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 CLS
 PRINT #1, "DS" 'Sends DEFAULT SETUP command.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 SLEEP 2 'Delay (2 s) necessary after "DS".
 PRINT #1, "ID" 'Sends the IDENTIFICATION query.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 INPUT #1, ID$ 'Inputs identity data from ScopeMeter.
 PRINT ID$ 'Displays identity data.
 CLOSE #1
 END

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"

 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.15
 ===
 GET DOWN GD

 Purpose:

 Switches the instrument's power off. If a power adapter
 is connected, you can use the SO command to switch power
 on again. If there is no power adapter connected, the
 instrument can only be switched on manually by pressing
 the Power ON/OFF key.

 Command Syntax:

 GD<cr>

 Response Syntax:

 <acknowledge><cr>

 Example:

 ‘ Page 3.16

 '***************** Begin example program *****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 CLS
 PRINT #1, "GD" 'Sends the GET DOWN command.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 PRINT "The GET DOWN command switched the ScopeMeter off."

 PRINT "Press any key on the PC keyboard to switch "
 PRINT "the ScopeMeter on again."
 SLEEP
 PRINT #1, "SO" 'Sends the SWITCH ON command.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 CLOSE #1
 END

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4

 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.17
 ===
 GO TO LOCAL GL

 Purpose:

 Sets the ScopeMeter in the local operation mode
 so the keypad is enabled.
 Also refer to the GR (Go to Remote) command.

 Command Syntax:

 GL<cr>

 Response Syntax:

 <acknowledge><cr>

 Example:

 The following example uses the GR (GO TO REMOTE) command
 (refer to the description for this command) to set the
 ScopeMeter in the REMOTE state so that the keypad
 is disabled (except for the F4 key). After that, the GL
 (GO TO LOCAL) command is sent so that the keypad is enabled
 again.

 ‘ Page 3.18

 '***************** Begin example program *****************

 CLS 'Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "GR" 'Sends GO TO REMOTE command.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 PRINT "All ScopeMeter keys (except F4 softkey, which sets
 PRINT "ScopeMeter back to LOCAL, and the Power ON/OFF key)
 PRINT "are now disabled by the GR (GO TO REMOTE) command."
 PRINT "Check this."
 PRINT "The remote state is indicated as REMOTE on the bottom"
 PRINT "right of the display."
 PRINT
 PRINT "Press any key on the PC keyboard to continue."

 SLEEP
 PRINT
 PRINT #1, "GL" 'Sends GO TO LOCAL command.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 PRINT "The ScopeMeter keys are now enabled again by the "
 PRINT "GL (GO TO LOCAL) command."
 PRINT "Check this."
 CLOSE #1
 END

 '

 ' Page 3.19

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.20
 ===
 GO TO REMOTE GR

 Purpose:

 Sets the ScopeMeter in the remote operation mode
 so that the keypad is disabled (except for the F4 key).
 You can use one of the following methods to return to
 the local operation mode so that the keypad is enabled:
 1. Sending the GL (Go to Local) command.
 2. Pressing the F4 key on the ScopeMeter keypad.

 Command Syntax:

 GR<cr>

 Response Syntax:

 <acknowledge><cr>

 See an example for this command under GO TO LOCAL (GL).

 Page 3.21
 ===
 IDENTIFICATION ID

 Purpose:

 Returns the ScopeMeter model identification information.

 Command Syntax:

 ID<cr>

 Response Syntax:

 <acknowledge><cr>[<identity><cr>]

 where,

 <identity> is an ASCII string containing the following
 data elements:
 <model_number>;<software_version>;
 <creation_date>;<languages>

 Example:

 The following example program queries the identity data of
 the ScopeMeter and displays this data on the PC
 screen.

' Page 3.22

 '***************** Begin example program *****************

 CLS 'Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "ID" 'Sends IDENTIFICATION query.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 INPUT #1, IDENT$ 'Inputs the queried data.
 PRINT IDENT$ 'Displays queried data.
 CLOSE #1
 END

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.23
 ===
 INSTRUMENT STATUS IS

 Purpose:

 Queries the contents of the ScopeMeter's status register.
 The returned value reflects the present operational status
 of the ScopeMeter. This is a 16-bit word, presented as an
 integer value, where each bit represents the Boolean value
 of a related event.

 Command Syntax:

 IS<cr>

 Response Syntax:

 <acknowledge><cr>[<status><cr>]

 where,

 <status> = integer value 0 to 32768

 <status>
 value Status Description
 --
 1 Maintenance mode
 2 Charging
 4 Refreshing
 8 AutoRanging
 16 Remote
 32 Battery Connected
 64 Power Adapter connected
 128 Calibration necessary
 256
 512 Pre Calibration busy
 1024
 2048 Ground Error detected
 4096 Triggered
 8192 Instrument On

 Example:

 Page 3.24

 '***************** Begin example program *****************

 CLS 'Clears the PC screen
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "IS" 'Sends the INSTRUMENT STATUS query
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter
 INPUT #1, Status$ 'Input Instrument Status
 StatVal = VAL(Status$) 'Decimal value of Instrument Status
 PRINT "Instrument Status : "; StatVal
 IF (StatVal AND 2) = 2 THEN PRINT " ScopeMeter charging."
 IF (StatVal AND 8) = 8 THEN PRINT " AutoRanging active"
 IF (StatVal AND 32) = 32 THEN PRINT " Battery connected."
 IF (StatVal AND 64) = 64 THEN PRINT " Power Adapter connected."
 IF (StatVal AND 8192) = 8192 THEN PRINT " Instrument On."
 IF StatVal < 8192 THEN PRINT " Instrument Off."
 END
 '

' Page 3.25

 '**************** Acknowledge subroutine ******************

 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.26
 ===
 PROGRAM COMMUNICATION PC

 Purpose:

 Programs the baud rate for RS232 communication:

 Command Syntax:

 PC <baudrate>

 where,

 <baudrate> = 1200|2400|4800|9600|19200

 The default baudrate is 1200. This is set at power-on or
 after a Reset Instrument command (command "RI")

 Notes:
 The Fluke 120 series supports 1 stopbit, 8 databits
 and software handshake (X-on X-off protocol).
 Hardware handshaking is not supported.

 Page 3.27

 Response Syntax:

 <acknowledge><cr>

 See an example for this command under QUERY PRINT (QP).

 Page 3.28
 ===
 PROGRAM SETUP PS

 Purpose:

 Restores a complete setup, previously saved with the SS
 (Save Setup) command and queried with the QS (Query Setup)
 command and saved in a string variable or to a file.

 Command Syntax 1:

 PS [<saved_setup_no>]<cr>

 where,

 <saved_setup_no> = 0 to 20
 This is the register number where a
 setup is stored. Also see the
 description of the Save Setup (SS)
 command.

 Response Syntax 1:

 <acknowledge><cr>

 Command Syntax 2:

 <queried_setup><cr>

 <queried_setup> = The data returned with the QS command.
 (<omit the <acknowledge><cr> response).

 Response Syntax 2:

 <acknowledge><cr>

 Note: Wait for at least two seconds after the
 <acknowledge> reply has been received, to let
 the ScopeMeter settle itself before you send the
 next command.

 Remarks:
 The ScopeMeter sends the <acknowledge> reply
 after it has executed the setup from the PS command.
 You must send the <setup> string as a whole, exactly as
 returned from the QS (Query Setup) command.
 If you do not follow this rule, the ScopeMeter
 may crash. A Reset may then be necessary to recover
 the ScopeMeter. (Refer to the ScopeMeter Users Manual.)

 Example:
 The following example program demonstrates the use of the
 QS (QUERY SETUP) and the PS (PROGRAM SETUP) commands.
 The present setup is queried from ScopeMeter and saved to
 file. The program asks you to change the ScopeMeter settings.
 Then the original setup is read from file and sent back
 to the ScopeMeter.

 ‘ Page 3.29

 '***************** Begin example program *****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 CLS
 GOSUB ClearPort 'Clears pending data from port.
 PRINT #1, "QS" 'Queries the actual setup data.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 GOSUB Response 'Writes the setup data to file.
 PRINT "Present setup data are stored in the file SETUP0"
 PRINT "This setup will now be retrieved from the file and"
 PRINT "sent back to the ScopeMeter."
 PRINT "To see if this works, change the present settings and"
 PRINT "verify if the ScopeMeter returns to the previous"
 PRINT "settings."
 PRINT
 PRINT "Press any key on the PC keyboard to continue."
 SLEEP
 CLS
 PRINT #1, "PS" 'Program header for programming
 'the setup data to the ScopeMeter.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 OPEN "SETUP0" FOR INPUT AS #2
 'Opens file SETUP0 for data retrieval.
 DO WHILE NOT EOF(2)
 SUCHR$ = INPUT$(1, #2) 'Reads setup data from file
 PRINT #1, SUCHR$; 'Programs ScopeMeter with the"
 'setup data stored in SETUP0$.
 LOOP
 PRINT #1, CHR$(13); 'Program message terminator
 CLOSE #2 'Close file SETUP0.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 END
 '

 ‘ Page 3.30

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '******* Clears pending data from the RS232 port *********
ClearPort:
 WHILE LOC(1) > 0
 Dummy$ = INPUT$(1, #1)
 WEND
 RETURN

 '

 ‘ Page 3.31

 '****************** Response subroutine *********************
 'This subroutine reads bytes from the RS232 buffer as long
 'as they enter. When no bytes enter for 1 second, the program
 'assumes that the ScopeMeter has terminated its response.
 'All bytes that enter the buffer are appended to the string
 'Resp$.

