INSTRUCTION MANUAL

3540

mΩ HiTESTER

HIOKI E.E. CORPORATION
Contents

Introduction .. i
Inspection .. i
Safety ... ii
Precautions ... v

Chapter 1 Outline ... 1
 1.1 Four-terminal Method .. 1
 1.2 Temperature Correction Function .. 3
 1.3 Effects of Thermoelectromotive Force ... 5

Chapter 2 Name and Functions .. 7
 2.1 Front Panel ... 7
 2.2 Rear Panel .. 11
 2.2.1 3540 .. 11
 2.2.2 3540-01 ... 11
 2.2.3 3540-02 ... 11
 2.2.4 3540-03 ... 12
 2.3 Top Case .. 13

Chapter 3 Specifications ... 15
 3.1 General Specifications ... 15
 3.2 Measurement Range ... 18

Chapter 4 Operating Procedure ... 21
 4.1 Preparing Measurement .. 21
 4.1.1 Measurement Leads .. 22
 4.1.2 About the Temperature Probe ... 23
 4.1.3 Instrument Handle .. 23
 4.2 Resistance Measurement ... 24
 4.2.1 Setting the Power Supply Frequency ... 25
 4.2.2 Changing the Measurement Range ... 26
 4.2.3 Zero Adjust Function .. 27
6.2 Communication Method ... 55
 6.2.1 Connection to Computer 55
 6.2.2 Command Transfer Method 55
 6.2.3 Command Format .. 56
 6.2.4 Response Format .. 57
 6.2.5 Delimiter .. 57

6.3 Command .. 58
 6.3.1 Explanation of Command References 58
 6.3.2 Command References 59
 6.3.3 Received Data .. 70

Chapter 7 Printers .. 73
 7.1 Making Connections .. 73
 7.2 Printing .. 75

Chapter 8 Maintenance and Service 77
 8.1 Battery Replacement Procedure 77
 8.2 Fuse Replacement Procedure 79
 8.3 Troubleshooting .. 80
 8.4 Error Code Table .. 82
 8.5 Service ... 83
 8.6 Cleaning .. 83
Introduction

Thank you for purchasing the HIOKI "3540 mΩ HiTESTER." To obtain maximum performance from the product, please read this manual first, and keep it handy for future reference.

Inspection

When you receive the product, inspect it carefully to ensure that no damage occurred during shipping. In particular, check the accessories, panel switches, and connectors. If damage is evident, or if it fails to operate according to the specifications, contact your dealer or Hioki representative.

Accessories

- 9287-10 CLIP TYPE LEAD 1
- 9451 TEMPERATURE PROBE 1
- Instruction Manual 1
- Four R6P manganese batteries 6
- Spare fuse to protect the circuit (F1.0 AH/250 V) 1
- Ferrite Clamp (for AC adapter and temperature probe) 2
- External connector socket (Ver.-01 only) 1
Safety

WARNING

This product is designed to conform to IEC 61010 Safety Standards, and has been thoroughly tested for safety prior to shipment. However, mishandling during use could result in injury or death, as well as damage to the product. Be certain that you understand the instructions and precautions in the manual before use. We disclaim any responsibility for accidents or injuries not resulting directly from product defects.

Safety symbols

This manual contains information and warnings essential for safe operation of the product and for maintaining it in safe operating condition. Before using the product, be sure to carefully read the following safety notes.

- The ⚠️ symbol printed on the product indicates that the user should refer to a corresponding topic in the manual (marked with the ⚠️ symbol) before using the relevant function.
- In the manual, the ⚠️ symbol indicates particularly important information that the user should read before

- Indicates DC (Direct Current).
- Indicates the ON side of the power switch.
- Indicates the OFF side of the power switch.
The following symbols in this manual indicate the relative importance of cautions and warnings.

WARNING Indicates that incorrect operation presents a significant hazard that could result in serious injury or death to the user.

CAUTION Indicates that incorrect operation presents a possibility of injury to the user or damage to the product.

NOTE Advisory items related to performance or correct operation of the product.

Measurement categories (Overvoltage categories)

To ensure safe operation of measurement instruments, IEC 61010 establishes safety standards for various electrical environments, categorized as CAT I to CAT IV, and called measurement categories. These are defined as follows.

- **CAT I**: Secondary electrical circuits connected to an AC electrical outlet through a transformer or similar device.
- **CAT II**: Primary electrical circuits in equipment connected to an AC electrical outlet by a power cord (portable tools, household appliances, etc.)
- **CAT III**: Primary electrical circuits of heavy equipment (fixed installations) connected directly to the distribution panel, and feeders from the distribution panel to outlets.
- **CAT IV**: The circuit from the service drop to the service entrance, and to the power meter and primary overcurrent protection device (distribution panel).

Higher-numbered categories correspond to electrical environments with greater momentary energy. So a measurement device designed for CAT III environments can endure greater momentary energy than a device designed for CAT II.

Using a measurement instrument in an environment designated with a higher-numbered category than that for which the
instrument is rated could result in a severe accident, and must be carefully avoided.

Never use a CAT I measuring product/ instrument in CAT II, III, or IV environments.

The measurement categories comply with the Overvoltage Categories of the IEC60664 Standards.
Precautions

Follow these precautions to ensure safe operation and to obtain the full benefits of the various functions.

WARNING
Use either the specified Hioki model 9445-02/03 AC ADAPTER (SA10-0910G, SINO-AMERICAN).

CAUTION

- Never apply an external voltage to the SENSE and SOURCE terminals of the instrument.
- To properly suppress noise, this product must be set to match the power supply frequency. Before using the product, make sure the power supply frequency selector is set correctly, to avoid erroneous readings. (Refer to 4.2.1 Setting the Power Supply Frequency.)
- Do not store or use the product where it could be exposed to direct sunlight, high temperature or humidity, or condensation. Under such conditions, the product may be damaged and insulation may deteriorate so that it no longer meets specifications.
- To avoid damage to the product, protect it from vibration or shock during transport and handling, and be especially careful to avoid dropping.
- The sensor used in the temperature probe is a thin, precision platinum film. Please note that excessive voltage pulses or static discharges can destroy the film. To avoid damage or malfunction, avoid hitting the tip of the temperature probe and overly bending the leads. When measuring high temperatures, do not let the handle of the temperature probe or the compensation lead wire exceed the temperature range.
- The battery indicator appears when battery voltage becomes low. Replace the batteries as soon as possible. (Refer to "8.1 Battery Replacement Procedure.")
- Be sure to turn the power switch OFF (ถอน) when not using the instrument.
- Warm up the instrument for at least 30 minutes prior to use, to attain proper measurement accuracy.
- This product should be installed and operated indoors only, between 0 and 40 °C and 80 %RH or less.
- A fuse is provided in the current source (SOURCE) to protect the circuit. If the fuse burns out, measurements cannot be made. Refer to "8.2 Fuse Replacement procedure" on how to check for a burned-out fuse.
- This instrument should not be used with relays or other devices that handle small signals, since it may damage their contact coating.
- Do not measure points which have a voltage across them. The main unit of the 3540 will be damaged by an induced voltage if a measurement is made immediately after a temperature rise test or dielectric test of a motor or transformer.
- Accurate measurement may be difficult to obtain if the instrument is used near equipment that generates noise. Also, the indicator may sometimes fluctuate if the device-under-test picks up noise. Therefore, do not use the instrument in environments with excessive electrical noise.
- The measurement indication may sometimes fluctuate due to noise pick-up if the temperature probe is touched or held with bare fingers.
- Temperature correction is not possible when the temperature probe is in contact with the surface of the device to be measured. Note that the temperature probe is only designed to measure ambient air temperature.
- Significant measurement error will result if the device to be temperature corrected and the temperature probe are not at the same ambient air temperature.
- Large measurement error will result if the temperature probe is not inserted fully into the tc sensor jack.
• Make sure the power is turned off before connecting or disconnecting the AC adapter.
• The AC adapter may pick up noise which will affect the measurement. In such a case, operate the instrument from battery power.
• Measurement range, comparator settings and all settings of the 3540 (except for the measured value) are backed up internally, but this backup occurs only after a certain amount of time has elapsed without any operation. Therefore, after changing the settings, wait a few moments (about 5 seconds) before turning off the power.
• Because the 3540 uses direct current to make measurements, thermoelectromotive effects can result in measurement errors. Refer to "1.3 Effects of Thermoelectromotive Force" for details.
• When the one that includes the L component such as the transformer for the power supply a lot is measured a measured value may not stabilize.
1.1 Four-terminal Method

To obtain accurate results when measuring resistance values that are very small, the Four-terminal method must be used. As shown in figure 1, in the Two-terminal method, the resistance of the test leads adds to the resistance of the device being measured, resulting in an erroneous measurement. However, in the Four-terminal method shown in the Figure 2, the input consists of two current terminals to which a constant current is supplied, and two voltage terminals measured the voltage drop. The voltmeter has a high input impedance so that essentially no current flows through the leads connected between the device-under-test and the voltage terminals. As a result, there is almost no voltage drop across the resistances r_3 and r_4. Thus the voltage drop due to the lead resistances and contact resistances is very small, and these can be canceled out.
1.1 Four-terminal Method

The current I flows to the measured resistance R_0 and the wiring resistance r_1 and r_2. Therefore, the measuring voltage E can be obtained by $E = I (r_1 + R_0 + r_2)$, and it would include the wiring resistance r_1 and r_2. All of the current I flows to the measured resistance R_0. Therefore, the voltage drop of r_3 and r_4 become 0, and voltage E and the voltage drop E_0 of each end of the measured resistance R_0 become equal. Accordingly, the resistance measurement without influence of r_1 to r_4 becomes possible.
1.2 Temperature Correction Function

The temperature sensor used in the 3540's temperature probe is a thin platinum film whose resistance changes according to temperature. The resistance of the film is detected and converted to a temperature value by the CPU.

This section explains use of the 3540's temperature coefficient correction function.

Since the resistance of copper wire is relatively susceptible to changes in temperature, that fact must be kept in mind when measuring its resistance. Using the temperature probe, the resistance value of copper wire can easily be converted to its 20°C equivalent for display.

