

INSTRUCTION MANUAL

2303-20

TC MODULE

HIOKI E.E. CORPORATION

Contents

Inspect Safety	ion Notes .		1 2
Chapt	er 1	Overview	9
1.1		ct Overview	
1.2		Features	
1.3		and Function of the Parts	
1.4	Dimer	nsion Diagrams	. 15
Chapt	er 2	Settings	17
2.1	Settin	g the Module ID	. 17
Chapt	er 3	Preparations	19
3.1		ing the Module	. 19
J. I	Install		
5.1	Install 3.1.1	Installing the Module Base	. 19
5.1			
	3.1.1 3.1.2	Mounting a Module on the Module Base	. 19
3.2	3.1.1 3.1.2 Conne	Mounting a Module on the Module Base ecting Input/Output Cables	. 19 . 20
	3.1.1 3.1.2	Mounting a Module on the Module Base ecting Input/Output Cables Connecting Cables to the CH1 and	. 19 . 20
	3.1.1 3.1.2 Conne	Mounting a Module on the Module Base ecting Input/Output Cables Connecting Cables to the CH1 and CH2 Terminals (Thermocouple	. 19 . 20 1
	3.1.1 3.1.2 Conne 3.2.1	Mounting a Module on the Module Base ecting Input/Output Cables Connecting Cables to the CH1 and CH2 Terminals (Thermocouple Signal Input)	. 19 . 20 1
	3.1.1 3.1.2 Conne 3.2.1	Mounting a Module on the Module Base connecting Cables to the CH1 and CH2 Terminals (Thermocouple Signal Input) Connecting Cables to the ALARM	.19 .20 1 .20
	3.1.1 3.1.2 Conne 3.2.1	Mounting a Module on the Module Base Connecting Cables to the CH1 and CH2 Terminals (Thermocouple Signal Input) Connecting Cables to the ALARM Terminal (Alarm Output)	.19 .20 1 .20

Contents

Chapter 4 Others 4.1 Alarm Output 25 4.1.1 Output rating 25 4.1.2 Insulation of Internal Circuit...... 28 4.2 Chapter 5 Specifications 29 5.1 Basic Specifications 29 5.2 Function Specifications 30 5.3 General Specifications 31 Chapter 6 Maintenance and Service 33 6.1 6.2 Service 33

25

Introduction

Thank you for purchasing the HIOKI "Model 2303-20 TC MODULE". To obtain maximum performance from the instrument, please read this manual first, and keep it handy for future reference.

Inspection

When you receive the instrument, inspect it carefully to ensure that no damage occurred during shipping. In particular, check the panel switches, and connectors. If damage is evident, or if it fails to operate according to the specifications, contact your dealer or Hioki representative.

Accessories

Instruction manual	1
External RJC (reference junction compen	sation)
sensor	1
Ferrite clamp	2
Terminal block	

Safety Notes

A DANGER

This instrument is designed to comply with IEC 61010 Safety Standards, and has been thoroughly tested for safety prior to shipment. However, mishandling during use could result in injury or death, as well as damage to the instrument. Be certain that you understand the instructions and precautions in the manual before use. We disclaim any responsibility for accidents or injuries not resulting directly from instrument defects.

This manual contains information and warnings essential for safe operation of the instrument and for maintaining it in safe operating condition. Before using it, be sure to carefully read the following safety precautions.

Safety Symbols

	In the manual, the \triangle symbol indicates particularly important information that the user should read before using the instrument.	
	The \triangle symbol printed on the instrument indi- cates that the user should refer to a correspond- ing topic in the manual (marked with the \triangle symbol) before using the relevant function.	
Ŧ	Indicates a grounding terminal.	
	Indicates DC (Direct Current).	
\sim	Indicates AC (Alternating Current).	

The following symbols in this manual indicate the relative importance of cautions and warnings.

A DANGER	Indicates that incorrect operation presents an extreme hazard that could result in serious injury or death to the user.
<u> AWARNING</u>	Indicates that incorrect operation presents a sig- nificant hazard that could result in serious injury or death to the user.
<u>A CAUTION</u>	Indicates that incorrect operation presents a pos- sibility of injury to the user or damage to the instrument.
NOTE	Indicates advisory items related to performance or correct operation of the instrument.