Response:
 start! = TIMER
 'Wait for bytes (maximum 1 s) to enter RS232 buffer
 WHILE ((TIMER < (start! + 1)) AND (LOC(1) = 0))
 WEND
 IF LOC(1) > 0 THEN 'If RS232 buffer contains bytes
 OPEN "Setup0" FOR OUTPUT AS #2 'File for setup data
 DO
 ' LOC(1) gives the number of bytes waiting:
 ScopeInput$ = INPUT$(LOC(1), #1) 'Input bytes
 PRINT #2, ScopeInput$;
 start! = TIMER
 WHILE ((TIMER < (start! + 1)) AND (LOC(1) = 0))
 WEND
 LOOP WHILE LOC(1) > 0 'Repeat as long as bytes enter
 CLOSE #2
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.32
 ===
 QUERY MEASUREMENT QM

 Purpose:

 Queries a measurement result from the ScopeMeter.

 Command Syntax:

 QM <field_no><cr>

 where,

 <field_no> = 11 to 18 and 21 to 28
 (see the following table)

 <field_no> MEASUREMENT TYPE / DESCRIPTION

 11 Channel A main reading.
 12 Channel A sub reading, only available when
 sub reading is active on channel A.
 13 Maximum result on A, only available when
 Trend Plot is active.
 14 Average result on A, only available when
 Trend Plot is active.
 15 Minimum result on A, only available when
 Trend Plot is active.
 16 Time stamp of last recorded maximum on A,
 only available when Trend Plot is active.
 17 Time stamp of last recorded average on A,
 only available when Trend Plot is active.
 18 Time stamp of last recorded minimum on A,
 only available when Trend Plot is active.

 21 Channel B main reading, only available when
 channel B is on.
 22 Channel B sub reading, only available when
 channel B is on.
 23 Maximum result on B, only available when
 channel B is on and Trend Plot is active.
 24 Average result on B, only available when
 channel B is on and Trend Plot is active.
 25 Minimum result on B, only available when
 channel B is on and Trend Plot is active.
 26 Time stamp of last recorded maximum on B,
 only available when channel B is on and
 Trend Plot is active.
 27 Time stamp of last recorded average on B,
 only available when channel B is on and
 Trend Plot is active.
 28 Time stamp of last recorded minimum on B,
 only available when channel B is on and
 Trend Plot is active.

 Page 3.32a

 Fluke 124-125 only:

 31 Cursor reading 1, only available when
 cursors are enabled.
 41 Cursor reading 2, only available when
 cursors are enabled.
 53 Cursor reading max, only available when
 cursors are enabled.
 54 Cursor reading avg, only available when
 cursors are enabled.
 55 Cursor reading min, only available when
 cursors are enabled.
 61 Cursor reading delta V, only available
 when cursors are enabled.
 71 Cursor reading delta T, only available
 when cursors are enabled.

 Fluke 125 only:

 81 Harmonics reading 1
 82 Harmonics subreading 1
 91 Harmonics reading 2
 92 Harmonics subreading 2
 101 Bushealth bias level
 102 Bushealth high level
 103 Bushealth low level
 104 Bushealth Peak Peak level
 105 Bushealth Datarate
 106 Bushealth Risetime
 107 Bushealth Falltime
 108 Bushealth Distortion Jitter
 109 Bushealth Distortion amplitude
 110 Bushealth Distortion ringing

 Page 3.33

 Response Syntax:

 <acknowledge><cr>[<meas_value><cr>]

 where,

 <meas_value> = [<sign>]<decimal_number>"E"
 <sign><decimal_number>
 Note: Only displayed results are
 available for output.

 Example:

 '***************** Begin example program *****************

 'This example program resets the ScopeMeter (RI command),
 'programs the default setup (DS command).

 CLS 'Clears the PC screen.

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "RI" 'Sends the RESET INSTRUMENT command.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 SLEEP 2 'Delay (2 s) necessary after reset.
 PRINT #1, "QM 11" 'Queries the Vac rms result.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 INPUT #1, result$
 PRINT "Measurement result = ";result$;" Vrms"
 CLOSE #1
 END
 '

 ‘ Page 3.34

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.35
 ===
 QUERY PRINT QP

 Purpose:

 Queries a screen dump of the ScopeMeter in different
 printer formats. This allows you to make a copy of the
 ScopeMeter screen on paper.

 Command Syntax:

 QP 0,<output_format><cr>

 where,

 <output_format> = 0 Epson FX, LQ compatible
 1 Laser Jet
 2 Desk Jet
 3 PostScript

 Response Syntax:

 <acknowledge><cr>[<printer_data>]

 <printer_data>
 This data can directly be sent to the printer to get a
 screen copy on paper.

 Example:

 The following program reads the ScopeMeter screen (print)

 data and copies this data to the file Qpfile. Hereafter, you
 can copy this file to the printer port LPT1, for example.
 The Read Buffer length for the PC is set to 7500 bytes to
 prevent buffer overflow during input from the ScopeMeter.

 The data transfer speed (baud rate) is set to 19200 and after
 the output it is set back to 1200 (default baud rate).

 ‘ Page 3.36

 '***************** Begin example program *****************

 CLS
 OPEN "COM1:1200,N,8,1,CS,DS,RB7500" FOR RANDOM AS #1
 'Programs COM1 port parameters to
 'match with the ScopeMeter power-on
 'defaults.
 PRINT #1, "PC 19200" 'Programs ScopeMeter to the maximum
 'baud rate.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 CLOSE #1
 OPEN "COM1:19200,N,8,1,CS,DS,RB7500" FOR RANDOM AS #1
 'Programs COM1 port parameters to
 'match with the new ScopeMeter
 'settings.
 PRINT #1, "QP 0,1" 'Sends QUERY PRINT data command.
 '(actual screen for LaserJet print)
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 PRINT
 PRINT "Busy reading print data !"
 PRINT
 GOSUB Response
 PRINT #1, "PC 1200" 'Programs ScopeMeter back to the
 'default baud rate.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.

 PRINT "Print data copied to file 'QPFILE'."
 PRINT "You can copy the file contents to the Laser Printer."
 PRINT "DOS-example: COPY Qpfile LPT1"
 CLOSE 'Close all files.
 END

 ‘ Page 3.37

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN
 '

 ‘ Page 3.38

 '****************** Response subroutine *********************
 'This subroutine reads bytes from the RS232 buffer as long
 'as they enter. When no bytes enter for 1 second, the program
 'assumes that the ScopeMeter has terminated its response.
 'All bytes that enter the buffer are appended to the string
 'Resp$.

Response:
 start! = TIMER
 'Wait for bytes (maximum 2 s) to enter RS232 buffer
 WHILE ((TIMER < (start! + 2)) AND (LOC(1) = 0))
 WEND
 IF LOC(1) > 0 THEN 'If RS232 buffer contains bytes
 Resp$ = ""
 OPEN "Qpfile" FOR OUTPUT AS #2 'File for print data
 DO
 ' LOC(1) gives the number of bytes waiting:
 ScopeInput$ = INPUT$(LOC(1), #1) 'Input bytes
 PRINT #2, ScopeInput$;
 start! = TIMER
 WHILE ((TIMER < (start! + 2)) AND (LOC(1) = 0))
 WEND
 LOOP WHILE LOC(1) > 0 'Repeat as long as bytes enter
 CLOSE #2
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.39
 ==
 QUERY SETUP QS
 --

 Purpose:

 Queries the present acquisition setup data from the
 ScopeMeter.

 Command Syntax:

 QS [<setup_no>]<cr>

 Response Syntax:

 <acknowledge><cr>[#0{<node>}<cr>]

 where,

 <node> = <node_header><node_identifier><node_length>
 [<node_data>]<check_sum>
 <node_header> = <binary_character>
 Possible values:
 20 hex All nodes except the last (end
 node)
 A0 hex End node
 <node_identifier> = <binary_character>
 Unique number for each specific node.
 <node_length> = <unsigned_integer>
 Specifies the number of <binary_character>
 fields that follow in the <node_data>
 field.
 <node_data> = {<binary_character>}
 The contents of <node_data> depends on the
 <node_identifier> and the selected setup.
 <check_sum> = <binary_character>
 Contains the sum of all the binary bytes
 in the <node_dat> field.

 Note: Also see the Program Setup (PS) command.

 See an example for this command under PROGRAM SETUP (PS).

