

Synthesized Function Generator

SFG-2000/SFG-2100 Series

USER MANUAL

GW INSTEK PART NO. 82FG-21200MD

This manual contains proprietary information, which is protected by copyrights. All rights are reserved. No part of this manual may be photocopied, reproduced or translated to another language without prior written consent of Good Will company.

The information in this manual was correct at the time of printing. However, Good Will continues to improve products and reserves the rights to change specification, equipment, and maintenance procedures at any time without notice.

Good Will Instrument Co., Ltd.

No. 7-1, Jhongsing Rd., Tucheng City, Taipei County 236, Taiwan.

Table of Contents

SAFETY INS	STRUCTIONS	5
	Safety Symbols	5
	Safety Guidelines	6
GETTING S	TARTED	9
	Technical background	10
	Lineup/Features	12
	Front Panel	13
	Rear Panel	19
	Set Up	20
	Operation Shortcuts	22
	Default Setting Contents	24
SINE/SQUA	ARE/TRIANGLE WAVE	25
	Select the waveform	26
	Set the Frequency	26
	Set the Duty Cycle (Square Waveform)	
	Set Amplitude	
	Set Offset	
TTL CMOS	OUTPUT	31
	Select the waveform	32
	Set the Frequency	32
	Set the Duty Cycle	33
	Set Amplitude	34
SWEEP		35
AMPLITUD	E MODULATION	37

FREQUENCY	MODULATION	38
COUNTER IN	PUT	40
STORE/RECA	LL SETTING	42
APPLICATION	I EXAMPLES	44
	Reference Signal for PLL System	4
	Trouble-Shooting Signal Source	4
	Transistor DC Bias Characteristics Test	4
	Amplifier Over-Load Characteristic Test	
	Amplifier Transient Characteristics Test	
	Logic Circuit Test	
	Impedance Matching Network Test	
	Speaker Driver Test	
	Sweep for Speaker Test	50
FAQ		51
APPENDIX		52
	Error Messages	5.
	Specification	
	Declaration of Conformity	

SAFETY INSTRUCTIONS

This chapter contains important safety instructions that you must follow when operating SFG-2000 series and when keeping it in storage. Read the following before any operation to insure your safety and to keep the best condition for SFG-2000 series.

Safety Symbols

These safety symbols may appear in this manual or on SFG-2000 series.

Warning: Identifies conditions or practices that could **WARNING** result in injury or loss of life.

Caution: Identifies conditions or practices that could result in damage to SFG-2000 series or to other properties.

Attention Refer to the Manual

Earth (ground) Terminal

Safety Guidelines

General Guideline • Do not place any heavy object on SFG-2000 series.

- Avoid severe impacts or rough handling that leads to damaging SFG-2000 series.
- Do not discharge static electricity to SFG-2000 series.
- Use only mating connectors, not bare wires, for the terminals.
- Do not block or obstruct cooling vent opening.
- Do not perform measurements at power source and building installation site (Note below).
- Do not disassemble SFG-2000 series unless you are qualified as service personnel.

(Note) EN 61010-1:2001 specifies the measurement categories and their requirements as follows. SFG-2000 series falls under category

- Measurement category IV is for measurement performed at the source of low-voltage installation.
- Measurement category III is for measurement performed in the building installation.
- Measurement category II is for measurement performed on the circuits directly connected to the low voltage installation.

Power Supply

- Input voltage: 115/230V AC +10%, -15%, 50/60Hz
- The power supply voltage should not fluctuate more than 10%.
- Connect the protective grounding conductor of the power cord to earth ground, to avoid electrical shock.

Fuse

- Fuse type: T0.125A/ 250V
- · Only service personnel are allowed to access internal fuse holders.
- Replace the fuse with the specified type and rating only, for continued fire protection.
- Disconnect the power cord before fuse replacement.
- · Make sure the cause of the fuse blowout is fixed before fuse replacement.

Cleaning SFG-2000 series

- Disconnect the power cord before cleaning.
- Use a soft cloth dampened in a solution of mild detergent and water. Do not spray any liquid into SFG-2000 series.
- Do not use chemicals or cleaners containing harsh materials such as benzene, toluene, xylene, and acetone.

Operation Environment

- Location: Indoor, no direct sunlight, dust free, almost non-conductive pollution (Note below)
- Relative Humidity: < 80%
- Altitude: < 2000m
- Temperature: 0°C to 40°C

(Note) EN 61010-1:2001 specifies the pollution degrees and their requirements as follows. SFG-2000 series falls under degree 2. Pollution refers to "addition of foreign matter, solid, liquid, or gaseous (ionized gases), that may produce a reduction of dielectric strength or surface resistivity".

- Pollution degree 1: No pollution or only dry, non-conductive pollution occurs. The pollution has no influence.
- Pollution degree 2: Normally only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation must be expected.
- Pollution degree 3: Conductive pollution occurs, or dry, non-conductive pollution occurs which becomes conductive due to condensation which is expected. In such conditions, equipment is normally protected against exposure to direct sunlight, precipitation, and full wind pressure, but neither temperature nor humidity is controlled.

Storage Environment

- · Location: Indoor
- Relative Humidity: < 80%
- Temperature: -10°C to 70°C

GW INSTEK

Power cord for the United Kingdom

When using SFG-2000 series in the United Kingdom, make sure the power cord meets the following safety instructions.

NOTE: This lead / appliance must only be wired by competent persons

WARNING: THIS APPLIANCE MUST BE EARTHED

IMPORTANT: The wires in this lead are coloured in accordance with the following code:

Green/ Yellow: Earth Blue: Neutral Brown: Live (Phase)

As the colours of the wires in main leads may not correspond with the colours marking identified in your plug/appliance, proceed as follows:

The wire which is coloured Green & Yellow must be connected to the Earth terminal marked with the letter E or by the earth symbol @or coloured Green or Green & Yellow. The wire which is coloured Blue must be connected to the terminal which is marked with the letter N or coloured Blue or Black.

The wire which is coloured Brown must be connected to the terminal marked with the letter L or P or coloured Brown or Red.

If in doubt, consult the instructions provided with the equipment or contact the supplier. This cable/appliance should be protected by a suitably rated and approved HBC mains fuse: refer to the rating information on the equipment and/or user instructions for details. As a guide, cable of 0.75mm2 should be protected by a 3A or 5A fuse. Larger conductors would normally require 13A types, depending on the connection method used.

Any moulded mains connector that requires removal /replacement must be destroyed by removal of any fuse & fuse carrier and disposed of immediately, as a plug with bared wires is hazardous if a engaged in live socket. Any re-wiring must be carried out in accordance with the information detailed on this label.