In general, the relationship between the resistance of copper wire and temperature is as indicated by the following expression.

\[R_t = R_{t0} \times \{1 + \alpha_{t0} \times (t - t_0)\} \]

(1)

Here, \(\alpha_{t0} \) is referred to as the temperature coefficient, which is expressed as follows.

\[\alpha_{t0} = \frac{1}{\left[1 / (0.00393 \times \alpha) \times (t_0 - 20) \right]} \]

(2)

Here, \(\square \) is the conductivity of copper wire. From expressions (1) and (2), the temperature coefficients of various types of wire with various conductivities can be calculated, and their resistance values at a particular temperature obtained. Table 1 shows the conductivity of various types of copper wire.

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
<th>Soft copper</th>
<th>Tin-plated soft copper</th>
<th>Hard copper</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10 to 0.26</td>
<td>0.98</td>
<td>0.93</td>
<td>---</td>
</tr>
<tr>
<td>0.26 to 0.50</td>
<td>0.993</td>
<td>0.94</td>
<td>0.96</td>
</tr>
<tr>
<td>0.50 to 2.00</td>
<td>1.00</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>2.00 to 8.00</td>
<td>1.00</td>
<td>0.97</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Table 1 Conductivity \(\square \)
For 3540 temperature correction, conductivity \Box is calculated as 1. Accordingly, when the resistance value R_{20} that is displayed at the time of temperature correction is taken as R_t, the measured resistance at the current ambient temperature is expressed by the following expression. (Temperature coefficient: $\alpha_{20} = 3930$ ppm, ppm = $x \times 10^6$)

$$R_{20} = R_t / \{1 + \alpha_{20} \times (t - 20)\}$$

(3)

Error occurs during temperature correction because the temperature coefficient calculated according to expression (2) differs when the conductivity \Box is other than 1.

For example, when the tin-plated soft copper wire (diameter 0.10 to 0.26) of Table 1 is measured, $\Box = 0.93$ gives α_{10} of 3650 ppm, so that the 3540 temperature value contains error.
1.3 Effects of Thermoelectromotive Force

Thermoelectromotive force is the potential difference at the junction of two dissimilar metals. If this emf is large, measurement errors can result. As the 3540 uses constant direct current flowing through the object being measured, readings can be affected by even slight thermoelectromotive force.

Furthermore, the quantity of thermoelectromotive force is dependent upon the temperature of the measurement environment, with the force generally being greater at higher temperature. Thermoelectromotive force occurs at the junction of dissimilar metals and between the probes of the 3540 and the contacts on the object being measured. The following figure illustrates thermoelectromotive force. The battery symbols represent a junction of dissimilar metals, and the probe symbols represent the thermoelectromotive force.

As an example of the error effects of thermoelectromotive force, if the force is 10 µV and the measured resistance is 3 Ω, the current is 1 mA in the 3 Ω range, so the measured value displayed on the 3540 is actually

\[
\frac{(3 \, \Omega \times 1 \, mA + 10 \, \mu V)}{1 \, mA} = 3.010 \, \Omega.
\]

In this situation, changing the probe direction to HI-LO leaves the polarity of the thermoelectromotive force unaffected, so the measured value is now

\[
\frac{(3 \, \Omega \times 1 \, mA - 10 \, \mu V)}{1 \, mA} = 2.990 \, \Omega.
\]
If the measurement error is large due to the effect of thermoelectromotive force, the following countermeasures can be employed.

(1) Reverse the probes and use the average measured value.
(2) As the thermoelectromotive force is temperature dependent, maintain a constant temperature in the measurement environment.
Chapter 2
Name and Functions

2.1 Front Panel

- Handle
- LCD
- Comparator display
- Input terminal
- 3. ▲▼ keys
- 7. TC key (8. TEMP key)
- 4. AUTO key
- 5. HOLD key (6. 0ADJ key)
- 15. Hi/REF key
- 13. COMP key
- 11. Buzzer key
- 12. SHIFT key
- 1. Power switch
- 10. FAST mark
- 14. TABLE key
- 16. Comparator configuration keys
- 9. LOCK key (UNLOCK key)
- 12. SHIFT mark
- 18. Battery mark
- 4. AUTO mark
- 2. Measurement display area
- 7. TC mark
- 4. AUTO key
- 2. Measurement display area
- 14. Table No display
- 15. Comparator mode display
- 17. Buzzer mode display
- 13. Comparator display
- 16. Comparator configuration display

2.1 Front Panel
1. **POWER** switch

On power-up, the LCD and LED's light and the instrument performs an internal check and initialization of internal analog circuits. An error code is displayed if an internal error is detected during the check. (Refer to "8.4 Error Code Table".)

Upon completion of the internal check, the LCD displays the instruments power supply frequency setting and the 3540 version number.

![Frequency Display](image)

2. Measurement display area

Displays the measurement count, decimal point, unit of measurement, and the measurement range.

3. **[▲] [▼]** keys → Page 26

The [▲] (up) and [▼] (down) keys are used to select the resistance measurement range.

4. **[AUTO]** key, **AUTO** mark → Page 26

Pressing the [AUTO] key turns on automatic range selection, lighting the AUTO mark on the LCD. The measurement range for resistance is then automatically selected according to the resistance of the resistor being measured.

5. **[HOLD]** key, **HOLD** mark → Page 28

Pressing the [HOLD] key turns on the hold mode, lighting the HOLD mark on the LCD and fixing the currently displayed measurement value.

6. **[0ADJ]** key → Page 27

To zero-adjust the instrument, short the test leads and press **SHIFT + 0ADJ**. (Zero adjustment is only possible with a reading of 100 counts or less.)

7. **[TC]** key, **TC** mark → Page 35

When the temperature probe is connected, pressing the [TC] key converts the measured resistance value of copper wire to its 20 °C equivalent resistance value and displays it.
8. **TEMP** key

Pressing **SHIFT** + **TEMP** with the temperature probe connected selects the temperature measurement mode. Pressing **SHIFT** + **TEMP** a second time returns measurement to the resistance mode.

9. **LOCK** / **UNLOCK** key, **LOCK** mark

Pressing the **LOCK** key lights the **LOCK** mark on the LCD and locks out key input. With key input locked, all of the keys on the instrument are disabled except for the **POWER** switch and the **SHIFT** key. To unlock the keys, press **SHIFT** + **UNLOCK**.

10. **SAMPL** key, **FAST** mark

Sampling speed is switched using the **SAMPL** key. With fast sampling, **FAST** is displayed on the LCD and sampling takes place at the rate 16 samples per second. When slow sampling is selected, sampling takes place at the rate of 4 samples per second.

11. **50/60Hz** key

Power supply frequency is selected by pressing **SHIFT** + **50/60Hz**. Select the frequency that matches that of your power supply.

12. **SHIFT** key, **SHIFT** mark

Pressing the **SHIFT** key lights the **SHIFT** mark on the LCD and puts the keys in the shift mode. In the shift mode, pressing any key activates the function whose name is printed in blue below that key. To cancel the shift mode, press the **SHIFT** key a second time.

13. **COMP** key, comparator display

Pressing the **COMP** key turns on the comparator, lighting the comparator display on the LCD and enabling comparison measurement. To end comparison measurement, press the **COMP** key a second time.

14. **TABLE** key, Table No. display

Pressing the **TABLE** key switches the internal comparator table number. With the 3540, up to seven different comparator configurations can be saved.

2.1 Front Panel
15. **[HI/REF]** key, comparator mode display
The comparator mode is selected with the **[HI/REF]** key. When the **HIGH** or **LOW** mark is lit on the LCD, the comparator is in the Hi-Lo mode. When the **REF** or **%** mark is lit, it is in the REF-% mode.

16. Comparator configuration keys, comparator configuration display
Upper (HIGH) and lower (LOW) comparator limits and the comparator reference value (REF) and range (%) can be set by pressing keys corresponding to the various digits of the comparator configuration display on the LCD.

17. Buzzer key and buzzer mode display
Pressing the buzzer key switches the buzzer mode that is set dependent upon comparator results. When the **[HL]** buzzer mark is lit on the LCD, the buzzer is in the HL mode, and sounds when the comparator result is HIGH or LOW. When the **[IN]** buzzer mark is lit on the LCD, the buzzer is in the IN mode, and sounds when the comparator result is IN. When no buzzer mark is lit on the LCD, the buzzer is in the OFF mode, and does not sound.

18. Battery mark
The battery indicator appears when battery voltage becomes low. Replace the batteries as soon as possible. (Refer to "8.1 Battery Replacement Procedure").
2.2 Rear Panel

2.2.1 3540

TC sensor jack (Page 36)

2. AC adapter jack

2.2.2 3540-01

External connector (Page 40)

1. AUTO/MANU selection switch

External terminal (Page 39)

2. AC adapter jack

2.2.3 3540-02

Printer connector (Page 73)

1. AUTO/MANU selection switch

External terminal (Page 39)

2. AC adapter jack
2.2.4 3540-03

1. AUTO/MANU selection switch →Page 34

Selects the AUTO mode, for continuous comparator output operation ("normal" mode), or the MANU mode for comparator output only when the MANU and GND terminals of the external connector on the rear panel are shorted.

2. AC adapter jack

The 3540 can be operated from an AC power source by connecting an AC adapter.

When using an AC adapter, use only the specified HIOKI model 9445-02, 9445-03 AC ADAPTER (SA10-0910G, SINO-AMERICAN).