 Page 3.40
 ===
 QUERY WAVEFORM QW

 Purpose:

 Queries the waveform data and/or the setup data related to
 the waveform from the ScopeMeter.

 Command Syntax:

 QW <trace_no>[,V|S]

 <trace_no> = Decimal number assigned to the following
 trace sources:

 <trace_no> Trace Source:

 10 MinMax trace INPUT A
 11 Normal trace INPUT A
 20 MinMax trace INPUT B
 21 Normal trace INPUT B

 V | v Trace values (samples) only
 S | s Setup (administration) data only.
 When V or S is omitted, both trace vales and
 setup data are returned.

 Response Syntax:

 <acknowledge><cr>[<trace_data><cr>]

 where,

 <trace_data> = <trace_admin> | <trace_samples> |
 <trace_admin>,<trace_samples>

 If the optional parameter (V or S) is omitted:

 <trace_data> = <trace_admin>,<trace_samples><cr>
 This includes the complete information about the trace
 (waveform).

 For detailed descriptions about the waveform structure,
 refer to Appendix C.

 Page 3.41

 If option V or v (value only) is given:

 <trace_data> = <trace_samples><cr>

 For detailed descriptions about the waveform structure,
 refer to Appendix C.

 If option S or s (Setup data only) is given:

 <trace_data> = <trace_admin><cr>

 where,

 <trace_admin> = string of hexadecimal characters,
 representing the setup related to the given
 <trace_no>.

 Example:

 '***************** Begin example program *****************
 '
 '***** If an error occurs in the waveform data,
 '***** the program stops.
 '
 C65536 = 65536 '2-bytes Maximum constant
 C32768 = 32768 '2-bytes Sign-bit constant
 C256 = 256 '1-byte Maximum constant
 C128 = 128 '1-byte Sign-bit constant
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 CLS
 GOSUB ClearPort 'Clears pending data from port
 '
 'A min/max trace is a series of waveform samples consisting of
 'minimum and maximum waveform points.
 'Query$ = "QW 10" 'Queries min/max trace INPUT A
 '
 'A normal trace is a series of waveform samples consisting of
 'single waveform points from the acquisition memory.
 Query$ = "QW 11" 'Queries normal trace INPUT A
 'See also Command Syntax
 PRINT #1, Query$ 'Response = <trace_admin>,<trace_samples>
 GOSUB Acknowledge 'Inputs acknowledge from ScopeMeter
 Resp$ = "" 'Clears the total Response string
 GOSUB Response 'Writes waveform data to Resp$ & files
 GOSUB Interpret.Admin 'Interprets waveform administration data
 'See also Appendix C
 GOSUB Interpret.Samples 'Interprets waveform sample data
 GOSUB Create.CSV 'Creates Wave.CSV file from waveform data
 'as input for Excel, for example.
 END
 '

 ‘ Page 3.42

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '******* Clears pending data from the RS232 port *********
 ClearPort:
 WHILE LOC(1) > 0
 Dummy$ = INPUT$(1, #1)
 WEND
 RETURN

 '

 ‘ Page 3.43

 '****************** Response subroutine *********************
 'This subroutine reads bytes from the RS232 buffer as long
 'as they enter. When no bytes enter for 1 second, the program
 'assumes that the ScopeMeter has terminated its response. All
 'bytes that enter the buffer are appended to the string Resp$
 'and are written to the following files:
 'File Waveform : the waveform data bytes
 'File Waveresp : the waveform ASCII values
 '
 Response:
 start! = TIMER
 'Wait for bytes (maximum 1 s) to enter RS232 buffer
 WHILE ((TIMER < (start! + 1)) AND (LOC(1) = 0))
 WEND
 IF LOC(1) > 0 THEN 'If RS232 buffer contains bytes
 OPEN "WaveForm" FOR OUTPUT AS #2
 'File to contain the waveform data bytes
 DO
 ' LOC(1) gives the number of bytes waiting:
 ScopeInput$ = INPUT$(LOC(1), #1) 'Input bytes
 PRINT #2, ScopeInput$;
 PRINT ASC(ScopeInput$); 'Prints only first byte value
 Resp$ = Resp$ + ScopeInput$
 start! = TIMER
 WHILE ((TIMER < (start! + 1)) AND (LOC(1) = 0))
 WEND
 LOOP WHILE LOC(1) > 0 'Repeat as long as bytes enter
 CLOSE #2
 PRINT
 END IF
 '
 '***** Write the total Response string to file WaveResp
 '
 OPEN "WaveResp" FOR OUTPUT AS #3
 PRINT "Response data length = "; LEN(Resp$)
 PRINT #3, "Response data length = "; LEN(Resp$)
 FOR i = 1 TO LEN(Resp$)
 PRINT #3, ASC(MID$(Resp$, i, 1));
 NEXT i
 CLOSE #3: RETURN
 '

 ‘ Page 3.44
 '
 Interpret.Admin:
 Resp.Count = 1 'Byte counter for Resp$
 SumCheck1% = 0 'Sumcheck byte for Resp$
 '
 '***** Interpret the <trace_admin> waveform data bytes
 '***** in the Resp$ string (see appendix C).
 '
 '***** 2 bytes <trace_admin> block trailing : #0
 '
 IF MID$(Resp$, Resp.Count, 2) <> "#0" GOTO Wave.Error
 Resp.Count = Resp.Count + 2
 '
 '***** 1 byte <block_header>
 nb = ASC(MID$(Resp$, Resp.Count, 1))
 IF nb <> 128 AND nb <> 0 GOTO Wave.Error
 Resp.Count = Resp.Count + 1
 '
 '***** 2 bytes <block_length>
 Block1.Length = ASC(MID$(Resp$, Resp.Count, 1)) * 256
 Block1.Length = Block1.Length + ASC(MID$(Resp$, Resp.Count + 1, 1))
 Resp.Count = Resp.Count + 2
 '
 '***** 1 byte <trace_process> : 1, 2, or 3
 Trace.Process = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck1% = SumCheck1% + Trace.Process
 IF Trace.Process < 1 OR Trace.Process > 3 GOTO Wave.Error
 Resp.Count = Resp.Count + 1
 '
 '***** 1 byte <trace_result> : 1, 2, or 3
 Trace.Result = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck1% = SumCheck1% + Trace.Result
 IF Trace.Result < 1 OR Trace.Result > 3 GOTO Wave.Error
 Resp.Count = Resp.Count + 1
 '
 '***** 1 byte <misc_setup> : 0 or 128
 Misc.Setup = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck1% = SumCheck1% + Misc.Setup
 IF Misc.Setup <> 0 AND Misc.Setup <> 128 GOTO Wave.Error
 Resp.Count = Resp.Count + 1
 '
 '***** 1 byte <y_unit>
 Y.Unit = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck1% = SumCheck1% + Y.Unit
 Resp.Count = Resp.Count + 1
 PRINT "<y_unit> ="; Y.Unit;
 '
 '***** 1 byte <x_unit>
 X.Unit = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck1% = SumCheck1% + X.Unit
 Resp.Count = Resp.Count + 1
 PRINT " <x_unit> ="; X.Unit
 '

 ‘ Page 3.45
 '
 DIM exponent(4) 'Exponents for Y/X.Zero & Y/X.Resol
 DIM YXvalue#(4) 'Values for Y/X.Zero & Y/X.Resol
 '
 '***** 3 bytes <y_zero> = <mantissa_high><mantissa_low><exponent>
 '***** <mantissa> = <mantissa_high> * 256 + <mantissa_low>
 '***** <y_zero> = <sign><mantissa> E <sign><exponent>
 '***** Example: +123E-4 = 123 / 10000 = 0.0123
 FOR i = 0 TO 2
 SumCheck1% = (SumCheck1% + ASC(MID$(Resp$, Resp.Count + i, 1))) MOD 256
 NEXT i
 nb = ASC(MID$(Resp$, Resp.Count, 1))
 IF nb >= 128 THEN
 nb = - (256 - nb) * 256 'Negative value
 nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))
 ELSE
 nb = nb * 256 'Positive value
 nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))
 END IF
 exponent(1) = ASC(MID$(Resp$, Resp.Count + 2, 1))
 YXvalue#(1) = nb
 Resp.Count = Resp.Count + 3
 '*****
 '* Further calculation after 'Signed.Samples' determination
 '*****
 '
 '***** 3 bytes <x_zero> = <mantissa_high><mantissa_low><exponent>
 '***** <mantissa> = <mantissa_high> * 256 + <mantissa_low>
 '***** <x_zero> = <sign><mantissa> E <sign><exponent>
 '***** Example: +123E-4 = 123 / 10000 = 0.0123
 FOR i = 0 TO 2
 SumCheck1% = (SumCheck1% + ASC(MID$(Resp$, Resp.Count + i, 1))) MOD 256
 NEXT i
 nb = ASC(MID$(Resp$, Resp.Count, 1))
 IF nb >= 128 THEN
 nb = - (256 - nb) * 256 'Negative value
 nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))
 ELSE
 nb = nb * 256 'Positive value
 nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))
 END IF
 exponent(2) = ASC(MID$(Resp$, Resp.Count + 2, 1))
 YXvalue#(2) = nb
 Resp.Count = Resp.Count + 3
 '*****
 '* Further calculation after 'Signed.Samples' determination
 '*****
 '