Other Symbols

Indicates the prohibited action.

Indicates the reference.

Accuracy

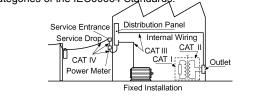
We define measurement tolerances in terms of rdg. (reading), with the following meanings:

f.s.	(maximum display value or scale length) The maximum displayable value or scale length. This is usually the name of the currently selected range.
rdg.	(reading or displayed value) The value currently being measured and indi- cated on the measuring instrument.

3

Measurement categories (Overvoltage categories)

This instrument complies with CAT I safety requirements. To ensure safe operation of measurement instruments, IEC 61010 establishes safety standards for various electrical environments, categorized as CAT I to CAT IV, and called measurement categories. These are defined as follows.


- CAT I Secondary electrical circuits connected to an AC electrical outlet through a transformer or similar instrument.
- CAT II Primary electrical circuits in equipment connected to an AC electrical outlet by a power cord (portable tools, household appliances, etc.)
- CAT III Primary electrical circuits of heavy equipment (fixed installations) connected directly to the distribution panel, and feeders from the distribution panel to outlets.
- CAT IV The circuit from the service drop to the service entrance, and to the power meter and primary overcurrent protection instrument (distribution panel).

Higher-numbered categories correspond to electrical environments with greater momentary energy. So a measurement instrument designed for CAT III environments can endure greater momentary energy than a instrument designed for CAT II.

Using a measurement instrument in an environment designated with a higher-numbered category than that for which the instrument is rated could result in a severe accident, and must be carefully avoided.

Never use a CAT I measuring instrument in CAT II, III, or IV environments.

The measurement categories comply with the Overvoltage Categories of the IEC60664 Standards.

4

Notes on Use

Follow these precautions to ensure safe operation and to obtain the full benefits of the various functions.

Do not allow

Operation and Installation environment.

This instrument should be installed and operated indoors only, between 0 and 50°C (32 to $122^{\circ}F$) and 80% RH or less.

Do not allow the instrument to get wet, and do not take measurements with wet hands.

The instrument may be damaged.

combustible

aases

Do not use the instrument where it may be exposed to corrosive or combustible gases.

The instrument may be damaged.

Do not use the instrument near a source of strong electromagnetic radiation, or near a highly electrically charged object.

These may cause a malfunction.

Electromagnetic radiation or highly electricall charged object

This instrument is not designed to be entirely water- or dust-proof.

Do not use it in an especially dusty environment, nor where it might be splashed with liquid. This may cause damage.

When the module is used in a dusty environment, place it in a dustproof case and take measures to ensure heat dissipation.

Notes on Use

Do not store or use the instrument where it could be exposed to direct sunlight, high temperature or humidity, or condensation.

Under such conditions, the instrument may be damaged and insulation may deteriorate so that it no longer meets specifications.

humidity

Dust

ļ

10

Temperature or To avoid damage to the instrument, protect it from physical shock when transporting and handling.

Be especially careful to avoid physical shock from droppina.

Direct sunlight

Do not obstruct the ventilation holes.

Ventilation holes for heat radiation are provided on the top and rear panels of the instrument. Leave sufficient space around the ventilation holes and install the instrument with the holes unobstructed. Installation of the instrument with the ventilation holes obstructed may cause a malfunction or fire.

When using the instrument in the case, drill ventilation holes.

Drill ventilation holes or install a ventilation fan to prevent heat buildup.

Use the K, E, J, or T thermocouple for the sensor.

Only connect the K, E, J, or T thermocouple sensor. or the sensor supplied for external RJC (reference junction compensation) sensor to the CH1 and CH2 terminals to avoid damaging the 2303-20. Moreover, do not input other signals to these terminals.