GETTING STARTED

This chapter describes SFG-2000 series in a nutshell, including main features and front/rear/display introduction. Follow the Set Up section to properly install and power up SFG-2000 series.

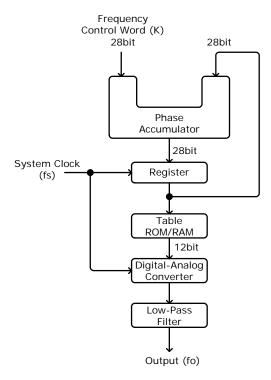
SFG-2000 series overview	Technical background10
	Series lineup12
	Main features12
Panel	Front Panel13
introduction	Rear Panel19
Setup	Tilt stand20
	Power up21
	Recall the default setting21
	Functionality check
Quick reference	Operation Shortcuts
	Default Setting Contents24

Technical background

Traditional function generators

SFG-2000 series uses the latest Direct Digital Synthesis (DDS) technology to generate stable, high resolution output frequency. The DDS technology solves several problems encountered in traditional function generators, as follows.

Constant current circuit methodology


This analog function generating method uses a constant current source circuit built with discrete components such as capacitors and resistors. Temperature change inside the generator greatly affects the components characteristics which lead to output frequency change. The results are poor accuracy and stability.

DDS methodology

In DDS, the waveform data is contained in and generated from a memory. A clock controls the counter which points to the data address. The memory output is converted into analog signal by a digital to analog converter (DAC) followed by a low pass filter. The resolution is expressed as fs/2k where fs is the frequency and k is the control word, which contains more than 28bits. Because the frequency generation is referred to clock signal, this achieves much higher frequency stability and resolution than the traditional function generators.

Block diagram

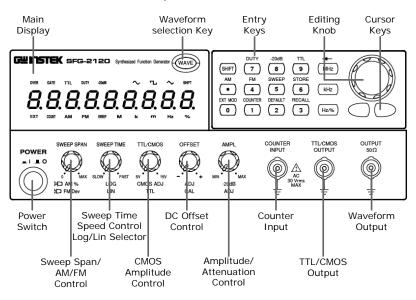
DDS synthesizer consists of Phase accumulator (counter), lookout table data (ROM), Digital-to-analog converter (DAC), and Low-pass filter (LPF).

The phase accumulator adds the frequency control word K at every clock cycle fs. The accumulator output points to a location in the Table ROM/RAM. The DAC converts the digital data into an analog waveform. The LPF filters out the clock frequency to provide a pure waveform.

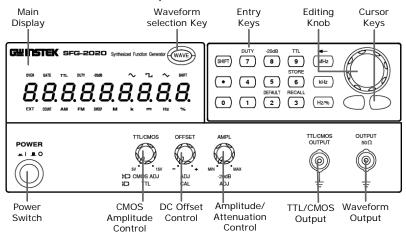
Lineup/Features

Series lineup

GWINSTEK


Features Lineup	Duty cycle	Offset	TTL/ CMOS	Sweep	AM/ FM	Counter
SFG-2004 (4MHz)	•	•	•	_	_	_
SFG-2007 (7MHz)	•	•	•	_	_	_
SFG-2010 (10MHz)	•	•	•	_	_	_
SFG-2020 (20MHz)	•	•	•	_	_	_
SFG-2104 (4MHz)	•	•	•	•	•	•
SFG-2107 (7MHz)	•	•	•	•	•	•
SFG-2110 (10MHz)	•	•	•	•	•	•
SFG-2120 (20MHz)	•	•	•	•	•	•

Main features


Performance	 High resolution using DDS and FPGA technology
	High frequency accuracy: 20ppm
	• Low distortion: -55dBc
	 High resolution 100mHz maintained at full range
Features	Wide output frequency range: 4, 7, 10, 20MHz
	• Various output waveforms: Sine, Square, and Triangle
	TTL/CMOS output
	Variable DC offset control
	Output overload protection
	Store/recall: 10 settings
	• Counter up to 150MHz high frequency (SFG-2100
	series)
	• AM/FM with internal and external (SFG-2100 series)
	• Sweep mode with LINE and LOG (SFG-2100 series)
Input/Output	Frequency output
Terminals	• TTL/CMOS output
	 Counter input (SFG-2100 series)
	 External modulation input (SFG-2100 series)

Front Panel

SFG-2100 series front panel

SFG-2000 series front panel

Main display

GW INSTEK

Shows the waveform frequency, counter frequency, and duty cycle.

OVER For SFG-2100 series only. In the

counter mode, indicates that the leftmost digit (100MHz) is hidden but contains a real number. For counter details, see page 40.

GATE For SFG-2100 series only. In

counter mode, indicates gate selection. For counter details, see

page40.

Indicates that the TTL or CMOS TTL

output is enabled. For TTL/CMOS

details, see page31.

DUTY For square waveform only.

Indicates that the duty cycle is being edited. For square waveform

details, see page25.

-20dB Indicates that the waveform output

is attenuated by -20dB. For attenuation details, see page29.

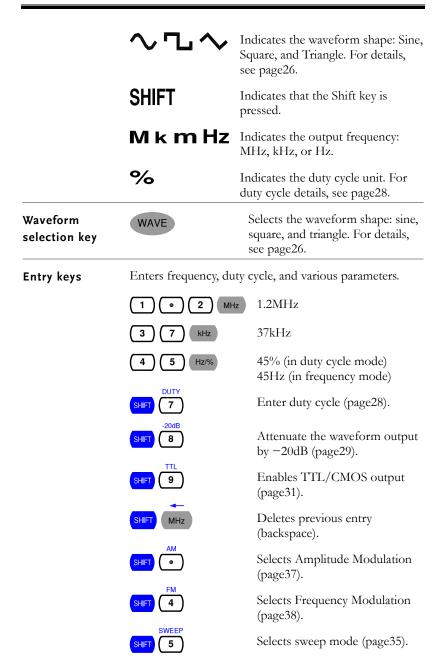
SWEEP For SFG-2100 series only. Indicates

that the sweep mode is activated. For sweep details, see page35.

FM AM For SFG-2100 series only. Indicates

> that FM or AM mode is enabled. For modulation details, see page 37

(AM) or page38(FM).


COUNT For SFG-2100 series only. Indicates

that the counter mode is enabled. For counter details, see page 40.

For SFG-2100 series only. Indicates **EXT**

that the external modulation input

is used. For details, see page 37 (AM) or page39(FM).