 ' Page 3.46
 '
 '***** 3 bytes <y_resolution> = <mantissa_high><mantissa_low><exponent>
 '***** <mantissa> = <mantissa_high> * 256 + <mantissa_low>
 '***** <y_resolution> = <sign><mantissa> E <sign><exponent>
 '***** Example: +123E-4 = 123 / 10000 = 0.0123
 FOR i = 0 TO 2
 SumCheck1% = (SumCheck1% + ASC(MID$(Resp$, Resp.Count + i, 1))) MOD 256
 NEXT i
 nb = ASC(MID$(Resp$, Resp.Count, 1))
 IF nb >= 128 THEN
 nb = - (256 - nb) * 256 'Negative value
 nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))
 ELSE
 nb = nb * 256 'Positive value
 nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))
 END IF
 exponent(3) = ASC(MID$(Resp$, Resp.Count + 2, 1))
 YXvalue#(3) = nb
 Resp.Count = Resp.Count + 3
 '*****
 '* Further calculation after 'Signed.Samples' determination
 '*****
 '***** 3 bytes <x_resolution> = <mantissa_high><mantissa_low><exponent>
 '***** <mantissa> = <mantissa_high> * 256 + <mantissa_low>
 '***** <x_resolution> = <sign><mantissa> E <sign><exponent>
 '***** Example: +123E-4 = 123 / 10000 = 0.0123
 FOR i = 0 TO 2
 SumCheck1% = (SumCheck1% + ASC(MID$(Resp$, Resp.Count + i, 1))) MOD 256
 NEXT i
 nb = ASC(MID$(Resp$, Resp.Count, 1))
 IF nb >= 128 THEN
 nb = - (256 - nb) * 256 'Negative value
 nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))
 ELSE
 nb = nb * 256 'Positive value
 nb = nb + ASC(MID$(Resp$, Resp.Count + 1, 1))
 END IF
 exponent(4) = ASC(MID$(Resp$, Resp.Count + 2, 1))
 YXvalue#(4) = nb
 Resp.Count = Resp.Count + 3
 '*****
 '* Further calculation after 'Signed.Samples' determination
 '*****
 '***** 8 bytes <year><month><date>
 FOR i = 0 TO 7
 SumCheck1% = (SumCheck1% + ASC(MID$(Resp$, Resp.Count + i, 1))) MOD 256
 NEXT i
 Year$ = MID$(Resp$, Resp.Count, 1)
 Year$ = Year$ + MID$(Resp$, Resp.Count + 1, 1)
 Year$ = Year$ + MID$(Resp$, Resp.Count + 2, 1)
 Year$ = Year$ + MID$(Resp$, Resp.Count + 3, 1)
 Month$ = MID$(Resp$, Resp.Count + 4, 1)
 Month$ = Month$ + MID$(Resp$, Resp.Count + 5, 1)
 Day$ = MID$(Resp$, Resp.Count + 6, 1)
 Day$ = Day$ + MID$(Resp$, Resp.Count + 7, 1)
 Resp.Count = Resp.Count + 8
 PRINT "<date_stamp> = "; Year$ + "-" + Month$ + "-" + Day$;
 '

 ‘ Page 3.47
 '
 '***** 6 bytes <hours><minutes><seconds>
 FOR i = 0 TO 5
 SumCheck1% = (SumCheck1% + ASC(MID$(Resp$, Resp.Count + i, 1))) MOD 256
 NEXT i
 Hours$ = MID$(Resp$, Resp.Count, 1)
 Hours$ = Hours$ + MID$(Resp$, Resp.Count + 1, 1)
 Minutes$ = MID$(Resp$, Resp.Count + 2, 1)
 Minutes$ = Minutes$ + MID$(Resp$, Resp.Count + 3, 1)
 Seconds$ = MID$(Resp$, Resp.Count + 4, 1)
 Seconds$ = Seconds$ + MID$(Resp$, Resp.Count + 5, 1)
 Resp.Count = Resp.Count + 6
 PRINT " <time_stamp> = "; Hours$ + ":" + Minutes$ + ":" + Seconds$
 '
 '***** 1 byte <check_sum>
 Check.Sum% = ASC(MID$(Resp$, Resp.Count, 1))
 IF Check.Sum% <> (SumCheck1% MOD 256) GOTO Wave.Error
 Resp.Count = Resp.Count + 1
 PRINT "<check_sum> ="; Check.Sum%; " & ";
 PRINT "SumCheck1 MOD 256 ="; SumCheck1% MOD 256
 RETURN
 Wave.Error:
 PRINT "Waveform admin error at byte :"; Resp.Count
 PRINT "Waveform decimal byte value ="; ASC(MID$(Resp$, Resp.Count, 1))
 PRINT "SumCheck so far (MOD 256) ="; SumCheck1% MOD 256
 CLOSE: END
 '

 ‘ Page 3.48

 Interpret.Samples:
 '
 '***** Interpret the <trace_samples> waveform data bytes
 '***** in the Resp$ string (see appendix C).
 '*****
 '***** 1 byte separator admin/samples : ,
 '***** 2 bytes <trace_samples> block trailing : #0
 '
 SumCheck2% = 0
 IF MID$(Resp$, Resp.Count, 3) <> ",#0" GOTO Wave2.Error
 Resp.Count = Resp.Count + 3
 '
 '***** 1 byte <block_header>
 nb = ASC(MID$(Resp$, Resp.Count, 1))
 IF nb <> 128 AND nb <> 0 AND nb <> 129 GOTO Wave2.Error
 Resp.Count = Resp.Count + 1
 '
 '***** 2 bytes <block_length>
 Block2.Length = ASC(MID$(Resp$, Resp.Count, 1)) * 256
 Block2.Length = Block2.Length + ASC(MID$(Resp$, Resp.Count + 1, 1))
 Resp.Count = Resp.Count + 2
 PRINT "Number of sample chars ="; Block2.Length
 OPEN "Samples" FOR OUTPUT AS #4
 PRINT #4, "Number of sample chars ="; Block2.Length
 '
 '***** 1 byte <sample_format>
 Sample.Format = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck2% = SumCheck2% + Sample.Format
 IF (Sample.Format AND 128) = 128 THEN
 Signed.Samples = 1
 ELSE
 Signed.Samples = 0
 END IF
 IF (Sample.Format AND 64) = 64 THEN
 MinMax.Samples = 1
 ELSE
 MinMax.Samples = 0
 END IF
 Sample.Bytes = Sample.Format AND 7
 IF Sample.Bytes = 1 THEN 'Single-byte samples
 CLimit = C128
 CMaxim = C256
 ELSE 'Double-byte samples
 CLimit = C32768
 CMaxim = C65536
 END IF
 Resp.Count = Resp.Count + 1
 PRINT "Signed.Samples = ";
 PRINT #4, "Signed.Samples = ";
 IF Signed.Samples = 1 THEN
 PRINT "TRUE ";
 PRINT #4, "TRUE"
 ELSE
 PRINT "FALSE ";
 PRINT #4, "FALSE"
 END IF
 '

 ‘ Page 3.49
 '
 PRINT "MinMax.Samples = ";
 PRINT #4, "MinMax.Samples = ";
 IF MinMax.Samples = 1 THEN
 PRINT "TRUE" : PRINT #4, "TRUE"
 ELSE
 PRINT "FALSE" : PRINT #4, "FALSE"
 END IF
 PRINT "Number of Sample.Bytes ="; Sample.Bytes
 PRINT #4, "Number of Sample.Bytes ="; Sample.Bytes
 '*****
 '* Further calculation now that 'Signed.Samples' is determined
 '*****
 FOR j = 1 TO 4
 IF (Signed.Samples = 0) AND (YXvalue#(j) < 0) THEN
 'Unsigned samples, so undo (invert back) the sign-
 'calculation of the YXvalue# samples.
 YXvalue#(j) = CMaxim - YXvalue#(j)
 END IF
 IF exponent(j) > 127 THEN 'Negative exponent
 exponent(j) = 256 - exponent(j)
 FOR i = 1 TO exponent(j)
 YXvalue#(j) = YXvalue#(j) / 10
 NEXT i
 ELSE 'Positive exponent
 FOR i = 1 TO exponent(j)
 YXvalue#(j) = YXvalue#(j) * 10
 NEXT i
 END IF
 NEXT j
 Y.Zero = YXvalue#(1) : X.Zero = YXvalue#(2)
 Y.Resol = YXvalue#(3) : X.Resol = YXvalue#(4)
 PRINT "<y_zero> ="; Y.Zero
 PRINT "<x_zero> ="; X.Zero
 PRINT "<y_resolution> ="; Y.Resol
 PRINT "<x_resolution> ="; X.Resol
 '
 '***** <Sample.Bytes> bytes <overload> value
 Sample.Byte = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck2% = SumCheck2% + Sample.Byte
 IF (Signed.Samples = 1) AND (Sample.Byte >= 128) THEN
 Sample.Byte = - (256 - Sample.Byte)
 END IF
 Overload& = Sample.Byte
 FOR i = 2 TO Sample.Bytes
 Sample.Byte = ASC(MID$(Resp$, Resp.Count + i - 1, 1))
 SumCheck2% = (SumCheck2% + Sample.Byte) MOD 256
 Overload& = Overload& * 256 + Sample.Byte
 NEXT i
 IF (Signed.Samples = 0) OR (Overload& < CLimit) THEN
 Overload.Value = Overload& * Y.Resol 'Positive value
 ELSE
 Overload.Value = - ((CMaxim - Overload&) * Y.Resol) 'Negative value
 END IF
 Resp.Count = Resp.Count + Sample.Bytes
 PRINT "Overload sample value ="; Overload&; Overload.Value
 PRINT #4, "Overload sample value ="; Overload&; Overload.Value
 '