An AC adapter rated at 9 VDC and 1.4 A to the AC adapter socket. The polarity of socket is center-plus.
2.3 Top Case

Battery cover (Page 78)
2.3 Top Case
3.1 General Specifications

<table>
<thead>
<tr>
<th>Measurement method</th>
<th>Four-terminal method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating method</td>
<td>Dual integrator circuit</td>
</tr>
<tr>
<td>Display</td>
<td>LCD display</td>
</tr>
<tr>
<td></td>
<td>Resistance measurement 3500 counts</td>
</tr>
<tr>
<td></td>
<td>Temperature measurement 999 counts</td>
</tr>
<tr>
<td>Auto range</td>
<td>Provided (disabled when comparator is on)</td>
</tr>
<tr>
<td>Input overflow</td>
<td>"OF" display</td>
</tr>
<tr>
<td>Current abnormality</td>
<td>"----" displayed (CCERR: external output*2)</td>
</tr>
<tr>
<td>Sampling speed</td>
<td>Resistance measurement</td>
</tr>
<tr>
<td></td>
<td>"SLOW" 4 samples/sec</td>
</tr>
<tr>
<td></td>
<td>"FAST" 16 samples/sec</td>
</tr>
<tr>
<td></td>
<td>Temperature sampling 1 sample/sec</td>
</tr>
<tr>
<td>Response time</td>
<td>Resistance measurement</td>
</tr>
<tr>
<td></td>
<td>"SLOW" 300 msec</td>
</tr>
<tr>
<td></td>
<td>"FAST" 80 msec</td>
</tr>
<tr>
<td>Comparator</td>
<td>Table storage of up to 7 configurations (table externally selectable*3)</td>
</tr>
<tr>
<td></td>
<td>Comparator results displayed by LED and externally output (open collector*2)</td>
</tr>
<tr>
<td></td>
<td>Comparator modes (Hi-Lo/REF-%), Buzzer mode (HL/IN/OFF)</td>
</tr>
<tr>
<td>Temperature correction function</td>
<td>Reference temperature 20°C (68°F), copper wire (temperature coefficient: 3930 ppm)</td>
</tr>
<tr>
<td>External control</td>
<td>TTL output</td>
</tr>
<tr>
<td></td>
<td>BCD</td>
</tr>
<tr>
<td></td>
<td>Open collector output</td>
</tr>
<tr>
<td></td>
<td>EOC, Hi, IN, Lo, CCERR</td>
</tr>
<tr>
<td></td>
<td>TTL input</td>
</tr>
<tr>
<td></td>
<td>TRIG, MANU, 0 ADJ, PRINT4, range control3, comparator control*3</td>
</tr>
</tbody>
</table>
3.1 General Specifications

<table>
<thead>
<tr>
<th>Interface</th>
<th>RS-232C interface*5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printer</td>
<td>Centronics interface*4</td>
</tr>
<tr>
<td>Power supply frequency</td>
<td>50/60 Hz, switchable</td>
</tr>
<tr>
<td>Overvoltage protection</td>
<td>30 VDC or ACpeak (circuit protection by fuse)</td>
</tr>
<tr>
<td>Operating temperature/humidity</td>
<td>0 to 40°C (32 to 104 °F), 80 %RH or less (No condensing)</td>
</tr>
<tr>
<td>Storage temperature/humidity</td>
<td>-10 to 50°C (14 to 122 °F), 80 %RH or less (No condensing)</td>
</tr>
<tr>
<td>Operating Environment</td>
<td>Indoor < 2000 m ASL (6566 feet)</td>
</tr>
</tbody>
</table>
| **Power source** | Six LR6 alkaline batteries or six R6P manganese Batteries
Rated supply voltage 1.5 VDC x 6 |
| **AC adapter (option)** | 9445-02 AC ADAPTER (SA10-0910N, SINO-AMERICAN)
9445-03 AC ADAPTER (SA10-0910G, SINO-AMERICAN)
Rated supply voltage of the AC adapter is 100 to 240 VAC. (Voltage fluctuations of 10% from the rated supply voltage are taken into account.)
Rated supply frequency is 50/60 Hz. |
| **Maximum rated power** | 5 VA |
| **Continuous operating time** | LR6 Alkaline Batteries
Approx. 7 hours
(30 m, 300 mΩ range, LED and buzzer: ON)
Approx. 18 hours
(other ranges, LED and buzzer: ON)
R6P manganese Batteries
Approx. 1.5 hours
(30 m, 300 mΩ range, LED and buzzer: ON)
Approx. 6 hours
(other ranges, LED and buzzer: ON) |
| **Dimensions** | Approx. 215W x 61H x 213D mm
(8.46"W x 2.40"H x 8.39"D) |
| **Mass** | 3540
Approx. 900 g (31.7 oz.)
3540-01, 3540-02, 3540-03
Approx. 1,000 g (35.3 oz.)
(Except for batteries) |
Accessories

| 9287-10 CLIP TYPE LEAD, |
| 9451 TEMPERATURE PROBE, |
| Instruction Manual, |
| Six R6P manganese batteries, |
| Spare fuse to protect the circuit (F1.0 AH/250 V), |
| Ferrite Clamp (for AC adapter and temperature probe), |
| External connector socket*³ |

Options

| 9445-02 AC ADAPTER |
| (SA10-0910N, SINO-AMERICAN) |
| 9445-03 AC ADAPTER |
| (SA10-0910G, SINO-AMERICAN) |
| 9452 CLIP TYPE LEAD, |
| 9453 FOUR TERMINAL LEAD, |
| 9455 PIN TYPE LEAD, |
| 9460 CLIP TYPE LEAD WITH TEMPERATURE SENSOR, |
| 9461 PIN TYPE LEAD, |
| 9467 LARGE CLIP TYPE LEAD, |
| 9203 DIGITAL PRINTER, |
| 9425 CONNECTION CABLE, |
| 9233 RECORDING PAPER |

Applicable standards

Safety:
- EN61010-1:2001
- Pollution Degree 2, EMC:
- EN61000-3-2:2000
- Effect of radiated radio-frequency electromagnetic field at 3 V/m ±30 dgt max.

*1: Response time varies according to item being measured. Times indicated are for measurement of a reference resistance.

*2: 3540-01, 3540-02, 3540-03 only.

*3: 3540-01 only.

*4: 3540-02 only.

*5: 3540-03 only.

3.1 **General Specifications**
3.2 Measurement Range

| Measurement condition | 23±5°C (73 ± 9°F), 80 %RH or less
(No condensing) After zero adjustment |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-heating period</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Effect of radiated radio-frequency electromagnetic field</td>
<td>At 3 V/m ±30 dgt max.</td>
</tr>
</tbody>
</table>

Resistance measurement (with sampling rate set to SLOW)

<table>
<thead>
<tr>
<th>Range</th>
<th>30 mΩ</th>
<th>300 mΩ</th>
<th>3 Ω</th>
<th>30 Ω</th>
<th>300 Ω</th>
<th>3 kΩ</th>
<th>30 kΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>10 μΩ</td>
<td>100 μΩ</td>
<td>1 mΩ</td>
<td>10 mΩ</td>
<td>100 mΩ</td>
<td>1 Ω</td>
<td>10 Ω</td>
</tr>
<tr>
<td>Measurement current</td>
<td>100 mA</td>
<td>1 mA</td>
<td>10 μA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. test voltage</td>
<td>3.5 mV</td>
<td>35 mV</td>
<td>35 mV</td>
<td>35 mV</td>
<td>350 mV</td>
<td>35 mV</td>
<td>350 mV</td>
</tr>
<tr>
<td>Accuracy 6month</td>
<td>±0.1% rdg. ±6 dgt.</td>
<td>±0.1% rdg. ±4 dgt.</td>
<td>±0.1% rdg. ±6 dgt.</td>
<td>±0.1% rdg. ±4 dgt.</td>
<td>±0.1% rdg. ±6 dgt.</td>
<td>±0.1% rdg. ±4 dgt.</td>
<td></td>
</tr>
<tr>
<td>Accuracy 1year</td>
<td>±0.15% rdg. ±6 dgt.</td>
<td>±0.15% rdg. ±4 dgt.</td>
<td>±0.15% rdg. ±6 dgt.</td>
<td>±0.15% rdg. ±4 dgt.</td>
<td>±0.15% rdg. ±4 dgt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature coefficient</td>
<td>±0.02% rdg. ±0.5 dgt./°C (°F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open-terminal voltage</td>
<td>4.0 Vmax.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* If the sampling rate is set to FAST, add ± 3 dgt. to the digit accuracy error.
Temperature measurement and temperature correction

6month

<table>
<thead>
<tr>
<th>Temperature range</th>
<th>Temperature measurement accuracy</th>
<th>Temperature correction accuracy (Add the following values to the accuracy specifications of the resistance measurement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10.0 to 39.9°C (14.0 to 103.9°F)</td>
<td>±0.3 %rdg. ±0.5°C</td>
<td>±0.3 %</td>
</tr>
<tr>
<td>40.0 to 99.9°C (104.0 to 211.9°F)</td>
<td>±0.3 %rdg. ±1.0°C</td>
<td>±0.6 %</td>
</tr>
</tbody>
</table>

1year

<table>
<thead>
<tr>
<th>Temperature range</th>
<th>Temperature measurement accuracy</th>
<th>Temperature correction accuracy (Add the following values to the accuracy specifications of the resistance measurement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10.0 to 39.9°C (14.0 to 103.9°F)</td>
<td>±0.45 %rdg. ±0.8°C</td>
<td>±0.4 %</td>
</tr>
<tr>
<td>40.0 to 99.9°C (104.0 to 211.9°F)</td>
<td>±0.45 %rdg. ±1.5°C</td>
<td>±0.8 %</td>
</tr>
</tbody>
</table>

* For 3540 only, accuracy is ±0.2°C when connected to a manufacturer-recommended temperature sensor (Pt). The temperature-measurement accuracy and temperature-correction accuracy above are those of 3540 combined with the results of the 9541 TEMPERATURE PROBE.

We define measurement tolerances in terms of rdg. (reading) and dgt. (digit) values, with the following meanings:
rdg. (reading or displayed value)
The value currently being measured and indicated on the measuring product/ instrument.
dgt. (resolution)
The smallest displayable unit on a digital measuring product/ instrument, i.e., the input value that causes the digital display to show a "1" as the least-significant digit.
3.2 Measurement Range
4.1 Preparing Measurement

The 3540 works on battery power or with an 9445-02, 9445-03 AC ADAPTER (SA10-0910G, SINO-AMERICAN). When using the AC adapter, fit the provided ferrite clamp over the adapter cable as shown in the figure.

Refer to the section on battery replacement when installing batteries into the battery compartment while. (Refer to "8.1 Battery Replacement Procedure"). When connecting the AC adapter, first make sure the POWER switch is OFF, then insert the jack of AC adapter socket, connect the AC adapter body to the AC power source, and finally turn ON the POWER switch.

NOTE • Since power consumption is high in the case of 3540-01, 3540-02 and 3540-03, batteries will be exhausted quickly.
4.1 Preparing Measurement

4.1.1 Measurement Leads

Connect the leads as shown in the following figure:

The side with "v" mark is SENSE.

When clipping a thin line
(Clip the line at the tip, serrated part of the jaws.)

When clipping a thick line
(Clip the line at the deep, non-serrated part of the jaws.)

The cable part of the lead is shielded.