	SHIFT 6	Stores the parameter setting (page42).
	SHIFT 3	Recalls the parameter setting (page 42).
	SHIFT 2	Recalls the default parameter setting (page43).
	SHIFT 1	Switches to counter mode (page 40).
	SHIFT 0	Accepts external modulation signal (page37-AM) or (page38-FM).
Editing knob		Increases (right turn) or decreases (left turn) the frequency or duty cycle.
Cursor keys	0	Moves the editing point left or right in case of manual editing.
Waveform output	OUTPUT 50Ω	Outputs sine, square, and triangle waveform. BNC terminal, 50Ω output impedance.
TTL/CMOS output	TTL/CMOS OUTPUT	Outputs TTL or CMOS output waveform, BNC terminal. For TTL/CMOS mode details, see page31.
Counter input Nax AC 30Vrms	COUNTER	Accepts signals for frequency counting. BNC, AC 30Vrms maximum. For counting mode details, see page40.

Amplitude/ Attenuation control

Sets the sine/square/triangle waveform amplitude. Turn left (decrease) or right (increase).

N -20dB ADJ

When pulled out, attenuates the sine/square/triangle waveform amplitude by -20dB. The -20dB display turns On.

For details, see page29.

DC offset control

When pulled out, sets the DC offset level for sine/square/triangle waveform. Turn left (decrease) or right (increase). The range is $-5V \sim +5V$, in 50Ω load.

For details, see page 30.

CMOS amplitude control

TTL

This knob becomes effective when the TTL/CMOS output is enabled (page 31).

Selects TTL as output.

When pulled out, selects CMOS as output. Sets the CMOS output level. Turn left (decrease) or right (increase).

Sweep speed control

Log/Linear

sweep selector

SWEEP TIME Th

This knob is available in SFG-2100 series only. It becomes effective in sweep time mode.

Sets the sweep speed. Turn left (slow) or right (fast). The range is $1 \sim 30$ seconds. For sweep details, see page 35.

Selects linear sweep.

When pulled out, selects logarithmic sweep.

Sweep span

AM/FM modulation control SWEEP SPAN

AM %

FM Dev

sweep mode and AM/FM mode.

In Sweep mode: Sets the sweep specified in the control of the contro

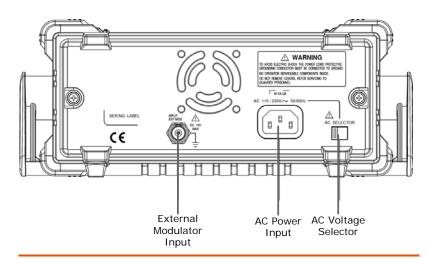
In Sweep mode: Sets the sweep span. Turn left (narrow) or right (wide). The range is $1 \sim 100$. For sweep details, see page 36.

This knob is available in SFG-2100

series only. It becomes effective in

In AM/FM mode:

Sets the FM deviation (page38). Turn left (decrease) or right (increase). The range is over -50kHz ~ +50kHz, centered at 1MHz.


When pulled out, sets the AM depth (page 37). Turn left (shallow) or right (deep). The range is $0 \sim 100\%$.

Power switch

Turns the main power On/Off. For power up sequence, see page 20.

Rear Panel

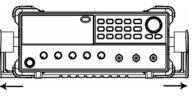
External Modulator Input Accepts the modulation signal from external device. BNC male connector, 10Vp-p maximum. SFG automatically switches the modulation signal from internal to external. For modulation details, see page37 (AM) or page38(FM).

, 10 () 10 (

AC Power Input

Accepts the AC power cord. 115 or 230V, 50/60Hz.

AC Voltage Selector Selects 115V or 230V for power source.

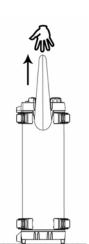

AC $100/110/120V \rightarrow \text{select } 115V.$

AC 220/230/240V \rightarrow select 230V.

Improper selection might lead to internal fuse blowout.

Set Up

Tilt stand


Pull out the handle sideways and rotate it.

Place SFG horizontally,

Or tilt stand.

Place the handle vertically for hand carry.

19

Power up

Select the AC voltage on the rear panel accordingly.
 AC 100/110/120V→select 115V.
 AC 220/230/240V→select 230V.

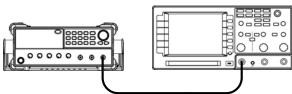
AC SELECTOR

2. Connect the power cord.

3. Push and turn On the main power switch on the front panel.

The display shows model name and the last setup.
 Example: SFG-2110, 500Hz triangle wave in sweep mode and -20dB attenuation enabled

5 F S - 2 1 10 5 O O.O


Recall the default setting

Press SHFT 2 to recall the default setup. SFG shows the message "done", and outputs 10kHz sine wave.

Functionality check

Connect SFG output to measurement device such as oscilloscope and check the waveform characteristics.

Operation Shortcuts

Here are the collections of operation example shortcuts

Here are the collections of operation example shortcuts.			
Sine wave 250Hz,	1.	Press Wave key and select Sine	WAVE \
–20dB amplitude	2.	Press $2 + 5 + 0 + Hz/\%$ key	2 5 0 Hz/%
OUTPUT 50Ω	3.	Press Shift + 8 key (-20dB)	-20dB 00dD
2017		Or pull Amplitude knob	8 -20dB
			or AMPL ADJ
Triangle wave	1.	Press Wave key and select	WAVE
8kHz,		Triangle	
+2V Offset	2.	Press 8 + kHz key	8 kHz
OUTPUT 50Ω	3.	Pull Offset knob (ADJ) and	OFFSET ADJ
5012		Rotate	
Square Wave	1.	Press Wave key and select Square	WAVE
1MHz, 45% duty	2.	Press 1 + MHz key	1 MHz
OUTPUT 50Ω	3.	Press Shift + 7 key (Duty)	SHIFT 7 DUTY
		77. (0.1)	
(@)	4.	Press $4 + 5 + Hz/\%$ key	4 5 Hz/%
~		Or Rotate the Scroll knob	or O
TTL Output 10kHz	1.	Press Shift + 9 key (TTL)	SHIFT (9) TTL
TTL/CMOS	2.	Press $1 + 0 + \text{kHz key}$	(1) (0) (kHz)
OUTPUT	3.	Press TTL/CMOS knob (TTL)	TTL/CMOS (TTL)
	٦.	Tiess Till/CiviO3 kilob (Till)	TTE/CIVIOS (TTE)
CMOS Out 10kHz,	1.	Press Shift + 9 key (TTL)	SHIFT 9 TTL
10Vpp	2.	Press $1 + 0 + kHz$ key	1 0 kHz
TTL/CMOS	3.	Pull TTL/CMOS knob (CMOS)	TTL/CMOS
OUTPUT		and rotate	(CMOS)