 ‘ Page 3.50
 '
 '***** <Sample.Bytes> bytes <underload> value
 Sample.Byte = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck2% = SumCheck2% + Sample.Byte
 IF (Signed.Samples = 1) AND (Sample.Byte >= 128) THEN
 Sample.Byte = - (256 - Sample.Byte)
 END IF
 Underload& = Sample.Byte
 FOR i = 2 TO Sample.Bytes
 Sample.Byte = ASC(MID$(Resp$, Resp.Count + i - 1, 1))
 SumCheck2% = (SumCheck2% + Sample.Byte) MOD 256
 Underload& = Underload& * 256 + Sample.Byte
 NEXT i
 IF (Signed.Samples = 0) OR (Underload& < CLimit) THEN
 Underload.Value = Underload& * Y.Resol 'Positive value
 ELSE
 'Negative value
 Underload.Value = - ((CMaxim - Underload&) * Y.Resol)
 END IF
 Resp.Count = Resp.Count + Sample.Bytes
 PRINT "Underload sample value ="; Underload&; Underload.Value
 PRINT #4, "Underload sample value ="; Underload&; Underload.Value
 '
 '***** <Sample.Bytes> bytes <invalid> value
 Sample.Byte = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck2% = SumCheck2% + Sample.Byte
 IF (Signed.Samples = 1) AND (Sample.Byte >= 128) THEN
 Sample.Byte = - (256 - Sample.Byte)
 END IF
 Invalid& = Sample.Byte
 FOR i = 2 TO Sample.Bytes
 Sample.Byte = ASC(MID$(Resp$, Resp.Count + i - 1, 1))
 SumCheck2% = (SumCheck2% + Sample.Byte) MOD 256
 Invalid& = Invalid& * 256 + Sample.Byte
 NEXT i
 IF (Signed.Samples = 0) OR (Invalid& < CLimit) THEN
 Invalid.Value = Invalid& * Y.Resol 'Positive value
 ELSE
 'Negative value
 Invalid.Value = - ((CMaxim - Invalid&) * Y.Resol)
 END IF
 Resp.Count = Resp.Count + Sample.Bytes
 PRINT "Invalid sample value ="; Invalid&; Invalid.Value
 PRINT #4, "Invalid sample value ="; Invalid&; Invalid.Value
 '
 '***** 2 bytes <nbr_of_samples>
 Sample.Byte = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck2% = (SumCheck2% + Sample.Byte) MOD 256
 Nbr.Of.Samples = Sample.Byte
 Sample.Byte = ASC(MID$(Resp$, Resp.Count + 1, 1))
 SumCheck2% = (SumCheck2% + Sample.Byte) MOD 256
 Nbr.Of.Samples = Nbr.Of.Samples * 256 + Sample.Byte
 IF MinMax.Samples = 1 THEN 'Min/Max pair of samples
 Nbr.Of.Samples = Nbr.Of.Samples * 2
 END IF
 Resp.Count = Resp.Count + 2
 PRINT "Number of samples ="; Nbr.Of.Samples
 PRINT #4, "Number of samples ="; Nbr.Of.Samples

 ' Page 3.51
 '
 '***** <Sample.Bytes> bytes <sample_value>'s
 '
 DIM Sample.Value(Nbr.Of.Samples) AS LONG
 FOR i = 1 TO Nbr.Of.Samples 'Sample loop
 Sample.Byte = ASC(MID$(Resp$, Resp.Count, 1))
 SumCheck2% = (SumCheck2% + Sample.Byte) MOD 256
 IF (Signed.Samples = 1) AND (Sample.Byte >= 128) THEN
 Sample.Byte = - (256 - Sample.Byte)
 END IF
 Sample.Value&(i) = Sample.Byte
 IF Sample.Bytes > 1 THEN 'More sample bytes
 FOR j = 2 TO Sample.Bytes
 Sample.Byte = ASC(MID$(Resp$, Resp.Count + j - 1, 1))
 SumCheck2% = (SumCheck2% + Sample.Byte) MOD 256
 Sample.Value&(i) = Sample.Value&(i) * 256 + Sample.Byte
 NEXT j
 END IF
 Resp.Count = Resp.Count + Sample.Bytes
 IF i = 1 OR i = 2 OR i = Nbr.Of.Samples - 1 OR i = Nbr.Of.Samples THEN
 IF (Signed.Samples = 0) OR (Sample.Value&(i) < CLimit) THEN
 Ampl.Value = Sample.Value&(i) * Y.Resol 'Positive value
 ELSE
 'Negative value
 Ampl.Value = - ((CMaxim - Sample.Value&(i)) * Y.Resol)
 END IF
 PRINT "Sample"; i; "="; Sample.Value&(i); Ampl.Value
 END IF
 PRINT #4, "Sample"; i; "="; Sample.Value&(i); Ampl.Value
 NEXT i
 '
 '***** 1 byte <check_sum>
 Check.Sum% = ASC(MID$(Resp$, Resp.Count, 1))
 IF Check.Sum% <> (SumCheck2% MOD 256) GOTO Wave2.Error
 Resp.Count = Resp.Count + 1
 PRINT "<check_sum> ="; Check.Sum%; " & ";
 PRINT "SumCheck2 MOD 256 ="; SumCheck2% MOD 256
 PRINT #4, "<check_sum> ="; Check.Sum%; " & ";
 PRINT #4, "SumCheck2 MOD 256 ="; SumCheck2% MOD 256
 '
 '***** 1 byte CR
 C.R = ASC(MID$(Resp$, Resp.Count, 1))
 IF C.R <> 13 GOTO Wave2.Error
 Resp.Count = Resp.Count + 1
 CLOSE #4: RETURN
 Wave2.Error:
 PRINT "Waveform sample error at byte :"; Resp.Count
 PRINT "Waveform decimal byte value ="; ASC(MID$(Resp$, Resp.Count, 1))
 PRINT "SumCheck so far (MOD 256) ="; SumCheck2% MOD 256
 CLOSE: END
 '

 ‘ Page 3.52
 Create.CSV:
 '
 '*****
 '***** Convert the total Response string to file Wave.CSV
 '***** as input file for Excel (spreadsheet), for example.
 '*****
 '
 OPEN "Wave.CSV" FOR OUTPUT AS #4
 PRINT #4, "Title , ";
 IF MID$(Query$, 4, 2) = "10" THEN
 PRINT #4, "Input A"
 ELSEIF MID$(Query$, 4, 2) = "11" THEN
 PRINT #4, "Acquisition Memory A"
 END IF
 IF Trace.Process = 1 OR Trace.Process = 2 THEN
 PRINT #4, "ID ,"; 1 'Single trace
 PRINT #4, "Type , "; "Waveform"
 ELSEIF Trace.Process = 3 THEN
 PRINT #4, "ID ,"; 2 'Envelope trace
 PRINT #4, "Type , "; "Envelope"
 END IF
 PRINT #4, "Date , "; Month$+"/"+Day$+"/"+MID$(Year$,3,2)
 PRINT #4, "Time , "; Hours$+":"Minutes$+":"+Seconds$
 '
 '***** X.Scale = time per division (over 10 divisions)
 X.Scale = X.Resol * ((Nbr.Of.Samples - 1) / 10)
 PRINT #4, "X Scale ,"; X.Scale
 PRINT #4, "X At 0% ,"; X.Zero
 PRINT #4, "X Resolution ,"; X.Resol
 PRINT #4, "X Size ,"; Nbr.Of.Samples
 PRINT #4, "X Unit , ";
 IF X.Unit = 7 THEN PRINT #4, "s"
 IF X.Unit = 10 THEN PRINT #4, "Hz"
 PRINT #4, "X Label ,";
 IF X.Unit = 7 THEN PRINT #4, X.Scale; "s/Div"
 IF X.Unit = 10 THEN PRINT #4, X.Scale; "Hz/Div"
 '
 '***** Y.Scale = unit per division (over 8 divisions)
 IF Sample.Bytes = 1 THEN '1-byte samples
 Y.Scale = Y.Resol * ((256 - 1) / 8)
 END IF 'Range = 256
 IF Sample.Bytes = 2 THEN '2-byte samples
 Y.Scale = Y.Resol * ((65536 - 1) / 8)
 END IF 'Range = 256*256
 PRINT #4, "Y Scale ,"; Y.Scale
 PRINT #4, "Y At 50% ,"; Y.Zero
 PRINT #4, "Y Resolution ,"; Y.Resol
 PRINT #4, "Y Size ,";
 IF Sample.Bytes = 1 THEN '1-byte samples
 PRINT #4, 256
 END IF 'Range = 256
 IF Sample.Bytes = 2 THEN '2-byte samples
 PRINT #4, 65536
 END IF 'Range = 256*256
 PRINT #4, "Y Unit , ";
 IF Y.Unit = 1 THEN PRINT #4, "V"
 IF Y.Unit = 2 THEN PRINT #4, "A"
 IF Y.Unit = 3 THEN PRINT #4, "Ohm"
 '