Wiring

-	
<u>MWARNING</u>	 A qualified electrician shall perform the wir- ing to prevent electric shock.
	 Avoid live-line electrical work to prevent electric shock and accidents due to short- circuiting.
	• When tightening the screws, confirm that all screws are securely tightened. A loose screw may result in module errors, fire, or electric shock.
	• Tighten the screws within the specified torque. Excessive torque may damage the terminals. Inadequate torque may result in module errors, fire, or electric shock.
	• Ensure that the power supply module and input are OFF until all wiring work is fin- ished. This will prevent module trouble and electric shock.
	 Ensure that the power supply module and input are OFF when connecting or discon- necting the module to the system. This will prevent electric shock, errors, and mal- function.
	 Avoid using an unused terminal for relay- ing or any other purpose to prevent electric shock, errors, and malfunction.
<u> ACAUTION</u>	Connect the module to a power source that matches the rating in order to prevent fire.

<u> ACAUTION</u>

Ensure that the power supply, input, and output are correctly wired according to the wiring diagram. (See the chapter on "Preparations" in the instructions manual for each module.) This will prevent fire, malfunction, and errors.

- Use cables of the proper sizes for the rated current. This will prevent entire system errors and fire resulting from broken wire.
- Use crimp connectors suitable for the cable sizes. This will prevent module errors and fire due to broken wires.
- If power supply noise poses a problem, use of a noise filter is recommended.
- When the power and signal lines may be subject to a lightning-induced surge, install a lightning arrester between another instrument or module connected to this module and line to protect the system.
- Avoid stepping on or pinching cables, which could damage the cable insulation.
- Keep the cables well away from heat sources, as bare conductors could be exposed if the insulation melts.

Preliminary Checks

- Before using the instrument the first time, verify that it operates normally to ensure that the no damage occurred during storage or shipping. If you find any damage, contact your dealer or Hioki representative.
- Before using the instrument, make sure that the insulation on the cables is undamaged and that no bare conductors are improperly exposed. Using the product in such conditions could cause an electric shock, so contact your dealer or Hioki representative for repair.

Overview

Chapter 1

1.1 Product Overview

- The 2303-20 is a measurement module of Hioki "Smart Site" (remote measurement system).
- This module measures and records temperature at regular intervals.
- The 2303-20 is used with the power supply module, communications module, and module base.

Usable Temperature sensor	Thermocouple (Selectable be- tween K, E, J, and T)	
Number of measurement channels	Temperature 2 CH	
Measurement range	-100.0 to 1000.0°C	

1.2 Major Features

- The recording interval is selectable from 1 second to 60 minutes.
- The maximum, minimum, and average measurements during the recording interval can be recorded (with sampling once a second).

The module has an alarm output terminal.

Rough Estimate of Storable Data Quantity and Time

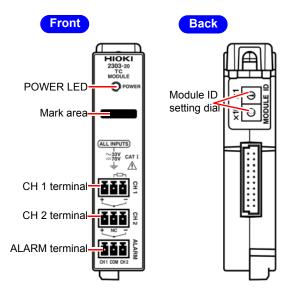
Action at memory full: Continue recording (Endless)

	Recording Mode		
	Instantaneous Value	MAX/MIN/AVE	Instantaneous Value + MAX/MIN/AVE
Quantity of storable data	26000	13000	10000
Recording interval			
1 sec.	7.5 hours	3.5 hours	2.5 hours
2 sec.	14.5 hours	7 hours	5.5 hours
5 sec.	1.5 days	18 hours	14.5 hours
10 sec.	3 days	1.5 days 1 day	
15 sec.	4.5 days	2 days 1.5 days	
20 sec.	6 days	3 days 2 days	
30 sec.	9 days	4.5 days	3.5 days
1 min.	18 days	9 days	7 days
2 min.	36 days	18 days	14 days
5 min.	92 days	46 days 36 days	
10 min.	184 days	92 days 73 days	
15 min.	277 days	138 days 110 days	
20 min.	369 days	184 days 147 days	
30 min.	554 days	277 days	221 days
60 min.	1109 days	554 days	443 days

NOTE

When the alarm log is ON, the higher the number of alarms generated, the smaller the recording period. (Approx. 1 of the data per alarm)