For user-made leads, take the following precautions when the leads:
(1) A shield must be applied. (Refer to the follow figure.)
(2) The cable length must be 5 m or less (The resistance of the wire material should be 100 mΩ/m or less.)
4.1 Preparing Measurement

4.1.2 About the Temperature Probe

When using the 9451 TEMPERATURE PROBE, loop the probe cable once around the provided ferrite clamp and fasten it as shown in the figure.

4.1.3 Instrument Handle

When using the handle as a stand for the device, do not press down too hard on the device as this can damage the handle.

The handle can be used as a stand. Pull both ends of the handle outward to release it and rotate it to the desired position. Then, push the handle inward to lock it in place. The handle can be locked at interval of 22.5 degrees.
4.2 Resistance Measurement

(1) Plug the leads into the input terminals.
 Make the connection by mating the red △ marks on the leads.
 Make the connection by mating the black △ marks on the unit
 and the leads. (See the Figure below.)

(2) Select the range.
(3) Zero adjust (0 ADJ) the instrument referring to subsection 4.2.3.
(4) Connect the lead clips to the device to be measured, and read the
 measurement value.
4.2.1 Setting the Power Supply Frequency

To properly suppress noise, this product must be set to match the power supply frequency. Before using the product, make sure the power supply frequency selector is set correctly, to avoid erroneous readings.

First press the SHIFT key, then press 50/60Hz. After a moment, the selected power supply frequency appears on the LCD as shown in the example below.

![50Hz](image)

The power supply setting also appears for a moment after the 3540 is powered up, allowing you to verify the current setting.
4.2.2 Changing the Measurement Range

Manual range
The measurement range is changed by pressing the ▲ or ▼ key.
Pressing the ▲ key cycles the range selection through the sequence from 30 mΩ, to 300 mΩ, and so forth up to 30 kΩ. Pressing the ▼ key cycles the range selection through the sequence from 30 kΩ, to 3 kΩ, and so forth down to 30 mΩ.

Auto range
Pressing the AUTO key toggles auto range selection on or off. When auto range selection is on, the AUTO mark lights on the LCD as shown below and the measurement range is selected automatically as appropriate for the value of the resistance being measured.
Auto range selection can be turned off by pressing the ▲ or ▼ keys.

<table>
<thead>
<tr>
<th>30.00 mΩ</th>
<th>AUTO 30.00 mΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual range selection</td>
<td>Auto range selection</td>
</tr>
</tbody>
</table>

NOTE
- With the 3540-01, the measurement range can be selected by range control signal through the external connector on the rear panel. However, when the measurement range is selected by range control signal, the setting cannot be changed from the front panel.
- Auto range selection is not possible during comparator operation.
4.2.3 Zero Adjust Function

Zero adjustment is performed by shorting the test leads, then pressing first the [SHIFT] key, then the [0ADJ]. (Zero adjustment is only possible with a reading of 100 counts or less.)

Connect the test leads as shown below. The connection must be made exactly as shown; otherwise, altered lead resistance will make it impossible to obtain correct measurement.

With the 3540-01, 3540-02 and 3540-03, zero adjustment can also be performed by shorting the 0 ADJ and GND terminals on the rear panel terminal strip.

Right connection

Wrong connection

Bring the "v" marks together at the same position.

If leads other than the specified ones are used, connect as shown in the following figure.

NOTE

The following is displayed on the LCD during 0 ADJ.

<table>
<thead>
<tr>
<th>SENSE: H</th>
<th>SENSE: L</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE: H</td>
<td>SOURCE: L</td>
</tr>
</tbody>
</table>

connection

connection
4.2 Resistance Measurement

4.2.4 Switching the Sampling Speed

Pressing the **SAMPL** key toggles the sampling speed between two settings, FAST and SLOW.

FAST setting
- 16 samples/sec
- FAST mark lights on LCD

SLOW setting
- 4 samples/sec
- FAST mark does not light on LCD

<table>
<thead>
<tr>
<th>FAST</th>
<th>SLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.00 mΩ</td>
<td>30.00 mΩ</td>
</tr>
</tbody>
</table>

4.2.5 Hold Function

Pressing the **HOLD** key lights the **HOLD** mark on the LCD and holds the current measurement value of the display.

With the 3540-01, 3540-02 and 3540-03, shorting the TRIG and GND terminals on the rear panel terminal strip with display in the hold state results in taking of one measurement, after which display returns to the hold state.

Normal (free-running) measurement resumes when the hold state is canceled.

| HOLD | 30.00 mΩ |
4.2.6 Overload Indicator

If the input overloads, the following mark is displayed on the LCD.

![0.F mΩ](image)

4.2.7 Current Abnormality (CCERR) Detection Function

If any abnormality is detected in the regularity of current in the power supply, the current abnormality detection circuit operates and the symbols indicating CCERR, as shown below, is displayed on the LCD to advise of current abnormality.

With the 3540-01, 3540-02 and 3540-03, the CCERR signal is output from the CCERR terminal on the rear panel. (Refer to "Chapter 5 External Control Features").

![---... mΩ](image)

Conditions when current abnormality display

1. When the resistance being measured is large with respect to the range
 - Example: When a 30 Ω resistance is measured in the 30 mΩ range.

2. When the test leads are shorted (and only SOURCE is detected)

3. When any of the four terminals on the front panel is not properly connected

4. When there is an open lead condition

5. When the fuse is burned out
 (Refer to "8.2 Fuse Replacement Procedure").
4.3 Comparator Function

The 3540 allows storing of up to 7 comparator configuration tables. Each table can hold the comparator configuration for measurement range, comparator mode, buzzer and mode. The results of comparison are indicated by buzzer, as well as by lighting of the Hi, IN, and Lo LEDs. With the 3540-01 and 3540-02, results can also be output through the terminal strip on the rear panel by open collector. Refer to "5.4.2 Outputting Measurement Results" regarding comparator output to the external terminal strip.

NOTE

- Auto range selection is canceled if used together with the comparator.
- Since the measurement range is also saved with the comparator table, switching the comparator table also switches the measurement range. If the measurement range is switched during comparator operation, the measurement range information in the corresponding comparator table is also changed.
- With the 3540-01, the comparator table can be controlled with the comparator control signal through the external connector on the rear panel. However, when the comparator table is selected by the comparator control signal, the selection cannot be changed with the keys on the front panel.
4.3.1 Using the Comparator

Pressing the [COMP] key lights the comparator display on the LCD and starts the comparator function, allowing you to make comparative measurements. Pressing the [COMP] key a second time turns off the comparator.

![Comparator Display](image)

4.3.2 Selecting the Comparator Table

The 3540 allows saving up to 7 tables of comparator configurations. The comparator configuration is switched by pressing the [TABLE] key to cycle through the comparator table numbers in the sequence from 1 through 7, then to 1 again.

4.3.3 Selecting the Comparator Mode

Pressing the [HI/REF] key switches the comparator mode of the currently selected comparator table. Comparator modes that can be selected are the Hi-Lo mode, in which comparison is done using upper (HIGH) and lower (LOW) limits, and the REF-% mode, in which comparison is based on a reference value (REF) or range (%). With operation in the REF-% mode, the measured value is displayed as a deviation (as a percentage of reference value).

![Comparator Modes](image)

The Hi-Lo mode

The REF-% mode
4.3.4 Selecting the Buzzer Mode

Pressing the buzzer key switches the buzzer mode of the currently displayed comparator table. Available buzzer modes are the HL mode, in which the buzzer sounds when comparison results are "Hi" or "Lo"; the IN mode, in which the buzzer sounds when the comparison result is "IN"; and the OFF mode, in which the buzzer never sounds.

The HL mode

The IN mode

The OFF mode
4.3.5 Configuring the Comparison Values

With the Hi-Lo comparator
The upper (HIGH) and lower (LOW) limit values are set using the comparator configuration keys. The configuration range in counts is from 0 to 9999. (A count is the number resulting after any decimal point and unit are eliminated from a numeric value.

With the REF-% comparator
The reference value (REF) and range (%) are set using the comparator configuration keys. The configuration range in counts is 0 to 9999 counts for the reference value (REF), and from 0.0% to 999.9% for the range (%).

For the REF-% comparator, the following upper and lower limits are used for comparison.

Upper limit = REF + (REF x % / 100)
Lower limit = REF - (REF x % / 100)

The standard for comparator evaluation is as shown below.

<table>
<thead>
<tr>
<th>Range of measured values</th>
<th>Comparator result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper limit < Measured value</td>
<td>Hi</td>
</tr>
<tr>
<td>Lower limit ≤ Measured value ≤ Upper limit</td>
<td>IN</td>
</tr>
<tr>
<td>Measured value < Lower limit</td>
<td>Lo</td>
</tr>
</tbody>
</table>

LED display for the various comparator results is as follows.

- Hi
- IN
- Lo

NOTE
- If the value set for the lower limit is greater than that set for the upper limit, the 3540 reverses the values for comparison, taking the lower limit as the upper limit and vice versa.
- If the input limit is exceeded, the comparator result is Hi.
- No comparator result is produced if there is a current abnormality.
4.3.6 Outputting Comparator Results

Comparator results can be output using either of two modes: the auto mode or the manual mode.

With the 3540-01, 3540-02 and 3540-03, the external control mode can be selected using the AUTO/MANU selector switch on the rear panel.

With the 3540, output always uses the auto mode.

Auto mode (AUTO)
During comparator operation, comparator results are output continuously through the LED, buzzer, and (with the 3540-01, 3540-02 and 3540-03) the comparator result signal terminals (Hi, IN, Lo) on the rear panel.

Manual mode (MANU)
In the manual mode, comparator output to an external source is canceled. Comparison results for any desired period can be obtained by shorting the MANU and GND terminals on the rear panel terminal strip. Output is canceled when the short is broken.
4.4 Temperature Correction Function (TC)

This function uses the principle of temperature correction (refer to "1.2 Temperature Correction Function") to convert the resistance of copper wire to its 20°C equivalent resistance.

Connect the 9451 TEMPERATURE PROBE to the TC sensor jack on the rear panel. For connection procedures, refer to "4.5 Temperature Measurement".

When the 9451 TEMPERATURE PROBE is connected, pressing the TC key lights the TC mark on the LCD and performs temperature correction (display as shown below).

![30.00 mΩ TC]

If the temperature probe is not connected or is connected incorrectly, when the TC key is pressed, and an error message is displayed instead. If temperature correction is not performed as expected, check connection of the temperature probe.

For error messages, refer to "8.4 Error Code Table".