 ‘ Page 3.53
 '
 PRINT #4, "Y Label ,";
 IF Y.Unit = 1 THEN PRINT #4, Y.Scale; "V/Div"
 IF Y.Unit = 2 THEN PRINT #4, Y.Scale; "A/Div"
 IF Y.Unit = 3 THEN PRINT #4, Y.Scale; "Ohm/Div"
 PRINT #4,
 '
 '***** Sample values x,y (time,amplitude)
 Time.Value = X.Zero 'Start at x-offset
 MinMax.Flag = 1 'Switch flag
 FOR i = 1 TO Nbr.Of.Samples
 IF (Signed.Samples = 0) OR (Sample.Value&(i) < CLimit) THEN
 'Positive value
 Amplit.Value = Sample.Value&(i) * Y.Resol
 ELSE
 'Negative value
 Amplit.Value = - ((CMaxim - Sample.Value&(i)) * Y.Resol)
 END IF
 IF MinMax.Samples = 1 THEN 'Min/Max waveform
 IF MinMax.Flag = 1 THEN
 MinMax.Flag = 0
 PRINT #4, Time.Value; ","; Amplit.Value; ",";
 ELSE
 MinMax.Flag = 1
 PRINT #4, Amplit.Value
 Time.Value = Time.Value + X.Resol
 END IF
 ELSE 'Single waveform
 PRINT #4, Time.Value; ","; Amplit.Value
 Time.Value = Time.Value + X.Resol
 END IF
 NEXT i
 CLOSE #4: RETURN
 '
 '****************** End example program ******************

 Page 3.54

 ===
 READ DATE RD

 Purpose:

 Reads the real time clock date settings.

 Command Syntax:

 RD<cr>

 Response Syntax:

 <acknowledge><cr>[<date><cr>]

 where,

 <date> = string of the following format:
 <year>,<month>,<day>
 e.g. 1997,8,14

 Example:

 The following example program reads the date setting from
 the ScopeMeter.

 ‘ Page 3.55

 '***************** Begin example program *****************

 CLS
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "RD" 'Sends the READ DATE query.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 INPUT #1, SMYear$, SMMonth$, SMDay$ 'Inputs the date string.
 PRINT "Date "; SMYear$; "-"; SMMonth$; "-"; SMDay$
 'Displays the date string.
 END

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the

 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.56
 ===
 RESET INSTRUMENT RI

 Purpose:

 Resets the entire instrument, including the CPL interface.
 The baud rate remains unchanged.

 Command Syntax:

 RI<cr>

 Response Syntax:

 <acknowledge><cr>

 Note: Wait for at least 2 seconds after the
 <acknowledge> reply has been received, to let
 the ScopeMeter settle itself before you send the
 next command.

 Example:

 The following example resets the ScopeMeter and waits for 2
 seconds to let the ScopeMeter execute the reset and become
 ready for next commands.
 The ScopeMeter is queried for the identification data; this
 data is input and displayed on the PC screen.

 ‘ Page 3.57

 '***************** Begin example program *****************
 CLS 'Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "RI" 'Sends the RESET INSTRUMENT command.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 SLEEP 2 'Delay (2 s) necessary after reset.
 GOSUB ClearPort 'Clears pending data from port.
 PRINT #1, "ID" 'Sends IDENTIFICATION query.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 INPUT #1, IDENT$ 'Inputs the queried data.
 PRINT IDENT$ 'Displays queried data.
 CLOSE #1
 END

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '******* Clears pending data from the RS232 port *********
 ClearPort:
 WHILE LOC(1) > 0
 Dummy$ = INPUT$(1, #1)
 WEND
 RETURN

 '****************** End example program ******************

 Page 3.58
 ===
 RECALL SETUP RS

 Purpose:

 Recalls an internally stored setup. This setup must have
 been stored in the ScopeMeter manually or with the SS
 (Save Setup) command.

 Command Syntax:

 RS <setup_reg><cr>

 where,

 <setup_reg> = 1 to 10

 Response Syntax:

 <acknowledge><cr>

 Note: The new setup is active when you have received the
 <acknowledge> response from the ScopeMeter.

 Example:

 The following example program saves the present setup in
 setup memory 8. You are requested to change the present
 settings. Then the original settings are recalled from
 setup memory 8 and made the actual setting.

 ‘ Page 3.59

 '***************** Begin example program *****************

 CLS 'Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "SS 8" 'Sends SAVE SETUP command.
 'Setup saved in setup memory 8.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter
 PRINT "The present setup data are stored in setup memory 8."
 PRINT "The remainder of this program will restore these."
 PRINT "To test if this works, change the present settings"
 PRINT "and verify if the ScopeMeter returns to the original"
 PRINT "settings after continuing the program."
 PRINT
 PRINT "Press any key on the PC keyboard to continue."
 SLEEP
 PRINT #1, "RS 8" 'Sends RECALL SETUP command.
 'Setup recalled from register 8.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 PRINT
 PRINT "Original settings restored"
 CLOSE #1
 END
 '

 ‘ Page 3.60

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.61
 ===
 READ TIME RT

 Purpose:

 Reads the real time clock time settings.

 Command Syntax:

 RT<cr>

 Response Syntax:

 <acknowledge><cr>[<time><cr>]

 where,

 <time> = string of the following format:
 <hours>,<minutes>,<seconds>
 e.g. 15,4,43

 Example:

 The following example program reads the time setting from
 the ScopeMeter.

 ‘ Page 3.62

 '***************** Begin example program *****************

 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1,"RT" 'Sends the READ TIME query.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 INPUT #1,SMhour$,SMmin$,SMsec$ 'Inputs the time strings.
 PRINT "Time "; SMhour$;":";SMmin$;":";SMsec$
 'Displays the time string.
 END

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.63
 ===
 SWITCH ON SO

 Purpose:

 Switches the ScopeMeter on.
 This only works when the ScopeMeter is powered via the
 power adapter.

 Command Syntax:

 SO<cr>

 Response Syntax:

 <acknowledge><cr>

 See an example for this command under GET DOWN (GD).

 Page 3.64
 ===
 SAVE SETUP SS

 Purpose:

 Saves the present setup in one of the battery backup
 instrument registers.

 Command Syntax:

 SS <setup_reg><cr>

 where,

 <setup_reg> = 1 to 20
 When <setup_reg> is omitted, the number 1 is assumed.

 Response Syntax:

 <acknowledge><cr>

 See an example for this command under RECALL SETUP (RS).

 Page 3.65
 ===
 STATUS QUERY ST

 Purpose:

 Queries the error status of the ScopeMeter.
 This is a 16-bit word, presented as an integer value,
 where each bit represents the Boolean value of a related
 error event. After the reply or after a RI (Reset
 Instrument) command, the value is reset to zero.
 A complete description of the status word is given in
 Appendix B.

 Command Syntax:

 ST<cr>

 Response Syntax:

 <acknowledge><cr>[<status>

 where,

 <status> = integer value 0 to 32767

 Example:

 The following example program sends a wrong command to the
 ScopeMeter to test the Acknowledge subroutine and to check
 the status returned from the ST query.
 The acknowledge subroutine contains a GOSUB Status.display
 to input the status data from the ScopeMeter when the
 acknowledge response is non-zero (ACK <> 0).

 ‘ Page 3.66

 '***************** Begin example program *****************

 CLS 'Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "PC 12345" 'Sends a baud rate value that is
 ' out of range for the ScopeMeter.
 GOSUB Acknowledge.Status 'Input acknowledge from ScopeMeter
 'and the status value if the
 'acknowledge value is non-zero.
 END

 '************* Acknowledge + Status subroutine ***********
 'This subroutine inputs the acknowledge value from the
 'ScopeMeter. If the acknowledge value is non-zero,
 'the ST query is used to get further status information from
 'the ScopeMeter with respect to the error.
 'In case of an error the program is aborted.