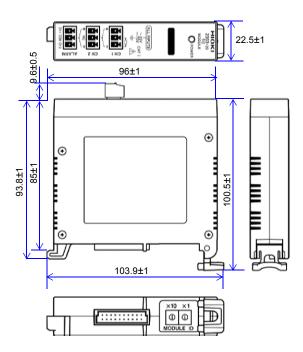
12 1.2 Major Features


Action at memory full: Stop recording (Memory full stop)

	Recording Mode		
	Instantaneous Value	MAX/MIN/AVE	Instantaneous Value + MAX/MIN/AVE
Quantity of storable data	30000	15000 12000	
Recording interval			
1 sec.	8.5 hours	4 hours	3 hours
2 sec.	17 hours	8.5 hours	6.5 hours
5 sec.	1.5 days	21 hours	17 hours
10 sec.	3.5 days	1.5 days	1.5 days
15 sec.	5 days	2.5 days 2 days	
20 sec.	7 days	3.5 days 2.5 days	
30 sec.	10 days	5 days	4 days
1 min.	21 days	10 days	8 days
2 min.	42 days	21 days	17 days
5 min.	106 days	53 days 42 days	
10 min.	213 days	106 days 85 days	
15 min.	319 days	159 days 127 days	
20 min.	426 days	213 days	170 days
30 min.	639 days	319 days	255 days
60 min.	1279 days	639 days	511 days

When the alarm log is ON, the higher the number of alarms generated, the smaller the recording period. (Approx. 1 of the data per alarm)

1.3 Name and Function of the Parts 🥂


14

POWER LED	Goes on or flashes when power is supplied to the module. Remains on, flashes, or changes to another color according to the state of the module. POWER LED indication Lit in green : Data being recorded. Flashing in green : Standing by. Lit in yellow : Alarm output. Flashing in yellow : Overrange detected. Lit in red : Non-recoverable error occurred. *1 Flashing in red : Recoverable error occurred. *2		
Mark area	Use this area to make a note of the object to measure or the module ID. Use an ink pen, since pencil lead may rub off.		
CH 1 terminal	Connect a thermocouple and external RJC (reference junction compensation) sensor to this terminal (channel 1).		
CH 2 terminal	Connect a thermocouple to this terminal (channel 2).		
ALARM terminal	Connect the alarm output cable to this ter- minal. This terminal is electrically insulated from the CH1 and CH2 terminals.		
Module ID setting dial	Use the dial to set the module's identifica- tion No.		

*1: The module needs repair. Contact your vendor (agent) or nearest Hioki office.

*2: The same module ID may be used by another module.

1.4 Dimension Diagrams

(Unit: mm)

16 1.4 Dimension Diagrams

Settings

Chapter 2

2.1 Setting the Module ID

You can connect up to 63 measurement modules to one communications module.

Setting Procedure

Use the module ID setting dial to set the ID No. of the module to a number from 01 and to 63. (You cannot set a number other than the above.)

NOTE • Ensure that the set ID is not used for any other module connected to the same communications module.

- The ID numbers of modules need not be consecutive.
- Setting the ID to 99, then turning on the power resets all internal settings to the defaults.
- The module ID and COM ID are not related and can be set independently.

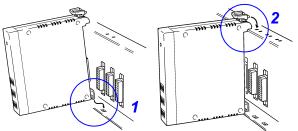
17

18 2.1 Setting the Module ID

Preparations

Chapter 3

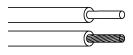
3.1 Installing the Module


3.1.1 Installing the Module Base

CAUTION Do not mount the module base on the ceiling where it may fall off.

Fasten the module base to a DIN rail or the wall according to the procedure described in the 2391 or 2392 series MODULE BASE instruction manual.

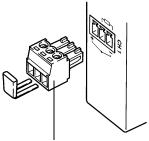
3.1.2 Mounting a Module on the Module Base


Mount a module on the module base as shown below. Ensure that the lever clicks.