Linear Sweep,	1.	Press Wave key and select Sine	WAVE \
1kHz start,	2.	Press $2 + 5 + 0 + Hz/\%$ key	2 5 0 Hz/%
Sine wave 250Hz	3.	Press Shift + 5 key (Sweep)	SHIFT 5 SWEEP
OUTPUT 50Ω	4.	Press SWEEP TIME knob (LIN)	SWEEP TIME LIN
		and rotate	
(5.	Press SWEEP SPAN knob and	SWEEP SPAN
₩		rotate	
Log Sweep,	1.	Press Wave key and select	WAVE
10kHz start,		Triangle	
Triangle wave	2.	Press 8 + kHz key	8 kHz
8kHz	3.	Press Shift + 5 key (Sweep)	SHIFT (5) SWEEP
OUTPUT 50Ω	4.	Pull SWEEP TIME knob (LOG)	SWEEP TIME
5012		and rotate	LOG
(®)			$+ \widehat{\mathbb{Q}}$
₩	5.	Press SWEEP SPAN knob and	SWEEP SPAN
		rotate	
AM, Internal,	1.	Press Wave key and select Sine	WAVE
50% modulation,	2.	Press $1 + 0 + kHz$ key	1 0 kHz
sine wave 10kHz	3.	Press Shift + .(dot) key (AM)	SHIFT • AM
OUTPUT 50Ω		, , , ,	SWEEP SPAN
	4.	Pull SWEEP SPAN knob (AM	
(%) and rotate	+ 📦
FM, External,	1.	Press Wave key and select Sine	WAVE
50% deviation,	2.	Press 1 + MHz key	1 MHz
sine wave 1MHz	3.	Input external modulation signal	INPUT EXT MOD A
OUTPUT 50Ω		(EXT sign appears)	(a) -13V -13V
2072			¥ EXT
	4.	Press Shift + 4 key (FM)	SHIFT • FM
	5.	Push SWEEP SPAN knob (FM	SWEEP SPAN
		Dev) and rotate	(FM Dev)
			$\Box + \bigcirc$

Counter input, sine wave 1MHz	1.	Press Shift + 1 (Counter)	SHIFT 1 CO	UNT
COUNTER INPUT	2.	The Gate sign flashes when counted	GATE	
Store the setting	1.	Press Shift + 6 (Store)	SHIFT 6	
to memory No.1	2.	The "Store" sign appears	Store	8
	3.	Enter the memory number (1 \sim 10)	Store	1
	4.	The "done" sign appears	done	
Recall the setting	1.	Press Shift + 3 (Recall)	SHIFT 3	
from memory No.1	2.	The "Recall" sign appears	recall	0
	3.	Enter the memory number (1 \sim 10)	recall	1
	4.	The "done" sign appears	done	

Default Setting Contents

Recall default SHIFT 2 settings

Press the shift key, then 2 to recall the default setting. The "done" message appears, followed by display update.

		k	Hz
Wave type	Sine wave		
Frequency	10.0000kHz		
TTL/CMOS	Disabled		
-20dB	Disabled		
Modulation	Disabled		
Sweep mode	Disabled		

SINE/SQUARE/TRIANGLE

WAVE

Select waveform	Select the waveform	26
Set frequency	Enter frequency	26
	Edit frequnency	27
Set duty cycle	Enter duty cycle	28
(for square wave)	Edit duty cycle	28
Set amplitude	Normal output	29
	Attenuate by -20dB	29
Set offset	Activate offset	30
	Adjust offset	30
	Limitation	30

Select the waveform

Sine / Square Press WAVE / Triangle appears on the

Press key repeatedly. The corresponding icon appears on the display.

Sine waveform.

Square waveform.

Triangle waveform.

OUTPUT $50\,\Omega$

The waveform comes out from the main terminal.

10Vp-p maximum (50 Ω load)

20Vp-p maximum (no load)

Set the Frequency

Enter frequency

Enter the waveform frequency using the numerical keys.

Delete a number (backspace)

Triangle waveform frequency is limited to maximum 1MHz. When the input exceeds it, the following message (Freq-Err2) appears and forces the frequency to 1MHz.

F+89-8++2

For full error message list, see page52.

Edit frequnency

Left cursor key moves the active cursor left.

10000-1000

Right cursor key moves the active cursor right.

Turn the editing knob left to decrease the frequency.

100.0-99.0

Turn the editing knob right to increase the frequency.

(Flashing)

Set the Duty Cycle (Square Waveform)

The duty cycle setting is not available in sine/triangle waveform.

Enter duty cycle

7 DUTY

Press the Shift key, then 7 to enter duty cycle editing mode. The duty sign appears on the display.

The default value is 50%.

The settable range is $20\% \sim$ 80%, $2Hz \sim 1MHz$.

Use numerical keys to enter value.

Example: 45%

Delete a number (backspace)

Edit duty cycle

The editing knob changes the value, and the cursor keys moves the active digit (same as entering frequency).

When inactive for 5 seconds, the display automatically goes back to previous mode (frequency view).

Setting duty cycle (press SHIFT when sine or triangle waveform is activated. The following message appears.

dut4-5++ 1

For full error message list, see page52.

Set Amplitude

Normal output

Turn the Amplitude knob right (increase) or left (decrease).

The range is 10Vpp for 50Ω load.

Attenuate by -20dB

Sine/square/triangle waveform can be attenuated by -20dB, in two ways: -40dB altogether.

Method1

Pull out the Amplitude knob. The output amplitude is attenuated by -20dB (no display sign).

-20dB

Method2

Press the shift key, then 8. The output amplitude is attenuated by -20dB. The -20dB sign appears on the display.

Set Offset

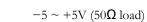
Activate offset

SFG can add or delete offset to the sine/square/triangle waveform, thus changing the waveform vertical position. Use the OFFSET knob.

Pushed: Offset Off

Pulled: Offset On

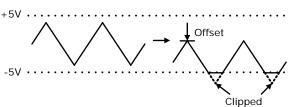
Adjust offset


Turn the knob right (higher position) or left (lower position).

The range is $-5V \sim +5V$ for 50Ω load.

Limitation

Note that the output amplitude, including the offset, is still limited to:


 $-10 \sim +10 \text{V} \text{ (no load)}$

Therefore excessive offset leads to peak clip as below.