- The temperature probe is not designed to sense surface temperature. It should only be used to sense ambient air temperature.
- Note also that unless both the sample and the probe have completely adjusted to the ambient air temperature, the reading error will be large.
- Prior to use, the temperature probe should be connected to the 3540, and both should be allowed to warm up at least 30 minutes.
- The temperature probe should be connected or disconnected with the power of the unit OFF.
- Note also that the temperature probe is not watertight. Therefore, do not allow the instrument to get wet or be immersed in water or any other fluid.
- Large measurement error will result if the temperature probe is not inserted fully into the tc sensor jack.
4.5 Temperature Measurement

Turn the power off. And connect the TC adapter as a following this Figure.

![TC sensor jack](Image)

Plug into the TC sensor jack on the panel

After turning on the power and pressing [SHIFT] followed by [TEMP], ambient temperature is sensed by the temperature probe and displayed as follows.

![Temperature Display](Image)

If the temperature probe is not connected or is connected incorrectly, temperature measurement is not performed when the [TEMP] key is pressed, and an "---℃" is displayed instead.

If temperature correction is not performed as expected, check connection of the temperature probe.

For error messages, refer to "8.4 Error Code Table".

After completing the temperature measurement, to proceed to the resistance measurement, press the [SHIFT] key followed by [TEMP] key.

- Accurate temperature measurement are not possible if the sheath of the temperature probe is held with bare fingers.
- The temperature probe should be connected or disconnected with the power of the unit OFF.
- Note also that the temperature probe is not watertight. Therefore, do not allow the instrument to get wet or be immersed in water or any other fluid.
Chapter 5
External Control Features

This chapter explains external control features of the 3540-01,
3540-02 and 3540-03.
The rear panel of the 3540-01 is equipped with external connectors
(for BCD output, range and comparator control, etc.), and an
external terminal strip (for trigger input, comparator output, and so
forth). The 3540-02 and 3540-03 also has an external terminal
strip for functions such as trigger input and comparator output.
5.1 Connectors

The 3540-01, 3540-02 and 3540-03 are equipped with external connectors and/or terminals. Signals assigned to these terminals can be used to control operation of the 3540 or determine its status.

Functions of the various terminals and procedures for using the corresponding signals are described below.

WARNING

Always observe the following precautions when connecting to an external terminal or external connectors. Failure to do so may result in electric shock or damage to the equipment.

- Always turn off the power to the unit and to any connected device before making connections.
5.1 Connectors

5.1.1 The External Terminal

The External Terminal (3540-01 and 3540-03)

The External Terminal (3540-02)

<table>
<thead>
<tr>
<th>Signals</th>
<th>Input and output</th>
<th>Signals</th>
<th>Input and output</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>Ground</td>
<td>Hi</td>
<td></td>
</tr>
<tr>
<td>5V</td>
<td>Power supply</td>
<td>IN</td>
<td></td>
</tr>
<tr>
<td>TRIG</td>
<td>TTL input</td>
<td>Lo</td>
<td></td>
</tr>
<tr>
<td>MANU</td>
<td></td>
<td>EOC</td>
<td></td>
</tr>
<tr>
<td>0ADJ</td>
<td></td>
<td>CCERR</td>
<td></td>
</tr>
<tr>
<td>PRINT*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Open collector output

* 3540-02 only
5.1.2 The External Connectors

Using connector: DCLC-J37SAF-13L9 (made by Japan aviation electron) 37 pins receptacle

Adaptive pin: FDCD-37P (made by HIROSE) 37 pins plug

* A plug with FDCD-37P type compatible pins is provided with the 3540-01. For details on the compatible pins and use of the plug, refer to "5.2.2 External Connectors".

![Diagram of connector](image)

<table>
<thead>
<tr>
<th>Pin number</th>
<th>Input and output</th>
<th>Signals</th>
<th>Input and output</th>
<th>Pin number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TTL output</td>
<td>BCD(10^3 digit)-bit 3</td>
<td>BCD(10^1 digit)-bit 1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>TTL output</td>
<td>BCD(10^2 digit)-bit 2</td>
<td>BCD(10^1 digit)-bit 0</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>TTL output</td>
<td>BCD(10^2 digit)-bit 1</td>
<td>BCD(10^0 digit)-bit 3</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>TTL output</td>
<td>BCD(10^2 digit)-bit 0</td>
<td>BCD(10^0 digit)-bit 2</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>TTL output</td>
<td>BCD(10^2 digit)-bit 3</td>
<td>BCD(10^0 digit)-bit 1</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>TTL output</td>
<td>BCD(10^2 digit)-bit 2</td>
<td>BCD(10^0 digit)-bit 0</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>TTL output</td>
<td>BCD(10^1 digit)-bit 1</td>
<td>CCERR</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>TTL output</td>
<td>BCD(10^1 digit)-bit 0</td>
<td>EOC</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>TTL output</td>
<td>BCD(10^1 digit)-bit 3</td>
<td>GND</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>TTL output</td>
<td>DP 1</td>
<td>NC</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>TTL output</td>
<td>RANGE 0</td>
<td>NC</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>TTL output</td>
<td>RANGE 1</td>
<td>DP 0</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>TTL output</td>
<td>RANGE 2</td>
<td>DP 2</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>power source</td>
<td>5 V</td>
<td>COMP 0</td>
<td>33</td>
</tr>
<tr>
<td>15</td>
<td>power source</td>
<td></td>
<td>COMP 1</td>
<td>34</td>
</tr>
<tr>
<td>16</td>
<td>power source</td>
<td></td>
<td>COMP 2</td>
<td>35</td>
</tr>
<tr>
<td>17</td>
<td>power source</td>
<td></td>
<td>GND</td>
<td>36</td>
</tr>
<tr>
<td>18</td>
<td>power source</td>
<td></td>
<td>Ground</td>
<td>37</td>
</tr>
<tr>
<td>19</td>
<td>power source</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NC: not connected
5.2 Connections to Terminals

5.2.1 The External Terminal

(1) Use suitable wires bared at their ends for a length of about 10 mm.
(2) As shown in Figure, depress the knob on the terminal with a screwdriver, and push the end of the wire into the connection hole.
(3) Release the screwdriver, and the wires will be locked into place.
(4) Use the same procedure to remove the wires

- **Recommended wire**
 - Single strand: 1.0 mm dia. (AWG #18)
 - Multi strand: 0.75 mm²

- **Usable limits**
 - Single strand: 0.4 to 1.0 mm dia.
 - (AWG #26 to #18)
 - Multi strand: 0.3 to 0.75 mm²
 - (AWG #22 to #20)

- **Strand diameter**: minimum 0.18 mm
- **Standard insulation stripping length**: 10 mm
- **Button pressing tool**: Blade screwdriver (tip width 2.6 mm)
5.2.2 External Connectors

(1) Make connections to the compatible pins as appropriate for the pin assignments of the external connector.

(2) Plug the connector wired in (1) firmly into the external connector.

(3) Fasten the plug to the external connector with screws (M2.6).

About the accessory plug
The connector plug (FDCD-37P) provided with the 3540-01 is equipped with a flat cable pressure connector. Use the following flat ribbon cable with this connector.

- Cable pitch: 1.27 mm or 1.38 mm
- Core wire: AWG#26 to #28 (stranded or single core)
- Insulation thickness: 0.8 mm to 1 mm

NOTE

- A special tool is required in order to make flat cable pressure connections.
 Consult the connector maker for the tool and how to make connections.

- A wide variety of other connectors are available from various manufacturers which can be used in place of the connector provided. These include solder connection type connectors, pressure fitted connectors, and connectors with various types of covers.
 See the various manufacturers' catalogs for connectors that can be used in place of the one provided.

5.2 Connections to Terminals
5.3 Electrical Specification

5.3.1 Power Supply Rating

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Description</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 V</td>
<td>Power supply (GND + Approx. 5 V)</td>
<td>Approx. 200 mA max.</td>
</tr>
<tr>
<td>GND</td>
<td>Ground (0 V)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE

- The maximum capacity of this power supply is about 200 mA. In situations requiring more power, use an external power supply.
- If transitory current is required, insert an electrolytic capacitor between 5 V and GND.
- Since GND is insulated from the measurement circuit, do not connect the measurement system to GND.
- The voltage (5 V) varies a maximum of approximately 20% according to the size of the load current on the power supply. (Approximately 4 V to approximately 6 V) For example, the power supply voltage will fall below 5 V if the load current increases.
5.3.2 Input/output Ratings

The ratings given here are absolute maximums. This means that exceeding these values, even momentarily, may result in damage to the circuits. Always ensure that applied voltage and current are below the rated values.

However, with TTL output, never apply polarized voltage or current.

<table>
<thead>
<tr>
<th>Input/output type</th>
<th>Absolute maximum rating</th>
<th>Signal logic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Valid</td>
</tr>
<tr>
<td>TTL input</td>
<td>5 V, 20 mA max.</td>
<td>0 V</td>
</tr>
<tr>
<td>TTL output</td>
<td></td>
<td>5 V</td>
</tr>
<tr>
<td>Open collector output</td>
<td>35 V, 50 mA max.</td>
<td>ON</td>
</tr>
</tbody>
</table>

NOTE

- Signal logic refers to the signal state in which the function indicated by the signal is becomes valid.
- With open collector signals, the output transistor acts as a switch between the output signal and GND inside the 3540. When output is "valid", the switch goes ON and current flows inside the 3540 from the output signal to GND. Accordingly, this type of output can be used to control connected LEDs or contact relays, provided that such devices operate on less than 35 V, 50 mA. However, if a relay is connected, be sure to insert a diode to absorb counter electromotive force.
- Multiple open collector outputs can be connected together for use. This produces a wired OR configuration in which a "valid" signal any one on the connected outputs will produce a "valid" result. For example, if a "valid" result is desired from the Hi and Lo comparator results, connect the Hi and Lo open collector outputs.
5.3.3 Internal Circuit

TTL input circuit

TTL output circuit

Open corrector output circuit
5.4 Using the Signals

This section explains how to use the 3540's various signals and shows the signals' timing charts.