3.2 Connecting Input/Output Cables A

Recommended Cable

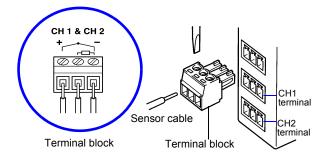
Single-wire	: 0.14 to 1.5 mm ²
Stranded-wire	: 0.14 to 1.0 mm ²
AWG	: 26 to 16
Cable strip length	n: 5 mm (0.2")



3.2.1 Connecting Cables to the CH1 and CH2 Terminals (Thermocouple Signal Input)

The CH1 and CH2 terminals are not insulated from each other. Avoid short-circuiting.

- **1.** Use a flat blade screwdriver to loosen the screws on the terminal block.
- Insert an external RJC (reference junction compensation) sensor into the CH1 terminal.



External RJC (reference junction compensation) sen-

20

3.2 Connecting Input/Output Cables

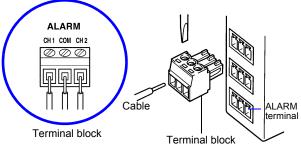
- Insert a sensor cable into the terminal block, then tighten the screws (at a tightening torque of 0.25 N•m).
- **4.** Connect the terminal block to the CH 1 or CH 2 terminal.

22 3.2 Connecting Input/Output Cables

NOTE

• The CH1 and CH2 terminals are not insulated from each other.

When measuring two measurement points having a potential difference, use an electrically insulated sensor or another TC module, since measurements may be adversely affected.


 In case of external noise, wind the cable around the ferrite clamp supplied as an accessory as shown below.

• Note that measurement may be adversely affected by external noise or the electromagnetic environment when using a cable longer than 3 meters.

3.2.2 Connecting Cables to the ALARM Terminal (Alarm Output)

- Use a flat blade screwdriver to loosen the screws on the terminal block.
- Insert a cable for alarm output into the terminal block, then tighten the screws (at a tightening torque of 0.25 N•m).
- **3.** Connect the terminal block to the ALARM terminal.

Connect the cable for CH1 output to CH1 and COM; connect the cable for CH2 output to CH2 and COM.

3.2 Connecting Input/Output Cables

24

3.2.3 The Location of the Input/Output Cable

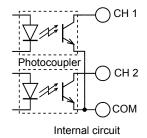
(ALL INPUTS)				
	CH 1 terminal (Input/output)	+		-
		Thermo- couple input (+)	External RJC sensor	Thermo- couple input (-), External RJC sensor
₫₫₫		+	NC	-
	CH 2 terminal (Input/output)	Thermo- couple input (+)	-	Thermo- couple input (-)
CH1 COM CH2	ALARM	CH1	СОМ	CH2
	terminal (Input/output)	Alarm output	Common	Alarm output

Others

Chapter 4

4.1 Alarm Output

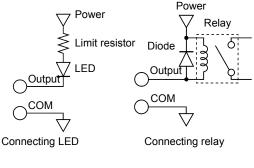
4.1.1 Output rating

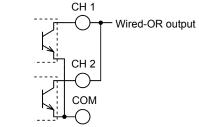

<u> MARNING</u>

Ensure that the input does not exceed the maximum input voltage or current to avoid module damage, short-circuiting and electric shock resulting from heat building.

Output method	Open collector
Maximum input voltage / current	30 V, 20 mA max. (Allowable loss: 75 mW)
Signal logic	Enabled: ON Disabled: OFF

4.1.2 Internal Circuit


The alarm output circuit is configured as shown below.

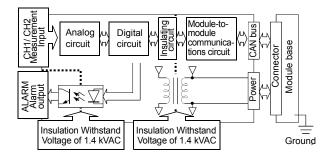


- Signal logic indicates the signal state in which a signal's function is enabled.
 - The output transistor works as a switch between signal output and ground in the module. When output becomes enabled, the switch is turned on and current flows from the output signal to COM in the module. Therefore, a relay or LED lamp can be connected directly to the output terminal (page 27).