Positive peak clip (50 Ω)

Negative peak clip (50 Ω)

TTL CMOS OUTPUT

Select waveform	Select the waveform	32
Set frequency	Enter frequency	. 32
	Edit frequency	. 33
Set duty cycle	Enter duty cycle	. 33
	Edit duty cycle	34
Set amplitude	Set Amplitude	. 34

Select the waveform

TTL/CMOS

GW INSTEK

Press Shift key, then 9. The TTL sign appears on the display.

TTL

The TTL/CMOS output is always On when the square wave is activated.

TTL/CMOS

Push/pull the TTL/CMOS knob to select the waveform.

Pushed: TTL is selected as output.

Pulled: CMOS is selected as

output.

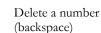
TTL/CMOS OUTPUT The waveform comes out from the TTL/CMOS terminal.

TTL: $\geq 3Vp-p$ (fixed)

CMOS: $4V\pm1Vp-p \sim 15\pm1Vp-p$

Set the Frequency

Enter frequency Enter the waveform frequency using the numerical keys.



Edit frequency

Left cursor key moves the active cursor left.

Right cursor key moves the active cursor right.

(Flashing) (Flashing) (Flashing)

Turn the editing knob left to decrease the frequency.

 $\begin{picture}(0,0) \put(0,0) \put(0,0$

Turn the editing knob right to increase the frequency.

(Flashing)

(Glashing)

(Glashing)

(Glashing)

Set the Duty Cycle

Enter duty cycle

Press the Shift key, then 7 to enter duty cycle editing mode. The duty sign appears on the display.

ີ 5 🛭

The default value is 50%.

The settable range is $20\% \sim 80\%$, $2Hz \sim 1MHz$.

Use the numerical keys to enter value. Example: 45%

Delete a number (backspace)

Edit duty cycle

The editing knob changes the value, and the cursor keys moves the active digit (same as entering frequency).

When inactive for 5 seconds, the display automatically goes back to previous mode (frequency view).

Set Amplitude

CMOS waveform

CMOS ADJ

TTL

Use the TTL/CMOS knob.

Pushed: selects TTL output with fixed amplitude, min. 3Vp-p.

Pulled: selects CMOS output, amplitude range 4V±1Vp-p ~ 15±0.5Vp-p.

Turn the knob right (increase amplitude) or left (decrease amplitude).

SFG can add sweep to the waveform output, a convenient tool for measuring the frequency response of the DUT.

• Sweep function applies only to SFG-2100 series.

• Sweep and Modulation (page 37) cannot be used together.

Activate sweep

- 1. Output the waveform. Sine/Triangle/Square (page25) or TTL/CMOS (page31).
- 2. Press the Shift key, then 5 (Sweep).

3. Sweep is activated and the sign appears on the display.

SWEEP

When the sweep is activated, the duty cycle of Square/TTL/CMOS wave is fixed to 50%.

Select Log/Lin Sweep

SWEEP TIME

Logarithmic Sweep:

LIN

Pull the SWEEP TIME knob.

Linear Sweep:

Set Sweep Time

Sweep time sets the time it takes for a single sweep from the start frequency to the end frequency.

Rotate the SWEEP TIME knob, right (fast) or left (slow).

Range

 $1 \sim 30$ seconds

Note: If the sweep time becomes too long, the stop frequency might reach the rating (4, 7, 10, or 20MHz). In this case, the frequency stays at the rating to the end.

Set Sweep Span

Sweep span sets the frequency width of the sweep.

The current output frequency becomes the start frequency.

Rotate the SWEEP SPAN knob, right (wide) or left (narrow).

Range

 $1 \sim 100$ frequency ratio

Note: In order to get the maximum span (frequency ratio), set the sweep time to a sufficient length (not too short).

AMPLITUDE MODULATION

- AM applies only to SFG-2100 series.
- Modulation and Sweep (page 35) cannot be used together.

Activate AM

- 1. Output the waveform, Sine/Triangle/Square (page25).
- 2. Press the Shift key, then Dot (AM). AM is activated and the sign appears on the display.

Set AM depth

1. Pull the SWEEP SPAN knob (AM

2. Turn the knob left (shallow) or right (deep).

Range

 $0 \sim 100\%$

Use external modulating signal

SFG-2000 series uses an internal 400Hz sine wave as the default modulating signal.

- 1. Connect the modulating signal to the rear panel terminal.
- 2. Press the Shift key, then 0 (EXT MOD). External modulation is activated.

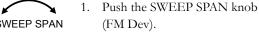
Frequency Range $DC \sim 1MHz$

REQUENCY MODULATION

- FM applies only to SFG-2100 series.
- Modulation and Sweep (page35) cannot be used together.

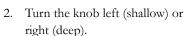
Activate FM

- 1. Output the waveform. Sine/Triangle/Square (page25) or TTL/CMOS (page31).
- 2. Press the Shift key, then 4 (FM). FM is activated and the sign appears on the display.


When FM is activated, the duty cycle of Square/TTL/CMOS wave is fixed to 50%.

Set FM deviation

The output frequency becomes the Center Frequency.


(FM Dev).

Deviation Range

 $0 \sim \pm 50 \text{kHz}$, centered at 1MHz

37

When the deviation is added to the center frequency, the result must be smaller than the rating frequency.

Center Frequency + Deviation ≤ Rating(4,7,10,20MHz)

When this rule is violated, the "Freq-Err3" error message appears and the FM setting will be cancelled.

F + E 9 - E + + 3

For more error message details, see page52.

Center frequency (=Output frequency) must be set within this range.

SFG-2104	300kHz ~ 3.7MHz
SFG-2107	$300\text{kHz} \sim 6.7\text{MHz}$
SFG-2110	$300\text{kHz} \sim 9.7\text{MHz}$
SFG-2120	$300kHz \sim 19.7MHz$

Use external modulating signal

SFG-2000 series uses an internal 400Hz sine wave as the default modulating signal.

- 1. Connect the modulating signal to the rear panel terminal.
- Press the Shift key, then 0 (EXT MOD). External modulation is activated.

Frequency	1kHz (fixed)
Range	

COUNTER INPUT

Counter input applies only to SFG-2100 series.

Activate counter

COUNTER

1. Connect the signal input to the Counter input terminal. Press Shift key, then 1 (Counter).

2. EXT and COUNT sign appear on the display.

EXT COUNT

3. The display shows the input signal frequency.

3 ! 7385

T K

4. The GATE sign flashes when the gate condition is met.

GATE

Range

 $0 \sim 150 \text{MHz}$

Resolution

100nHz for 1Hz input, 0.1Hz for 100MHz input

Set the gate time

Gate time sets the display update rate and counter resolution. These two parameters are in trade-off. Short gate time = faster update, coarse resolution Long gate time = slower update, fine resolution

To change the gate time, turn the editing knob right (increase) or left (decrease).