NOTE

- Since the timing charts indicate the logic of the signals, the high line positions are "valid" and the low line positions are "invalid." Note that the positions of the lines are not related to the signal (voltage) levels.
- In the I/O code explanations (for measurement range and comparator), "0" indicates 0 V, and "1" indicates 5 V.
- For an explanation of the signal logic, refer to "5.1 Connectors" and "5.3 Electrical Specifications".
- Refer to "Chapter 4 Operating Procedure" regarding instrument settings such as the comparator configuration.
- The timings shown in the timing charts assume that no key input is taking place.
5.4.1 Measurement Control

With measurement in the hold state
In the hold state, measurement starts when TRIG becomes valid, then EOC becomes valid when measurement ends. EOC then remains valid until the next time TRIG becomes valid.

![Diagram](image)

NOTE
- During measurement, EOC is also invalidated when the next TRIG signal is input.

With free-running measurement
With free-running measurement, the 3540 measures repeatedly at the internal sampling rate, with EOC becoming valid each time measurement ends.

![Diagram](image)
Changing the measurement range
The measurement range used by the 3540 can be changed using signals RANGE 0 to RANGE 2.

<table>
<thead>
<tr>
<th>RANGE 2</th>
<th>RANGE 1</th>
<th>RANGE 0</th>
<th>Measurement range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>30 mΩ</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>300 mΩ</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3 Ω</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>30 Ω</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>300 Ω</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3 kΩ</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30 kΩ</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>No range control</td>
</tr>
</tbody>
</table>

NOTE
- After switching range codes, up to 550 ms are required for the internal circuitry to stabilize. Therefore, no measurement should be taken for at least 550 ms after switching range codes.

Zero adjustment
Zero adjustment is possible using 0 ADJ.

NOTE
- Measurement is not possible during zero adjustment.
- Wait at least 10 ms after completing zero adjustment before taking measurements.
Changing the Comparator Table
The comparator table used by the 3540 can be changed using signals COMP 0 to COMP 2.

<table>
<thead>
<tr>
<th>COMP 2</th>
<th>COMP 1</th>
<th>COMP 0</th>
<th>Comparator table</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>No. 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>No. 2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>No. 3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>No. 4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>No. 5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>No. 6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No. 7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>No comparator control</td>
</tr>
</tbody>
</table>

NOTE
- After switching comparator table, up to 550 ms are required for the internal circuitry to stabilize. Therefore, no measurement should be taken for at least 550 ms after switching comparator table.

Printing (with the 3540-02 only)
Measurements displayed can be output to a printer connected to the printer connector using the PRINT signal.
Refer to "Chapter 7 Printers".

NOTE
- Output of any previous printout must be completed before printing the next measurement.
- Print time varies according to the speed of the connected printer.
- Printout of the measurement displayed starts when the PRINT signal becomes valid. Before starting printing, check the EOC signal to verify that measurement has been completed.
5.4.2 Outputting Measurement Results

Measurement output in the auto mode (outputting comparator results)

In the auto mode, comparator results (Hi, IN, Lo) and result data of measurements (BCD, DP) are output when EOC becomes valid after measurement is completed.

Comparator results and measurement data should be taken after EOC becomes valid (at the signal's rising edge).

Measurement output in the manual mode (outputting comparator results)

In the manual mode, comparator results (Hi, IN, Lo) are output only when the MANU signal becomes valid. Measurement data (BCD, DP) is output continuously.
Output during current abnormalities
When a current abnormality occurs (when the resistance being measured is unchucked), the CCERR signal becomes valid. When this happens, the all comparator result output becomes invalid.

NOTE
- Comparator results are output even if CCERR becomes valid. However, comparator results are not output if CCERR is valid when measurement starts.

About the measurement data
Measurement data is output as 4 digits (each of which is represented by 4 bits) of BCD data indicating the display count of the measured value, and as a 3-bit DP code indicating the range. Meanings of the BCD and DP output codes are as follows.

<table>
<thead>
<tr>
<th>BCD bits</th>
<th>Number</th>
<th>BCD bits</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 0 0</td>
<td>0</td>
<td>1 0 1 0</td>
<td>1</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>1</td>
<td>1 0 1 1</td>
<td>0</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>2</td>
<td>1 0 1 1</td>
<td>1</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>3</td>
<td>1 0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>4</td>
<td>1 0 0 1</td>
<td>9</td>
</tr>
</tbody>
</table>

Meanings of BCD digit codes
Meanings of DP codes

Measured values are expressed as follows by the BCD and DP codes.

\[
\text{Measured value} = \{\text{BCD}(10^3\text{digit}) \times 10^3 + \text{BCD}(10^2\text{digit}) \times 10^2 + \text{BCD}(10^1\text{digit}) \times 10^1 + \text{BCD}(10^0\text{digit}) \times 10^0\} \times (\text{exponent indicated by DP code})
\]

For example, when the numbers indicated by BCD digits (10^3) to (10^0) are 0001, 0010, 0011, and 0100 and the DP code is 001, the display count of the measured value is 1234, the measurement range is 300 m, and the exponent is \(x 10^{-4}\), giving a measured value as follows.

\[
\text{Measured value} = 1234 \times 10^{-4} = 0.1234 (\Omega) = 123.4 (\text{m}\Omega)
\]

NOTE
The BCD code "9999" is output with OF or CCERR.
Chapter 6
RS-232C Interface

6.1 Specifications

6.1.1 RS-232C Settings
The RS-232C settings of the 3540-03 are as follows. Since the 3540 settings are fixed and cannot be changed, these settings must be matched on the computer side.

Transmission mode: Start-stop synchronization, full duplex
Transfer rate: 9600
Data length: 8
Parity: None
Stop bit: 1
Hand shake: X flow, hardware flow and none
Delimiter: CR, CR+LF for reception
CR+LF for transmission

6.1.2 Electrical Characteristics

<table>
<thead>
<tr>
<th>Input voltage level</th>
<th>+5 V to +15 V</th>
<th>ON</th>
<th>OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>-15 V to -5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output voltage level (load resistance 3 kΩ to 7 kΩ)</th>
<th>+5 V to +9 V</th>
<th>ON</th>
<th>OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>-9 V to -5 V</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.1.3 Connector

Pin arrangement of interface connector (D-sub 9-Pin male)

The signal lines of the 3540-03's RS-232C connector are as follows.

<table>
<thead>
<tr>
<th>Pin number</th>
<th>Signal</th>
<th>I/O</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>RxD</td>
<td>IN</td>
<td>Incoming data</td>
</tr>
<tr>
<td>3</td>
<td>TxD</td>
<td>OUT</td>
<td>Outgoing data</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>GND</td>
<td>Signal ground</td>
</tr>
</tbody>
</table>

Other pins are not used

6.1.4 Connection Method

Use a cross cable for connecting to the computer. The outgoing data and the incoming data will cross and there is no need to make other connections provided the signal ground wire is connected.

For the flow control on the computer side, hardware flow must be set to OFF.

Connecting cable

- Connector on cable side: D-Sub 9-Pin female
- Connection: Reverse connection
- Compatible cable for connection to PC/AT compatible PC: 9637 RS-232C CABLE
6.2 Communication Method

6.2.1 Connection to Computer

Connect the 3540-03 to the computer using a cross cable.

Perform the RS-232C settings on the computer side.
For details on how to make the settings, refer to the instruction manual for the computer.

6.2.2 Command Transfer Method

The command is issued from the computer.
When the 3540 receives the incoming command from the computer, it executes the processing specified by the command.
When 3540 has completed processing of the command, it always returns a response to the computer.
When the computer has confirmed the response, it sends the next command.

NOTE
Every time the computer has sent a command, a response is always returned.
Make sure that the computer only sends the next command after it has received the response to the previous command issued from the 3540.
If multiple commands are sent consecutively, the 3540 may not execute the commands or command errors may occur.
6.2.3 Command Format

The 3540 commands have the following structure.

Command + parameter + delimiter

The command and the parameter are separated by " " (one character space).
If there is no parameter, send the delimiter after the command.
The command may consist of both upper and lower case letters.
Make sure to use one character space as the separator between the command and the parameter.

When the command contains a parameter
In the case of
"rng 0" (+ delimiter)
the command format consists of the command "rng" followed by the separator " ". Then follows the parameter "0". Following the parameter comes the delimiter.

When the command contains no parameter
"adj " (+ delimiter)
the command format consists of the command "adj " immediately followed by the delimiter.

NOTE
The meaning of the delimiter is to separate commands and data.
When the 3540 receives the delimiter, it starts analysis of the command.
6.2.4 Response Format

When a command is sent to 3540, 3540 processes the command. When processing is completed, 3540 always returns a response.

When there is no information from 3540,
OK (+ delimiter)

When there is information from 3540 (measurement values, etc.),
Response character string related to the command (+ delimiter)

When the command contained an error,
CMD ERR (+ delimiter): Command error
EXEC ERR (+ delimiter): Execution error

6.2.5 Delimiter

Depending on transmission direction, the delimiter is as follows.
From computer to 3540: CR or CR+LF
From 3540 to computer: CR+LF
6.3 Command

6.3.1 Explanation of Command References

Syntax Describes the syntax of the command.
<data> Explains the parameter data.
Response Explains the received data.
Function Explains the actions specified by the command.
Error Describes errors that may occur when the command is executed.
Example Command execution examples.
 PC> denotes command from the computer.
 3540> denotes command from 3540.

NOTE The setting conditions and comparator data are written to the non-volatile memory in the 3540 main unit 5 seconds after the settings have been made (no key operations should be performed during this interval).
6.3.2 Command References

RESET

Initializes the settings

Syntax

RESET

Response

OK Initialization completed

Function

Initializes the settings of the 3540 Measurement mode Resistance measurement mode Measurement range 30 mΩ range Sampling speed SLOW Hold function Free-running (hold state canceled) Comparator Comparator not used Table No. 1 Comparator mode Hi-Lo comparator Comparison values HIGH, LOW, REF, % = [0000] Buzzer mode OFF Temperature correction function (TC) OFF Zero adjuster data 0 count reading for entire range. Power supply frequency 50 Hz

Example

Executing initialization.
PC >RESET Execute initialization 3540 >OK Initialization completed.

RMES

Resistance measurement value

Syntax

RMES

Response

<rdata>
<data> <rdata>
Resistance measurement value (see "6.3.3 Received Data".)

Function

Obtains the latest resistance measurement value and comparator result.