Circuit diagram

Using on Wired-OR Logic

NOTE • When connecting a relay or LED lamp, ensure that the relay or lamp operates at up to 30 V and 20 mA (with allowable loss of 75 mW or less). When connecting a relay, be sure to use a diode to absorb counterelectromotive force.


> • Open collector output operates on wired-OR logic by short-circuiting CH 1 and CH 2. Moreover, it enables the signal if an alarm occurs in either channel.

4.2 Insulation of Internal Circuit

ACAUTION The CH1 and CH2 terminals are not insulated from each other. When connecting signals different in potential to these terminals, use an additional measurement

module or insulate the signals externally before connection to the terminals. This will prevent module errors and malfunction.

In the 2303-20, the input circuit and alarm output are insulated from the CAN bus as shown in the block diagram below. (Withstand voltage: 1.4 kVAC, 50/60 Hz, Response current: 5 mA, 1 minute)

NOTE

The COM terminal of the alarm output terminal is used for both CH 1 and CH 2.

Specifications

Chapter 5

5.1 Basic Specifications

Sensor Type	Thermocouple (K, E, J, T)		
Number of Inputs	2 CH		
Measurement Range	-100.0 to 1000.0°C (T: upto 400.0°C) Resolution: 0.1°C		
Module measurement accuracy	±0.1%f.s.±2.0°C (including RJC accuracy) ♦This applies when inserting an external RJC into pins 2 and 3 of CH1		
Reference junction compensation accuracy	±2.0°C (Reference junction compensation range: 0 to 50°C (32 to 122°F)		
Temperature coefficient	Add $\pm 0.05^{\circ}$ C/°C (to the measurement accuracy. (0 to 18°C, 28 to 50°C) (32 to 64°F, 82 to 122°F)		
Temperature of guaranteed accuracy	23±5°C (73±8.5°F) (Module temperature)		
Influence of radiated radio-frequency electromagnetic field	±10°C at 10 V/m		
Warm-up time	1 hour		
Period of guaranteed accuracy	One year		
Sampling	1 time / sec.		
Input terminal	3 Input terminal block × 2		

5.2 Function Specifications

Actual Time Management	Time management using PC application	
Recording Start/End	Recording is started and ended by a com- mand. (Immediate start, timed start, or timed end)	
Recording Method	Interval recording (Measurements are re- corded at a set recording interval.)	
Recorded Data	One data set contains time, temperature (for 2 channels), alarm judgement	
Recording Mode	 Instantaneous value MAX/MIN/AVE Instantaneous value + MAX/MIN/AVE Total 3 modes Set the mode before the start of recording. 	
Recording End Condition	Memory full stop or indefinite ♦Set the condition before the start of record- ing.	
Quantity of Recorded Data	 512 k bytes Flash memory Instantaneous value recording mode 30,000 data × 2 CH MAX/MIN/AVE recording mode 15,000 data × 2 CH Instantaneous value + MAX/MIN/AVE recording mode 12,000 data × 2 CH 	
Data Acquisition Method	 All logging data, data before, at, and after the specified time, or the current instantaneous value (monitored value) 	
Recording Interval	1/2/5/10/15/20/30 sec. 1/2/5/10/15/20/30/60 min.	

Alarm	Criterion threshold can be set to either Hi or Lo. The instantaneous value at every sampling is judged (effective in any measurement mode).	
Alarm Output	Alarm output × 2 CH (Open collector: 30 VDC, 20 mAmax., with allowable loss of 75 mWmax.) ♦Output is turned ON when an alarm (Hi or Lo) occurs. Whether to hold the alarm output can be selected. The reset switch or a command can be used to reset alarms.	
Data Deletion	All items of data are deleted by a command. New data will be added to the previous data at the start of recording.	
Power Outage Protection	After recovering from a power outage, the 2303-20 automatically returns to the state held before the outage.	