 Acknowledge.Status:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 GOSUB Status.display 'Further specifies the error.
 PRINT "Program aborted."
 END
 END IF
 RETURN
 '

 ‘ Page 3.67

 '************** Displays ScopeMeter status *****************

 'This subroutine gives you further information if the
 'acknowledge reply from the ScopeMeter is non-zero.

 Status.display:
 PRINT #1, "ST" 'Sends the STATUS query.
 GOSUB Acknowledge.Status 'Inputs acknowledge from ScopeMeter.
 INPUT #1, STAT 'Inputs status value.
 PRINT "Status " + STR$(STAT) + ": ";
 IF STAT = 0 THEN PRINT "No error"
 IF (STAT AND 1) = 1 THEN PRINT "Illegal Command"
 IF (STAT AND 2) = 2 THEN
 PRINT "Data format of parameter is wrong"
 END IF
 IF (STAT AND 4) = 4 THEN PRINT "Parameter out of range"
 IF (STAT AND 8) = 8 THEN
 PRINT "Invalid command in this CPL interface"
 END IF
 IF (STAT AND 16) = 16 THEN PRINT "Command not implemented"
 IF (STAT AND 32) = 32 THEN
 PRINT "Invalid number of parameters"
 END IF
 IF (STAT AND 64) = 64 THEN
 PRINT "Wrong number of data bits"
 END IF
 IF (STAT AND 512) = 512 THEN
 PRINT "Conflicting instrument settings"
 END IF
 IF (STAT AND 16384) = 16384 THEN
 PRINT "Checksum error"
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.68
 ===
 TRIGGER ACQUISITION TA

 Purpose:

 Triggers an acquisition. This command acts as a
 hardware trigger to start a new acquisition.
 In SINGLE shot acquisition mode the trigger system
 must have been armed with the AT (Arm Trigger)
 command.

 Command Syntax:

 TA<cr>

 Response Syntax:

 <acknowledge><cr>

 Example:

 ‘ Page 3.69

 '***************** Begin example program *****************
 CLS 'Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "TA" 'Sends TRIGGER ACQUISITION command.
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 END

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.70
 ===
 WRITE DATE WD

 Purpose:

 Writes the real time clock date settings.

 Command Syntax:

 WD <date><cr>

 where,

 <date> = string of the following format:
 <year>,<month>,<date>

 e.g. 1999,9,14

 Response Syntax:

 <acknowledge><cr>

 Example:

 The following example program programs the ScopeMeter
 with a new date setting.

 ‘ Page 3.71

 '***************** Begin example program *****************
 CLS 'Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "WD 1999,9,14" 'Sets the real time clock date
 'to September 14, 1999
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 END

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN

 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4
 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program ******************

 Page 3.72
 ===
 WRITE TIME WT

 Purpose:

 Writes the real time clock time settings.

 Command Syntax:

 WT <time><cr>

 where,

 <time> = string of the following format:
 <hours>,<minutes>,<seconds>
 e.g. 15,30,0

 Response Syntax:

 <acknowledge><cr>

 Example:

 The following example program programs the ScopeMeter
 with a new time setting.

 ‘ Page 3.73

 '***************** Begin example program *****************
 CLS 'Clears the PC screen.
 OPEN "COM1:1200,N,8,1,CS,DS,RB2048" FOR RANDOM AS #1
 PRINT #1, "WT 15,28,0" 'Sets the real time clock to
 '03:28 p.m..
 GOSUB Acknowledge 'Input acknowledge from ScopeMeter.
 END

 '**************** Acknowledge subroutine ******************
 'Use this subroutine after each command or query sent to the
 'ScopeMeter. This routine inputs the acknowledge
 'response from the ScopeMeter. If the response is non-zero,
 'the previous command was not correct or was not correctly
 'received by the ScopeMeter. Then an error message is
 'displayed and the program is aborted.

 Acknowledge:
 INPUT #1, ACK 'Reads acknowledge from ScopeMeter.
 IF ACK <> 0 THEN
 PRINT "Error "; ACK; ": ";
 SELECT CASE ACK
 CASE 1
 PRINT "Syntax Error"
 CASE 2
 PRINT "Execution Error"
 CASE 3
 PRINT "Synchronization Error"
 CASE 4

 PRINT "Communication Error"
 CASE IS < 1
 PRINT "Unknown Acknowledge"
 CASE IS > 4
 PRINT "Unknown Acknowledge"
 END SELECT
 PRINT "Program aborted."
 END
 END IF
 RETURN

 '****************** End example program ******************

 Page A.1
 ===
 APPENDIX A ACKNOWLEDGE DATA

 The ScopeMeter returns an <acknowledge> reply after
 each command or query. The value indicates correct or
 incorrect operation. You always must read this reply to check
 for the correct operation and to achieve synchronization
 between your program and the RS232 interface of the
 ScopeMeter.

 <acknowledge>
 VALUE MEANING

 0 No Error
 1 Syntax Error (see Note)
 2 Execution Error (see Note)
 3 Synchronization Error
 4 Communication Error

 Note: The ST query may give you additional information.

 When the ScopeMeter detects an error during the
 execution of a command, it sends the corresponding
 <acknowledge> reply, terminates further execution of the
 command and will be ready to accept a new command.

 Syntax Error

 Returned when the command is not understood by the ScopeMeter
 for one of the following reasons :

 - Unknown header
 - Wrong instructions
 - Data format of body is wrong, e.g. alpha characters when
 decimal data is needed.

 Execution Error

 Returned when internal processing is not possible because of
 one of the following reasons:

 - Data out of range
 - Conflicting instrument settings

 Page A.2

 Synchronization Error

 Returned when the ScopeMeter receives data while it
 does not expect any data. This can occur as follows:

 - The ScopeMeter receives a new command while a
 previous command or query is not yet completely executed.

 You can prevent this error by doing the following:

 1. Read the <acknowledge> reply after each command or
 query.
 2. If this <acknowledge> is zero and if a query was sent to
 the ScopeMeter, read all available response
 data.

 Communication Error

 Any framing, parity or overrun error detected on the received
 data will cause Communication Error.

 Page B.1
 ===
 APPENDIX B STATUS DATA

 The Status word returned from the ST query gives you extra
 information when you have received a non-zero <acknowledge>
 reply.
 The Status word is a 16-bit binary word where each bit set

 true represents an error event with a decimal value
 determined by the bit position. (See the following table.)

 When more than one bit is set true in the status word, the
 response from the ST query will be the sum of the decimal
 values of the individual bits.

 Example:

 <status> = 34 This equals 32 + 2
 2 = Wrong parameter data format
 32 = Invalid number of parameters

 DECIMAL <acknowledge>
 BIT VALUE EVENT DESCRIPTION VALUE

 0 1 Illegal command 1
 1 2 Wrong parameter data format 1
 2 4 Parameter out of range 1 or 2
 3 8 Instruction not valid in present state 1
 4 16 Called function not implemented 2
 5 32 Invalid number of parameters 2
 6 64 Wrong number of data bits 2
 9 512 Conflicting instrument settings 2
 14 16384 Checksum error 2

 Remarks:

 1. A bit in the status word is set when the corresponding
 error event occurs.
 2. Bits do not affect each other.
 3. New error events will 'accumulate' in the status word.
 This means existing bits remain set.

 The status word is cleared (all bits reset) as follows:

 1. After the response (the status word) from the ST query
 has been read.
 2. After the RI (Reset Instrument) command.

 Page C.1
 ===
 APPENDIX C WAVEFORM DATA

 The waveform data that is received from the QW (Query
 Waveform) query, consists of the following data.

 <trace_admin>,<trace_samples>

 where,

 <trace_admin> = #0<block_header><block_length><trace_process>
 <trace_result><misc_setup><y_unit><x_unit>
 <y_zero><x_zero><y_resolution><x_resolution>
 <date_stamp><time_stamp><check_sum>

 where,

 <block_header> = <binary_character>
 Possible values: 128 and 0.
 The value 0 is returned when also the
 <trace_samples> data block is requested.

 <block_length> = <unsigned_integer>
 = This value gives the number of bytes that
 are transmitted after the <block_length>
 and before the <check_sum>.

 <trace_process>= <normal>|<envelope>|<average>
 = <binary_character>. The value of this
 field specifies which processing is
 performed on the samples of this
 particular trace:
 <normal> = 1 No processing
 <average> = 2 The trace is the result of the
 averaging of multiple traces (equal to
 the SMOOTH function in manual mode)
 <envelope>= 3 The trace is the result of the
 envelope process (equal to the
 ENVELOPE function in manual mode)

 <trace_result> = <acquisition>|<trend_plot>|<touch_hold>
 = <binary_character>. The value of this
 field specifies which function created
 this particular trace:
 <acquisition>= 1 The trace is a direct result of the
 trace acquisition.
 <trend_plot> = 2 The trace is a result of the TrendPlot
 function (recording numerical results).
 <touch_hold> = 3 The trace is a copy of the acquisition
 trace. The copy is activated by the
 Touch Hold function of the instrument.

 Page C.2

 <misc_setup> = <binary_character>
 This byte contains additional setup
 information about the queried trace.
 Bit 7 of the byte specifies the coupling
 (0=AC, 1=DC) of the channel.