Example

Obtaining resistance measurement value.
PC >RMES Obtain measurement value. 3540 > 15.72E-03 Measurement value: 15.72 mΩ
TMES

Temperature measurement value

Syntax

```
TMES
```

Response

```
<data>
```

Example

```
3540 > 25.6
```

Function

Obtains the latest temperature measurement value

Examples

Obtaining temperature measurement values.

```
PC > TMES
3540 > 25.6?
PC > TMES
```

TRG

Trigger measurement

Syntax

```
TRG
```

Response

```
<data>
```

Example

```
PC > RMES
3540 > 15.72E-03
```

Function

During measurement hold, measurement is performed once and this result is captured.

In the free-running state, the newest resistance measurement value is captured.

```
```

```
```
EOC

Resistance measurement end confirmation

Syntax

EOC

Response

<table>
<thead>
<tr>
<th>ON</th>
<th>Resistance measurement completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>Resistance measurement unfinished</td>
</tr>
</tbody>
</table>

Function

Checks whether the resistance measurement is completed. The condition of the measurement completed is cleared when the data is readout with this command.

Example

Checks whether the resistance measurement is completed.

PC > EOC Checks whether the resistance measurement is completed.

3540 > ON Resistance measurement is completed.

PC > EOC Checks whether the resistance measurement is completed.

3540 > OFF Resistance measurement is not completed.

Note

The EOC command is ineffective in versions 1.02 or before. In this case, the command error "CMD ERR" occurs when the EOC command is transmitted.

The version number of 3540 is displayed on the lower right of the LCD, when powering on.
ADJ

Zero-adjust

Syntax

```
ADJ
```

Response

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Zero adjustment completed</td>
</tr>
<tr>
<td>EXEC ERR</td>
<td>Zero adjustment execution error</td>
</tr>
</tbody>
</table>

Function

Executes zero adjustment

Error

When attempts are made to perform zero adjustment with a reading exceeding 100 counts, the zero adjustment error is generated and zero adjustment is prevented. In these cases, the execution error is returned as the response.

Examples

Executing zero adjustment.

```
PC > ADJ
3540 > OK
Zero adjustment execution completed.
```

```
PC > ADJ
3540 > EXEC ERR
Zero adjustment execution error
```

FUNC

Function settings

Syntax

```
FUNC <func data>
```

Response

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>Function switch completed</td>
</tr>
</tbody>
</table>

Function

Sets the measurement mode to resistance measurement or temperature measurement.

Example

Setting to temperature measurement mode.

```
PC > FUNC 1
3540 > OK
Setting completed.
```
RNG

Range setting

Syntax
RNG <range data>

<data>
<func data>
0: 30.00 mΩ
1: 300.0 mΩ
2: 3.000 Ω
3: 30.00 Ω
4: 300.0 Ω
5: 3.000 kΩ
6: 30.00 kΩ

Response OK Switch of range for resistance measurement completed.

Function Sets the range to the specified resistance measurement range. When the comparator is ON, the comparator data range information is set to this range.

Example Setting the resistance measurement range to the 30 Ω range.
PC >RNG 3 Set to 30 Ω range.
3540 >OK Setting completed.

SMP

Sampling setting

Syntax
SMP <sample data>

<data>
<func data>
0: SLOW
1: FAST

Response OK Sampling speed switch completed.

Function Sets the resistance measurement sampling to SLOW or FAST.

Example Setting the sampling to FAST.
PC >SMP 1 Set to FAST.
3540 >OK Setting completed.
6.3 Command

HZ

Setting the power supply frequency

Syntax

```
HZ <hz data>
```

<data>

```
<func data>
0: 50 Hz
1: 60 Hz
```

Response

```
OK Setting of the power supply frequency completed.
```

Function

Sets the power supply frequency to 50 Hz or 60 Hz.

Example

Setting the power supply frequency to 50 Hz.
```
PC >Hz 0  Set to 50 Hz.
3540 >OK  Setting completed.
```

HOLD

Hold function

Syntax

```
HOLD <on/off>
```

<data>

```
<on/off>
0: OFF
1: ON
```

Response

```
OK Hold function setting completed.
```

Function

Toggles the hold function ON/OFF.

Example

Turning ON the hold function.
```
PC >HOLD 1  Set hold to ON.
3540 >OK  Setting completed.
```
AUTO

Auto range

Syntax

```
AUTO <on/off>
```

<data>

```
<on/off>
0: OFF
1: ON
```

Response

```
OK Auto range setting completed.
EXEC ERR Auto range setting execution error.
```

Function

Toggles the auto range ON or OFF.

Error

While the comparator is ON, auto range cannot be set to ON. If this is attempted, the response will indicate an execution error.

Examples

Setting the auto range to ON

```
PC >AUTO 1 Set auto range to ON.
3540 >OK Setting completed.
PC >AUTO 1 Set auto range to ON.
3540 >EXEC ERR Auto range setting execution error.
```

TC

Temperature correction function

Syntax

```
TC <on/off>
```

<data>

```
<on/off>
0: OFF
1: ON
```

Response

```
OK Setting of the temperature correction function completed.
```

Function

Toggles the temperature correction function ON or OFF.

Example

Setting the temperature correction function to ON.

```
PC >TC 1 Set temperature correction function to ON.
3540 >OK Setting completed.
```
COMP

Comparator

Syntax

COMP <on/off>

<data>

<on/off>

0: OFF

1: ON

Response

OK Comparator ON/OFF setting completed.

Function

Toggles the comparator ON or OFF.

Example

Turning ON the comparator.

PC >COMP 1 Set comparator to ON.

3540>OK Setting completed.

CNO

Comparator table

Syntax

CNO <comp no>

<data>

<comp no>

1: No. 1

2: No. 2

3: No. 3

4: No. 4

5: No. 5

6: No. 6

7: No. 7

Response

OK Comparator table configuration completed.

EXEC ERR Execution error

Function

Configures the comparator table to the specified table number.

Error

When the comparator is not ON, this setting is not possible.

If attempted, the execution error is generated.

Example

To configure the comparator table as No. 7.

PC >CNO 7 Set as table No. 7

3540>OK Setting completed.
CMD

Comparator mode setting

Syntax
CMD <comp mode>

<data>
<comp mode>
0: Hi-Lo
1: REF-%

Response
OK Comparator mode setting completed.
EXEC ERR Execution error

Function
Sets the comparator mode to Hi-Lo or REF-%.

Error
When the comparator is not ON, this setting is not possible.
If attempted, the execution error is generated.

Example
To set the comparator mode to Hi-Lo.
PC >CMD 0 Set the comparator mode to Hi-Lo.
3540 >OK Setting completed.

BUZ

Buzzer

Syntax
BUZ <comp buzzer>

<data>
<comp buzzer>
0: OFF
1: HL
2: IN

Response
OK Buzzer mode setting completed.
EXEC ERR Execution error

Function
Sets the buzzer mode to OFF, HL or IN.

Error
When the comparator is not ON, this setting is not possible.
If attempted, the execution error is generated.

Example
Setting the buzzer mode to IN.
PC >BUZ 2 Set the buzzer mode to IN.
3540 >OK Setting completed.
6.3 Command

CHI

Comparator HIGH/REF setting

Syntax

CHI <comp hi data>

<data>

<comp hi data>

0 to 9999: Upper limit value (HIGH) or reference value (REF)
(Count value with the decimal point neglected.)

Response

OK Comparator HIGH/REF data setting completed.

EXEC ERR Execution error

Function

Sets the comparator HIGH and REF setting values to the specified values.

Error

When the comparator is not ON, this setting is not possible.
If attempted, the execution error is generated.

Example

Setting the comparison value HIGH to 1000.
PC >CHI 1000 Set to 1000.
3540 >OK Setting completed.

CLO

Comparator LOW/% setting

Syntax

CLO <comp lo data>

<data>

<comp lo data>

0 to 9999: Lower limit value (LOW) or range (%)
(Count value with the decimal point neglected.)

Response

OK Comparator LOW/% data setting completed.

EXEC ERR Execution error

Function

Sets the comparator LOW and % setting values to the specified values.
For the range (%) setting, 100.0% equals "1000".

Error

When the comparator is not ON, this setting is not possible.
If attempted, the execution error is generated.

Example

Setting the comparison value LOW to 1000.
PC >CLO 1000 Set to 1000.
3540 >OK Setting completed.
CCC

Constant-current status check

Syntax

```
CCC
```

Response

- **CC OK**: Constant-current normal
- **CC ERR**: Constant-current abnormality (CCERR)

Function

Checks the condition of the current for resistance measurement. Unless the constant-current flows correctly, the resistance value cannot be measured.

Examples

Checking the current constant-current status.

```
PC >CCC
```

Find the constant-current status.

```
3540 >CC ERR
```

Current abnormality (CCERR)

```
PC >CCC
```

Find the constant-current status.

```
3540 >CC OK
```

Current normal.

LOCK

Key lock setting

Syntax

```
LOCK <on/off> <data>
```

- **<on/off>**: 0: OFF, 1: ON

Response

OK: Key lock setting completed.

Function

Toggles the key lock function ON or OFF.

Example

Locking the keys.

```
PC >LOCK 1
```

Turn key lock ON.

```
3540 >OK
```

Setting completed.
6.3.3 Received Data

The rdata format of the resistance measurement value data is as follows.

measurement value + "," + comparator results

When the comparator is OFF, the format only consists of the measurement value and the "," + comparator results are not attached.

Format of measurement values

\[
\begin{array}{c|c|c}
1 & 2 & 3 \\
\hline
& \cdot \cdot \cdot & \cdot \cdot \cdot E \pm \cdot \cdot \cdot \\
\end{array}
\]

1 Space character
2 Mantissa
3 Exponent. E+Sign of characteristic + 2-digit numerical value
I.e., one of m\(\Omega\) (E-03), \(\Omega\) (E+00) or k\(\Omega\) (E+03).

In the REF-% mode with the comparator ON, it becomes
\(\cdot \cdot \cdot \cdot \cdot . \cdot \cdot \cdot \) and the exponent is not attached. (4-digit numerical value+decimal point)
The unit is %.

In special cases, the format may be:

"OF": Overflow
"CC ERR": Abnormal current
"BAD DATA": When the TC function is ON, the temperature measurement value exceeded the range or in case of sensor error.
Comparator results
Comparator results are indicated by single digits as follows:
0: Invalid
1: Lo
2: IN
3: Hi

Examples
35.00E-03 \rightarrow 35.00 \text{ m}\Omega
3.500E+00 \rightarrow 3.500 \Omega
35.00E+00,1 \rightarrow 35.00 \Omega, comparator result = Lo.
3.500E+03,2 \rightarrow 3.500 \text{k}\Omega, comparator result = IN.
100.5,3 \rightarrow 100.5 \%, comparator result = Hi.