5.3 General Specifications

Clock Accuracy	±100 ppm (Reference value at temperature from 0 to 50°C (32 to 122°F) without the com- munications module)	
Backup	Recorded data (saved in flash memory) ♦Data loss for up to 2 minutes before and af- ter a power outage may occur.	
Communication Interface	CAN bus	
Maximum Rated Voltage to Earth	33 Vrms, 70 VDC (Total of input voltage)	
Rated Supply Voltage	5 V±0.3 VDC	
Maximum Rated Power	1.4 W	

32 5.3 General Specifications				
Withstanding Voltage	1.4 kVAC Between input and alarm output, Input/Output and CAN bus (50/60 Hz, Re- sponse current 5 mA, one minutes			
Dimensions	Approx. 22.5W × 96H × 85D mm (0.89"W × 3.78"H × 3.35"D) (excluding projections)			
Mass	Approx. 120 g (4.2 oz.)			
Accessories	Instruction manual			
Operational Ranges for Temperature and Humidity	0 to 50°C (32 to 122°F), 80%RH or less (with no condensation)			
Temperature and Humidity ranges for storage	-10 to 50°C (14 to 122°F), 80%RH or less (with no condensation)			
Location for Use	Max. 2000 m (6562-ft.) height, indoors			
Standards Applying	Safety EMC	EN61010-1:2001 Pollution Degree 2 Measurement Category I, (antici- pated transient overvoltage 330 V) EN61326:1997+A1:1998+A2:2001 CLASS A		

Maintenance and Service

Chapter 6

6.1 Cleaning

To clean the instrument, wipe it gently with a soft cloth moistened with water or mild detergent. Never use solvents such as benzene, alcohol, acetone, ether, ketones, thinners or gasoline, as they can deform and discolor the case.

6.2 Service

<u> MARNING</u>

Never modify the instrument. Only Hioki service engineers should disassemble or repair the instrument. Failure to observe these precautions may result in fire, electric shock, or injury.

- If the instrument seems to be malfunctioning, confirm that the cables are not open circuited before contacting your dealer or Hioki representative.
- When sending the instrument for repair, pack carefully to prevent damage in transit. Include cushioning material so the instrument cannot move within the package. Be sure to include details of the problem. Hioki cannot be responsible for damage that occurs during shipment.
- When transporting the 2303-20 or a system containing this module, tape the front of the module or take similar measures to avoid losing internal components.

ΗΙΟΚΙ

DECLARATION OF CONFORMITY

Manufacturer's Name: HIOKI E.E. CORPORATION

Manufacturer's Address: 81 Koizumi, Ueda, Nagano 386-1192, Japan

Product Name: TC MODULE

Model Number: 2303-20

The above mentioned product comforms to the following product specifications:

Safety: EN61010-1:2001

EMC:

EN61326:1997+A1:1998+A2:2001 Class A equipment Equipment intended for use in industrial location

Supplementary Information:

The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC.

16 July 2004

HIOKLEE CORPORATION

min Uiolii Yuii Hioki

President

2303A999-00

HIOKI 2303-20 TC MODULE Instruction Manual

Publication date: August 2004 Edition 1

Edited and published by HIOKI E.E. CORPORATION Technical Support Section

All inquiries to International Sales and Marketing Department

81 Koizumi, Ueda, Nagano, 386-1192, Japan TEL: +81-268-28-0562 / FAX: +81-268-28-0568 E-mail: os-com@hioki.co.jp

URL http://www.hioki.co.jp/

Printed in Japan 2303A981-00

- All reasonable care has been taken in the production of this manual, but if you find any points which are unclear or in error, please contact your supplier or the International Sales and Marketing Department at HIOKI headquarters.
- In the interests of product development, the contents of this manual are subject to revision without prior notice.
- Unauthorized reproduction or copying of this manual is prohibited.

HIOKI E. E. CORPORATION

HEAD OFFICE

81 Koizumi, Ueda, Nagano 386-1192, Japan TEL +81-268-28-0562 / FAX +81-268-28-0568 E-mail: os-com@hioki.co.jp URL http://www.hioki.co.jp/

HIOKI USA CORPORATION

6 Corporate Drive, Cranbury, NJ 08512, USA TEL +1-609-409-9109 / FAX +1-609-409-9108

2303A981-00 04-08H

Printed on recycled paper