COUNTER INPUT

Gate time / Resolution table

The following table shows the relationship between counter frequency, gate time, resolution, and display.

Input	Gate time	Resolution	-17
	0.01s	100μHz	1.0000Hz
1Hz	0.1s	10μHz	1.00000Hz
	1s	1μHz	1.000000Hz
	10s	100nHz	1.0000000Hz
	0.01s	$100\mu Hz$	10.0000Hz
10Hz	0.1s	10μHz	10.00000Hz
10Hz	1s	1μHz	10.000000Hz
	10s	100nHz	10.0000000Hz
	0.01s	1mHz	100.000Hz
100Hz	0.1s	100μHz	100.0000Hz
100Hz	1s	10μHz	100.00000Hz
	10s	1μHz	100.000000Hz
	0.01s	10mHz	1.00000kHz
1kHz	0.1s	1mHz	1.000000kHz
	1s	100μHz	1.0000000kHz
	10s	10μHz	1.00000000kHz
	0.01s	10Hz	1.00000MHz
1MU ₂	0.1s	1Hz	1.000000MHz
1MHz	1s	100 mHz	1.0000000MHz
	10s	10mHz	1.00000000MHz
	0.01s	100Hz	10.0000MHz
10MHz	0.1s	10Hz	10.00000MHz
TOMITIZ	1s	1Hz	10.000000MHz
	10s	100mHz	10.0000000MHz
	0.01s	100Hz	100.0000MHz
100MHz	0.1s	10Hz	100.00000MHz
TOUMHZ	1s	1Hz	100.000000MHz
	10s	100mHz	00.0000000MHz*

Over sign

* The OVER sign shows that the 100MHz digit contains a real number but hidden from the display. It turns On under the following condition.

- Input frequency: ≥100MHz
- Gate Time: 10s

To view the 100MHz digit, switch to smaller gate time such as 1s or 0.1s.

STORE/RECALL SETTING

Store the panel setting

STORE 6

Press the Shift key, then 6 to store the current panel setting to internal memories.

Memory range: 0 ~ 9 (10 set)

The "Store 0" sign appears.

Store

Enter the memory number, $0 \sim 9$. (for example, 1)

Stor8

The "done" sign appears.

done

Recall the panel setting

Press the Shift key, then 3 to recall a panel setting stored in internal memories.

Memory range: $0 \sim 9$ (10 set)

The "recall 0" sign appears.

r 2 c 3L L

Enter the memory number, $0 \sim 9$. (for example, 1)

recall

The "done" sign appears and the panel setting changes accordingly.

4008

OVER

Recall the default panel setting

Press the shift key, then 2 to recall the default panel setting.

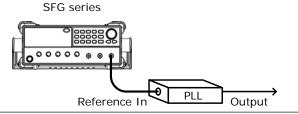
The "done" message appears.

The panel is updated with the default setting.

Wave type	Sine wave
Frequency	10.0000kHz
TTL/CMOS	Disabled
-20dB	Disabled
Modulation	Disabled
Sweep mode	Disabled

APPLICATION EXAMPLES

Reference Signal for PLL System

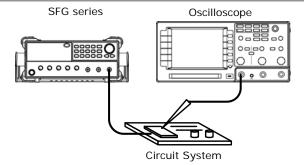

Description The SFG output can be used as a cost-effective reference

signal for Phase-Locked-Loop system. Directly connect

SFG output to PLL input.

Block diagram

GW INSTEK

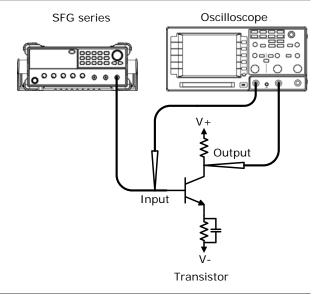


Trouble-Shooting Signal Source

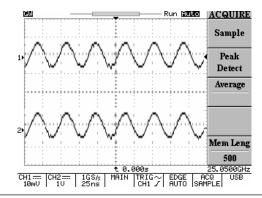
Description

The SFG output can be used as the signal source to test the failed part in a circuit system. Isolate the problematic part from the rest, feed the SFG output as a stimulus, and observe the outcome using an oscilloscope.

Block diagram



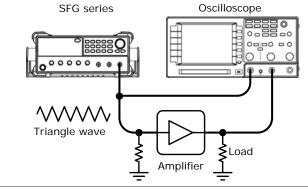
Transistor DC Bias Characteristics Test


Description

Use SFG-2000 series as the signal source for a transistor. Compare the transistor input/output waveform using the oscilloscope. Adjust the DC voltage source to find out the maximum output without distorting the waveform.

Block diagram

Oscilloscope display

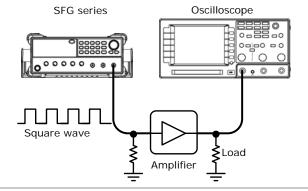

Amplifier Over-Load Characteristic Test

Description

GWINSTEK

Use the triangle wave output from SFG-2000 series to check the amplifier output distortion caused by overload. The common sine wave is not the ideal source in this case. Observe the linearity of the triangle waveform using an oscilloscope.

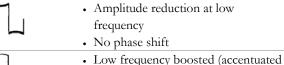
Block diagram

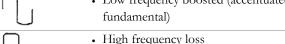


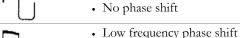
Amplifier Transient Characteristics Test

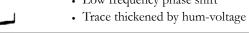
Description

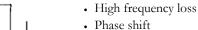
Use the square wave output from SFG-2000 series to check the transient frequency response of an amplifier. The common sine wave is not the ideal source in this case. Observe the waveform using an oscilloscope.

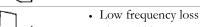

Block diagram




Test step


- Apply a triangle waveform to the amplifier first.
 Adjust the waveform amplitude to make sure there is no clipping.
- 2. Switch to square waveform and adjust its frequency to the middle of the amplifier pass band, such as 20Hz, 1kHz, and 10kHz.
- 3. Observe the shape of the amplifier output. The following table shows the possible output distortions and their explanations.