<\text{tdata}>

The tdata format of the temperature measurement value data is as follows.

sign + \text{ } \text{ } . \\

Sign
One space character when plus.
"-" when minus.

The measurement value is indicated by 3 digits+decimal point (fixed position) and the unit is °C.

In special cases, the format may be:

OF: \quad \text{Overflow}
-OF: \quad \text{Minus overflow}
SENS ERR: \quad \text{Sensor not connected or broken wire.}

Example
25.0 \rightarrow 25.0 °C
-9.5 \rightarrow -9.5 °C
This chapter discusses printer output from the 3540-02. With the 3540-02, measured values can be printed out using the optional 9203 DIGITAL PRINTER or other general purpose Centronics printer. This instruction manual explains how to print out measured values to a general purpose Centronics printer. For printing using the 9203, refer to the 9203 Instruction Manual.

In order to output measured values to the printer, short the PRINT signal on the rear panel terminal strip to GND. For printing using the PRINT signal, refer to "5.4.1 Measurement Control".

7.1 Making Connections

Connect the printer to the printer connector on the rear panel using the optional 9425 CONNECTION CABLE as shown below. The connection cable is equipped with two locking claws. Be sure to press the connector in firmly until these claws click into place.
Always observe the following safety precautions when connecting a printer. Failure to observe these safety precautions may result in electrocution or damage to the equipment.

- Always turn off the product and the printer before making any connections.
- Because of the inherent dangers of such situations, be careful to prevent the connections from coming loose or leads from coming into contact with other conductors. Make sure the connections are secure.
7.2 Printing

This section explains printing to a general purpose Centronics printer. For printing using the 9203, refer to the 9203 Instruction Manual.

A printout example is shown below, along with the meanings of the printed data.
8.1 Battery Replacement Procedure

WARNING

- To avoid electric shock when replacing the batteries first disconnect the AC adapter and leads from the object to be measured. Also, after replacing the batteries always replace the cover before using the unit.
- Do not mix old and new batteries, or different types of batteries. Also, be careful to observe battery polarity during installation. Otherwise, poor performance or damage from battery leakage could result.
- To avoid the possibility of explosion, do not short circuit, disassemble or incinerate batteries.
- Handle and dispose of batteries in accordance with local regulations.
The battery mark on the LCD lights when the battery is exhausted. When this occurs, change the battery as follows.

1. Remove the battery cover
2. Replace the batteries with new ones, observing the correct polarity.
3. Replace the battery cover.

R6P manganese batteries or LR6 alkaline batteries
8.2 Fuse Replacement Procedure

- **WARNING**

 To avoid danger of electrical shock when changing the fuse, disconnect the AC adapter and all test leads and other wiring from the 3540 before making replacement. After replacing the fuse, be sure to close the case before using the instrument.

 - Replace the fuse only with one of the specified characteristics and voltage and current ratings. Using a non-specified fuse or shorting the fuse holder may cause a life-threatening hazard.

 Fuse type: F1.0 AH/250 V 20x5 mm dia.

To check whether the fuse is burned out set the instrument to the resistance measurement mode. If **NG** is displayed on the LCD when the leads are shorted, the fuse is burned out. The fuse is mounted on the printed circuit board of the main unit. To access the fuse, remove the screws on the bottom of the case and remove the upper part of the case. Then, replace the fuse with the spare fuse in the battery compartment.
8.3 Troubleshooting

When the instrument does not work normally, check the following items:

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cause/remedy</th>
</tr>
</thead>
</table>
| LCD does not light when [POWER] switch pressed. | Is the correct AC adaptor being used, and is it properly connected?
 - Refer to "4.1 Preparing Measurement".
 Is the battery exhausted?
 - Refer to "8.1 Battery Replacement Procedure". |
| Resistances cannot be measured. | Is the instrument in the abnormal current state?
 - Refer to "4.2.7 Current Abnormality (CCERR) Detection Function".
 Is the fuse blown?
 - Refer to "8.2 Fuse Replacement Procedure". |
| Cannot change measurement range. | Is the measurement range under external control?
 - Refer to "Chapter 5 External Control Features". |
| Auto ranging is canceled. | The auto range and comparator functions cannot be used simultaneously.
 - Refer to "4.2.2 Changing the Measurement Range" and "4.3 Comparator Function". |
| Measurements fluctuate widely. | Does the power supply frequency setting of the 3540 match the frequency of the AC power supply being used?
 - Refer to "4.2.1 Setting the Power Supply Frequency". |
| Cannot measure temperature. | Is the temperature probe connected?
 - Refer to "4.5 Temperature Measurement". |
| Temperature correction is not possible. | Is the temperature probe connected?
 - Refer to "4.4 Temperature Correction Function (TC)". |
| Comparator does not operate. | Is the AUTO/MANU selector switch set to MANU?
 - Refer to "4.3.6 Outputting Comparator Results". |
| Cannot change comparator tables. | Is comparator table selection being controlled externally?
 - Refer to "Chapter 5 External Control Features". |
| External control is not possible. | Are connections wired properly?
 - Refer to "Chapter 5 External Control Features". |
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cause/remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot output to printer.</td>
<td>Is the PRINT signal wired properly?</td>
</tr>
<tr>
<td></td>
<td>• Refer to "Chapter 5 External Control Features".</td>
</tr>
<tr>
<td></td>
<td>Is the printer properly connected?</td>
</tr>
<tr>
<td></td>
<td>• Refer to "Chapter 7 Printers".</td>
</tr>
<tr>
<td>RS-232C communication not possible.</td>
<td>Has the RS-232C cable been connected correctly?</td>
</tr>
<tr>
<td></td>
<td>• Are the settings on the computer correct?</td>
</tr>
<tr>
<td></td>
<td>• Refer to "Chapter 6 RS-232C Interface".</td>
</tr>
</tbody>
</table>
8.4 Error Code Table

An error code is displayed on the LCD when particular errors occur.

Example:

```
Err 8
```

<table>
<thead>
<tr>
<th>Error code</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zero-adjust range (within 100 display counts) exceeded</td>
</tr>
<tr>
<td>2</td>
<td>Temperature probe not properly connected while using temperature correction functions.</td>
</tr>
<tr>
<td>5</td>
<td>Attempted to print while printer not properly connected.</td>
</tr>
<tr>
<td>8</td>
<td>During the power-on check, it was found that the backup data such as the comparator configuration or zero-adjustment data was corrupted. Corrupted data is restored to the factory defaults.</td>
</tr>
<tr>
<td>9</td>
<td>A fatal error was detected during the power-on check. If this error recurs, contact your nearest sales representative for assistance.</td>
</tr>
</tbody>
</table>

When shipped from the factory, all item are set to the initial state.

<table>
<thead>
<tr>
<th>Items</th>
<th>Setting contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement mode</td>
<td>Resistance measurement mode</td>
</tr>
<tr>
<td>Measurement range</td>
<td>300 mΩ range</td>
</tr>
<tr>
<td>Sampling rate</td>
<td>SLOW mode</td>
</tr>
<tr>
<td>Measurement holding</td>
<td>Free-running</td>
</tr>
<tr>
<td>Comparator</td>
<td>Comparator table are unused.</td>
</tr>
<tr>
<td>Table No.</td>
<td>1</td>
</tr>
<tr>
<td>Comparator mode</td>
<td>Hi-Lo comparator</td>
</tr>
<tr>
<td>Buzzer mode</td>
<td>OFF</td>
</tr>
<tr>
<td>Comparison Values</td>
<td>HIGH, LOW, REF, % = 0000</td>
</tr>
<tr>
<td>Temperature correction function (TC)</td>
<td>OFF</td>
</tr>
<tr>
<td>Power supply frequency</td>
<td>50 Hz</td>
</tr>
</tbody>
</table>
8.5 Service

- If damage is suspected, check the "Troubleshooting" section before contacting your dealer or Hioki representative.
- When sending the product for repair, remove the batteries and pack carefully to prevent damage in transit. Include cushioning material so the instrument cannot move within the package. Be sure to include details of the problem. Hioki cannot be responsible for damage that occurs during shipment.

8.6 Cleaning

- To clean the product, wipe it gently with a soft cloth moistened with water or mild detergent. Never use solvents such as benzene, alcohol, acetone, ether, ketones, thinners or gasoline, as they can deform and discolor the case.
- Wipe the LCD gently with a soft, dry cloth.
8.6 Cleaning
DECLARATION OF CONFORMITY

Manufacturer's Name: HIOKI E.E. CORPORATION
Manufacturer's Address: 81 Koizumi, Ueda, Nagano 386-1192, Japan
Product Name: mΩ HiTESTER
Model Number: 3540, 3540-01, 3540-02, 3540-03
Accessories: 9287-10 CLIP TYPE LEAD
9451 TEMPERATURE PROBE
Options: 9445-03 AC ADAPTER (SA10-0910G, SINO-AMERICAN)
9452 CLIP TYPE LEAD
9453 FOUR TERMINAL LEAD
9455 PIN TYPE LEAD
9460 CLIP TYPE LEAD WITH TEMPERATURE SENSOR
9461 PIN TYPE LEAD
9467 LARGE CLIP TYPE LEAD

The above mentioned products conform to the following product specifications:
Safety: EN61010-1:2001
ClassB equipment
Minimum immunity test requirement
EN61000-3-2:2000

Supplementary Information:
The products herewith comply with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC.

HIOKI E.E. CORPORATION

15 September 2006

Tatsuyoshi Yoshiike
President

3540A999-06
HIOKI 3540 m HiTESTER

Instruction Manual

Publication date: September 2006 Revised edition 13

Edited and published by HIOKI E.E. CORPORATION
Technical Support Section

All inquiries to International Sales and Marketing Department
81 Koizumi, Ueda, Nagano, 386-1192, Japan
E-mail: os-com@hioki.co.jp
URL http://www.hioki.co.jp/

Printed in Japan 3540A981-13

• All reasonable care has been taken in the production of this manual, but if you find any points which are unclear or in error, please contact your supplier or the International Sales and Marketing Department at HIOKI headquarters.
• In the interests of product development, the contents of this manual are subject to revision without prior notice.
• Unauthorized reproduction or copying of this manual is prohibited.