 <y_unit> = <unit>

 <x_unit> = <unit>
 The <unit> is a <binary_character> which
 value represents the unit:
 <volt> = 1
 <ampere> = 2
 <ohm> = 3
 <farad> = 5
 <seconds> = 7
 <hertz> = 10
 <degree> = 11
 <degree_celsius> = 12
 <degree_fahrenheit> = 13
 <percentage> = 14
 <dbm50> = 15
 <dbm600> = 16
 <dbv> = 17
 <dba> = 18

 <y_zero> = <float>
 Measurement value for the samples with
 value zero (0). This value can be seen
 as the offset value.

 <x_zero> = <float>
 This field specifies the x-offset of the
 first sample in the <trace_samples> array.
 (= time between trigger moment and first
 sample.)

 <y_resolution> = <float>
 This field contains the value that
 represents the step between two
 consecutive sample values or in other
 words the step per least significant bit.

 <x_resolution> = <float>
 This field contains the value (seconds)
 that represents the distance between two
 samples. (is time between two samples.)

 Page C.3

 <date_stamp> = <year><month><day>
 <year> = <digit><digit><digit><digit>
 <month>= <digit><digit>
 <day> = <digit><digit>

 <time_stamp> = <hours><minutes><seconds>
 <hours>= <digit><digit>
 <minutes>= <digit><digit>
 <seconds>= <digit><digit>

 <check_sum> = <binary_character>
 One binary character which represents
 the sum of all the <binary_character>s
 send after the <block_length> and
 before the <check_sum>.

 and where,

 <trace_samples> = #0<block_header><block_length>
 <sample_format><overload><underload>

 <invalid><nbr_of_samples><samples>
 <check_sum><cr>

 <block_header>= <binary_character> which is 1, 128 or 129.

 <block_length>= <unsigned_integer>
 This parameter specifies the number of
 characters that will follow until the
 <check_sum>.

 <sample_format>= <binary_character>
 This byte specifies the format of the samples.
 The highest bit (7) defines whether the
 samples should be interpreted as signed (1)
 or unsigned values (0).
 Bit number 6 in the <sample_format> byte
 defines whether the samples are min/max pairs
 or not. In the case of min/max pairs, the
 minimum value will be followed by the maximum.
 The number of samples specifies the number of
 sample pairs in this case.
 The bits 0 to 2 in the <sample_format> byte
 define the number of <binary_character>'s in
 which a sample value is represented.

 <overload> = <sample_value>
 This field specifies which value in the trace
 samples represents the overload value.

 Page C.4

 <underload> = <sample_value>
 This field specifies which value in the trace
 samples represents the underload value.

 <invalid> = <sample_value>
 This field specifies which value in the trace
 samples represents an invalid sample.
 Invalid samples can be present at locations
 in the trace that have not been filled (yet).
 This can e.g. occur in random sampling.

 <nbr_of_samples>= <unsigned_integer>
 Total number of samples (or sample pairs)
 that will follow.

 <samples> = {<sample_value>}
 In total <nbr_of_samples> will be transmitted.

 <sample_value>= {<binary_character>}
 Depending on the number of
 <binary_character>'s in the <sample_format>
 byte, each <sample_vale> is transmitted
 in a number of <binary_character>s.
 In case the <sample_value> contains multiple
 <binary_character>'s, the most significant
 byte is transmitted first.

 <check_sum> = <binary_character>
 One binary character which represents the
 sum of all the <binary_character>s after
 the <block_length> and before the
 <check_sum>.

 Remarks: The instrument will finish any processing on the
 queried waveform first before sending the data to the
 remote device. This means that the remote device will
 not have to do any polling on status bits before the
 query is send. When the waveform that was queried for,
 is still under processing, the processing is finished
 first. So no "half traces" will be returned. When the
 waveform under processing is in roll mode, the query
 will give an execution error.
 The remote device has the possibility to cancel the

 query, when waiting for response takes to long. This
 can be achieved by sending an <esc> or hardware break.

 Page D.1
 ===
 APPENDIX D ASCII 7-BIT CODES

 Hexadecimal value
 | ASCII character
 | | Decimal value
 | | |
 00 NUL 0 20 SP 32 40 @ 64 60 ` 96
 01 SOH 1 21 ! 33 41 A 65 61 a 97
 02 STX 2 22 " 34 42 B 66 62 b 98
 03 ETX 3 23 # 35 43 C 67 63 c 99
 04 EOT 4 24 $ 36 44 D 68 64 d 100
 05 ENQ 5 25 % 37 45 E 69 65 e 101
 06 ACK 6 26 & 38 46 F 70 66 f 102
 07 BEL 7 27 ' 39 47 G 71 67 g 103
 08 BS 8 28 (40 48 H 72 68 h 104
 09 HT 9 29) 41 49 I 73 69 i 105
 0A LF 10 2A * 42 4A J 74 6A j 106
 0B VT 11 2B + 43 4B K 75 6B k 107
 0C FF 12 2C , 44 4C L 76 6C l 108
 0D CR 13 2D - 45 4D M 77 6D m 109
 0E SO 14 2E . 46 4E N 78 6E n 110
 0F SI 15 2F / 47 4F O 79 6F o 111

 10 DLE 16 30 0 48 50 P 80 70 p 112
 11 XON 17 31 1 49 51 Q 81 71 q 113
 12 DC2 18 32 2 50 52 R 82 72 r 114
 13 XOF 19 33 3 51 53 S 83 73 s 115
 14 DC4 20 34 4 52 54 T 84 74 t 116
 15 NAK 21 35 5 53 55 U 85 75 u 117
 16 SYN 22 36 6 54 56 V 86 76 v 118
 17 ETB 23 37 7 55 57 W 87 77 w 119
 18 CAN 24 38 8 56 58 X 88 78 x 120
 19 EM 25 39 9 57 59 Y 89 79 y 121
 1A SUB 26 3A : 58 5A Z 90 7A z 122
 1B ESC 27 3B ; 59 5B [91 7B { 123
 1C FS 28 3C < 60 5C \ 92 7C | 124
 1D GS 29 3D = 61 5D] 93 7D } 125
 1E RS 30 3E > 62 5E ^ 94 7E ~ 126
 1F US 31 3F ? 63 5F _ 95 7F � 127

 Page D.2

 Hexadecimal value
 | ASCII character
 | | Decimal value
 | | |
 80 € 128 A0 160 C0 À 192 E0 à 224
 81 � 129 A1 ¡ 161 C1 Á 193 E1 á 225
 82 ‚ 130 A2 ¢ 162 C2 Â 194 E2 â 226
 83 ƒ 131 A3 £ 163 C3 Ã 195 E3 ã 227
 84 „ 132 A4 ¤ 164 C4 Ä 196 E4 ä 228
 85 … 133 A5 ¥ 165 C5 Å 197 E5 å 229
 86 † 134 A6 ¦ 166 C6 Æ 198 E6 æ 230
 87 ‡ 135 A7 § 167 C7 Ç 199 E7 ç 231
 88 ˆ 136 A8 ¨ 168 C8 È 200 E8 è 232
 89 ‰ 137 A9 © 169 C9 É 201 E9 é 233
 8A Š 138 AA ª 170 CA Ê 202 EA ê 234
 8B ‹ 139 AB « 171 CB Ë 203 EB ë 235
 8C Œ 140 AC ¬ 172 CC Ì 204 EC ì 236
 8D � 141 AD - 173 CD Í 205 ED í 237
 8E Ž 142 AE ® 174 CE Î 206 EE î 238
 8F � 143 AF ¯ 175 CF Ï 207 EF ï 239
 90 � 144 B0 ° 176 D0 Ð 208 F0 ð 240
 91 ‘ 145 B1 ± 177 D1 Ñ 209 F1 ñ 241
 92 ’ 146 B2 ² 178 D2 Ò 210 F2 ò 242
 93 “ 147 B3 ³ 179 D3 Ó 211 F3 ó 243
 94 ” 148 B4 ´ 180 D4 Ô 212 F4 ô 244
 95 • 149 B5 µ 181 D5 Õ 213 F5 õ 245
 96 – 150 B6 ¶ 182 D6 Ö 214 F6 ö 246
 97 — 151 B7 · 183 D7 × 215 F7 ÷ 247
 98 ˜ 152 B8 ¸ 184 D8 Ø 216 F8 ø 248
 99 ™ 153 B9 ¹ 185 D9 Ø 217 F9 ù 249
 9A š 154 BA º 186 DA Ú 218 FA ú 250
 9B › 155 BB » 187 DB Û 219 FB û 251
 9C œ 156 BC ¼ 188 DC Ü 220 FC ü 252
 9D � 157 BD ½ 189 DD Ý 221 FD ý 253
 9E ž 158 BE ¾ 190 DE Þ 222 FE þ 254
 9F Ÿ 159 BF ¿ 191 DF ß 223 FF 255

dada
Long TEQUIPMENT

http://www.tequipment.net