Transient characteristic list



• Phase shift

Low frequency phase sh

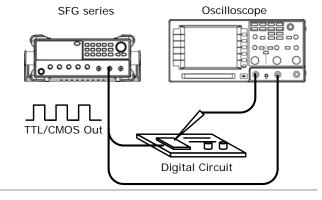
Low frequency phase shift

High frequency loss Low frequency phase shift

Damped oscillation

Note

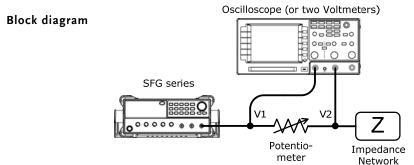
For narrow band amplifier testing, square wave may not be suitable.


Logic Circuit Test

Description

GWINSTEK

Use the TTL/CMOS output from SFG-2000 series to test digital circuits. Observe the timing relation of input/output waveform using an oscilloscope.


Block diagram

Impedance Matching Network Test

Description

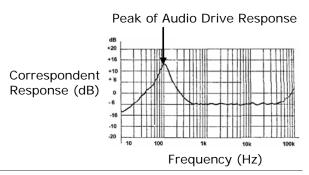
Use SFG-2000 series for impedance matching network: testing its frequency characteristic and matching the impedance.

Test step

Adjust the potentiometer until V2 becomes the half of V1 (V2=0.5V1). Then the impedance Z of the network becomes identical to the potentiometer.

47

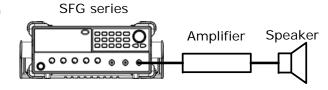
Speaker Driver Test


Description

Use SFG-2000 series for testing the frequency characteristics of audio speakers. Record the volt reading versus the input signal frequency.

Graph

The peak voltage occurs on the resonant frequency of the speaker.



GWINSTEK

Sweep for Speaker Test

Use the sweep feature in SFG-2000 series for testing the frequency response of an audio speaker. 1. Set SFG output to sine wave, 20Hz. 2. Activate sweep and set LIN/LOG, sweep time, and sweep span. 3. Change the frequency if other bands need to be tested.

Block diagram

FAQ

FAQ

- I pressed the Power key on the front panel but nothing happens.
- How can I get out of Counter/Sweep/Modulation/TTL/-20dB mode?
- The device accuracy does not match the specification.
- What are these error messages?

I pressed the Power key on the front panel but nothing happens.

Make sure the AC source voltage setting on the rear panel is correct (page 21). Otherwise the internal fuse might be blown out. Contact the service personnel.

How can I get out of Counter/Sweep/Modulation/TTL/-20dB mode?

Press the Shift key, then the relevant numerical key. (Do the same action as you entered those modes)

For example: To get out of Counter mode, press Shift then 1.

The device accuracy does not match the specification.

Make sure the device is powered On for at least 30 minutes, within $\pm 20^{\circ}\text{C} \sim \pm 30^{\circ}\text{C}$. This is necessary to stabilize the unit to match the specification.

What are these error messages?

Several messages appear when trying to set the frequency or duty cycle in forbidden way. Page52 summarizes all the error message content.

If there is still a problem, please contact your local dealer or GWInstek at www.gwinstek.com.tw / marketing@goodwill.com.tw.

APPENDIX

GW INSTEK

Error Messages

Frequency error

F + E 9 - E + +

FrEq-Err1 Sine and square wave frequency over range.
This message appears when entering sine or square waveform frequency larger than the rating. See page26 for sine/square rating.

FrEq-Err2 Triangle wave Frequency over range. This message appears when entering triangle waveform frequency larger than 1MHz. See page26 for triangle wave rating.

FrEq-Err3 FM Center Frequency over range. This message appears when trying to enter FM center frequency larger than specified. See page38 for FM center frequency range.

Duty Cycle error

c, C,cic		
or	duty-Err1	Not square waveform. This message appears when trying to set duty cycle in non-square (=sine or triangle) waveform. For duty cycle setting, see page28 (square wave) or page33 (TTL/CMOS output).
	duty-Err2	Square wave frequency over range. This message appears when trying to set duty cycle when the square wave frequency is over 1MHz. For square wave frequency setting, see page26.
	duty-Err3	Duty over range. This message appears when the duty cycle setting goes outside 20~80% range. For duty cycle range, see page28 (square wave) or page33 (TTL/CMOS output).

Specification

	Output Function	Sine, Square, Tr	iangle		
	Amplitude Range	10Vp-p (into 50			
	Impedance	$50\Omega \pm 10\%$			
	Attenuator	$-20dB \pm 1dB \times 2$)		
Main	DC Offset	$<-5V \sim >+5V (50\Omega \text{ load})$			
	Duty Range	,	z~1MHz (Square Wave)		
	Duty Resolution	1% (Square Wa			
	Display	9 digits LED display			
	,	SFG-2004	0.1 Hz ~ 4MHz		
		SFG-2007	0.1Hz ~ 7MHz		
		SFG-2010	0.1Hz ~ 10MHz		
	Sine/Square	SFG-2020	1Hz ~ 20MHz		
	Waveform Range	SFG-2104	0.1Hz ~ 4MHz		
	8	SFG-2107	0.1Hz ~ 7MHz		
_		SFG-2110	0.1Hz ~ 10MHz		
Frequency		SFG-2120	1Hz ~ 20MHz		
	Triangle	0.1Hz ~ 1MHz			
	Waveform Range	(1Hz ~ 1MHz for SFG-2020/2120)			
	Resolution	0.1Hz (1Hz for SFG-2020/2120)			
	Stability	±20ppm			
	Accuracy	±20ppm			
	Aging	±5ppm/year			
		≥-55dBc, 0.1H	z ~ 200kHz		
		≥-40dBc, 0.2M	Hz ~ 4MHz		
	Harmonic	≥-30dBc, 4MHz ~ 20MHz			
	Distortion	(Amplitude at maximum position			
		without attenuating 1/10 of any			
Sine Wave			tting, TTL/CMOS off)		
		, ,	< ± 0.3dB, 0.1Hz ~ 1MHz		
		< ± 0.5dB, 1MHz ~ 4MHz			
	Flatness	$< \pm 2$ dB, 4MHz			
		< ± 3dB, 10MH			
	_	•	plitude relating to 1kHz)		
Triangle Wave	Linearity	≥ 98%, 0.1Hz ~			
	·	≥ 95%, 100kHz			
Square Wave	Symmetry	±1% of period + 4ns, 0.1Hz ~ 100kHz			
	Rise/Fall Time	\leq 25ns at maximum output (50 Ω load)			
CMOS Output	Level	4 ± 1Vpp ~ 15 ± 1Vpp, adjustable			
	Rise/Fall Time	≤ 120ns			
TTL Output	Level	≥ 3Vpp			
	Fan Out	20 TTL Load			

	Rise/Fall Time	≤ 25ns
Sweep	Sweep Rate	100:1 Ratio Max, adjustable (Note1)
(SFG-2100	Sweep Time	1 ~ 30s, adjustable (Note2)
Series)	Sweep Mode	Linear, Logarithmic
Amplitude	Depth	0 ~ 100%
Modulation	Frequency	400Hz (internal), DC ~ 1MHz (external)
(SFG-2100	Carrier BW	100Hz ~ 5MHz (-3dB)
•	External	Sensitivity: ≤ 10Vpp for 100%
Series)	Modulating	modulation
Frequency	Deviation	\geq 0 ~ ±50kHz, center at 1MHz
Modulation	Frequency	400Hz fixed (internal), 1kHz fixed
(SFG-2100		(external)
•	External	Sensitivity: ≤ 10Vpp for 10%
Series)	Modulating	modulation (center at 1MHz)
	Range	5Hz ~ 150MHz
Frequency	Accuracy	Time Base Accuracy ± 1 count
Counter	Time Base	±20ppm (23±5°C) after 30min warmup
(SFG-2100	Max. Resolution	100nHz for 1Hz, 0.1Hz for 100MHz
Series)	Input Impedance	1MΩ/150pf
Series)	Sensitivity	≤ 35mVrms, 5Hz ~ 100MHz
		≤ 45mVrms, 100MHz ~ 150MHz
Store/Recall	10 Groups of Settir	<u> </u>
	Power Source	AC115V/230V +10%, -15%, 50/60Hz
		Indoor Use, Altitude Up to 2000m
	Operation	Ambient Temperature 0 ~ 40°C
	Environment	Relative Humidity \leq 80%, 0 ~ 40°C
	2	Relative Humidity \leq 70%, 35 ~ 40°C
		Install Category II / Pollution Degree 2
General	Storage	Temperature: −10 ~ 70°C
	Environment	Humidity: ≤70%
		Instruction Manual x 1, Power Cord x 1
	Accessories	GTL-101 x 2 (SFG-2100 Series)
	5.	GTL-101 x 1 (SFG-2000 Series)
	Dimension	107 (W) x 266 (H) x 293 (D)
	Weight	Approx. 3.2kg (SFG-2100 Series)
Natalia and	· ·	Approx. 3.1kg (SFG-2000 Series)

Note1: In order to get the maximum sweep span, sweep time needs to be tuned. Note2: If sweep time is too long, the stop frequency will stay at the maximum frequency until the end of the sweep cycle.

Declaration of Conformity

We

GOOD WILL INSTRUMENT CO., LTD.

(1) No.7-1, Jhongsing Rd., Tucheng City, Taipei County, Taiwan (2) No. 69, Lu San Road, Suzhou City (Xin Qu), Jiangsu Sheng, China

declare, that the below mentioned product

Type of Product: Synthesized Function Generator Model Number: SFG-2004, SFG-2007, SFG-2010, SFG-2020, SFG-2104, SFG-2107, SFG-2110, SFG-2120

are herewith confirmed to comply with the requirements set out in the Council Directive on the Approximation of the Law of Member States relating to Electromagnetic Compatibility (89/336/EEC, 92/31/EEC, 93/68/EEC) and Low Voltage Directive (73/23/EEC, 93/68/EEC). For the evaluation regarding the Electromagnetic Compatibility and Low Voltage Directive, the following standards were applied:

EN 61326-1: Electrical equipment for measurement, control and laboratory		
use — EMC requirements (1997 + A1:1998 + A2:2001 + A3:2003)		
Conducted Emission	Electrostatic Discharge	
Radiated Emission	EN 61000-4-2: 1995 + A1:1998 +	
EN 55011: Class A 1998 +	A2:2001	
A1:1999 + A2:2002		
Current Harmonics	Radiated Immunity	
EN 61000-3-2: 2000 + A2:2005	EN 61000-4-3: 2002 + A1:2002	
Voltage Fluctuations	Electrical Fast Transients	
EN 61000-3-3: 1995 + A1:2001	EN 61000-4-4: 2004	
	Surge Immunity	
	EN 61000-4-5: 1995 + A1:2001	
	Conducted Susceptibility	
	EN 61000-4-6: 1996 + A1:2001	
	Power Frequency Magnetic Field	
	EN 61000-4-8: 1993 + A1:2001	
	Voltage Dip/ Interruption	
	EN 61000-4-11: 2004	

Safety

Low Voltage Equipment Directive 73/23/EEC & amended by 93/68/EI	EC
Safety Requirements	
IEC/EN 61010-1: 2001	

INDEX

2	
20dB attenuation	
example setting	
A	
AM	
example setting	
setup37	
amplifier application example 46	
application examples 44	
c	
cleaning7	
CMOS	
activation32	
example setting	
constant current circuit 10	
control knob overview	
counter gate time	
counter input	
example setting	
D	
DDS block diagram11	
default panel setting	
contents	
recall	
default setting	
contents	
default setting recall	
direct digital synthesis	
display contents overview 14	
duty cycle	
example setting	

setup
duty cycle error
faq 51
$\boldsymbol{\mathit{E}}$
EN 61010 6, 7, 55
EN5501155
EN61000 55
external modulation 37, 39
example setting
F
FAQ 51
FM
example setting
seup
frequency
editing27
entering26
frequency error 27, 39, 52
faq 51
front panel diagram
SFG-200013
SFG-210013
fuse
safety instruction 6
I
impedance application example 48
in/out terminal overview
L
lin sweep selection
log sweep selection
logic application example 48

GWINSTEK

INDEX

M
main feature list12
memory recall
example setting24
memory store
example setting24
model lineup12
N
numerical keys overview15
0
offset30
example setting22
operation environment
safety instruction 7
operation shortcuts22
P
phase locked loop
example application44
power supply
safety instruction 6
power up sequence21
FAQ51
R
rear panel19
recall setting42
$oldsymbol{s}$
safety

guidelines 6

symbol5
UK power cord8
${\rm setup\ step}20$
sine wave
example setting
selection
speaker application example 49, 50
specification53
FAQ51
square wave
duty cycle28
example setting
selection
storage environment
safety instruction
store setting
sweep
example setting23
setup
T
table of contents
technical background 10
tilt stand 20
transistor application example 45
triangle wave
example setting 22
selection
troubleshooting application example 44
TTL
activation32
example setting

205 Westwood Ave Long Branch, NJ 07740 1-877-742-TEST (8378) Fax: (732) 222-7088 salesteam@Tequipment.NET