

Semiconductor Parametric Test Software for Component and Discrete Devices

device curves developed from newly collected data over "golden" curves for fast comparisons. To per-

form specialized calculations on raw data, use the mathematical formulator tool to create customized

Trace Mode—for mapping out the operating range and characteristics of a semiconductor device

while minimizing the risk of damage to it. This mode offers an interactive method of controlling

For applications requiring wafer level testing, use ACS Integrated Test Systems or ACS Wafer Level

Reliability Systems. These systems supply a wafer map, prober automation capabilities, and analysis options for yield monitoring as well as related statistical calculations for maximizing productivity in

parameter calculations. Data can be easily saved in graphical and/or tabular formats.

the voltage level of a sweep with a slide bar or the arrow keys on the PC keyboard.

Optimized for parametric testing of component and discrete (packaged) semiconductor devices, ACS Basic Edition maximizes the productivity of technicians and engineers in research and development. The versatile architecture of this software allows it to meet the wide ranging and ever changing requirements of semiconductor device testing. It supports all of Keithley's source and measure instrument products, including Series 2600A, Series 2400, and Model 2651A SourceMeter instruments and the Model 237 SMU

This powerful, yet cost effective solution includes Keithley's rich set of proven parametric libraries. Simply choose the desired test and begin running it to immediately start gathering data and analyzing it. Users also have the option of customizing any test with the embedded script editor.

- **Designed for packaged devices** (MOŠFETs, BJTs, IGBTs, diodes, resistors, etc.)
- Rich set of test libraries for fast and easy test setup and execution without programming
- Built-in data analysis tools for quick analysis of parametric data
- **Supports Keithley's Series** 2600A, Series 2400, and Model 2651A SourceMeter® instruments and Model 237 Source-Measure Unit (SMU)
- FREE optional off-line version for developing test setups on a different PC
- Windows[®] 7 and XP compatible

Ordering Information

ACS-BASIC Component Characterization Software

ACS-BASIC-UPGRADE (available for existing ACS Basic customers)

1.888.KEITHLEY (U.S. only) www.keithley.com

ACS Basic offers three modes of operation:

Related Products

wafer level test environments.

• Single Test Mode-for single device, single test operations

• Multi Test Mode-for multiple test operations on a single device

ACCESSORIES AVAILABLE

2600-FIX-TRX	Grounded Phoenix-to-Triax Cable Adapter
8101-4TRX	Leaded Component Test Fixture
ACS-COMP	PC for Installed and Bench-top ACS Systems
KUSB-488A	IEEE-488.2 USB-to-GPIB Interface Adapter for USB Port
LR:8028	DIP Component Test Fixture

KEY APPLICATIONS

- Materials and device development
- Quality assurance
- Device inspection

SEMICONDUCTOR

ACS Basic Edition

Semiconductor Parametric Test Software for Component and Discrete Devices

Device

Resistor

Capacitor

SUMMARY OF TYPICAL TESTS

IEBO,

NA

IV

ie Eqs Zen Benation Ince Ref	e •	• [] =		K]	<u>a</u> c	12 NJ	oMode	18 II	3 <i>(</i> 2)	Inte	ractive	Test Mo	dule: IdV	d_St
Project Pro	Definition Dat Force Func F Bias V F Bias I C Sovep 1 F Sovep 1 C Step 1	Strinter Data Status												
Erntern 1		Dervice Nam	SHU	Pad	Function	Force Range	Source	Measure	Compliance	Meas Range	Limits Auto	1		
	Ľ	24.0	Dran Gabe	Step V Step V	auto auto	Lineor [0, 14, 1	14Wprogl None	0.1	SLED STATES					

Multi Test Mode allows multiple tests to be performed on a device.

Bipolar Junction Transistor	IEDO, IECO, IEVEB, ICVCB	BVCEO, BVCEI, BVCEO, BVCEV, BVEBO, BVECO	HFE	ICVCE_BiasIB, ICVCE_BiasVB, ICVCE_StepIB, ICVCE_StepVB, VBCO, VCE
MOSFET	IDL, IDS_ISD, IGL, ISL	BVDSS, BVDSV, BVGDO, BVGDS, BVGSO	GM	IDVD_BiasVG, IDVD_StepVG, IDVG_BiasVD, IDVG_StepVD, IDVG_StepVSUB, IGVG, VTCI, VTEXT, VTEXT_IISQ
Diode	IRDVRD	VBRIRD	NA	DYNAMICZ, IFDVFD VFDIFD, VRDIRD

NA

NA IV

NA

Leakage Breakdown Gain On-State

IBCO, IBEO, IBICVBE, IBVBE, ICBO, ICEV,

FORMULATOR FUNCTION SUMMARY Туре Math ABS, AVG, DELTA, DIFF, EXP, LN, LOG, LOG10, SQRT GMMAX, RES, RES 4WIRE, RES AVG, SS, SSVTCI, TTF Parametric DID_LGT,TTF_LGDID_T, TTF_DID_T, TTF_LGDID_LGT, Extractions VTCI, VTLINGM, VTSATGM EXPFIT, EXPFITA, EXPFITB, LINFIT, LINFITSLP, LINFITXINT, LINFITYINT, REGFIT, REGFITSLP,

Fitting	REGFITXINT, REGFITYINT, REGFIT_LGX_LGY, REGFIT_ LGX_Y, REGFIT_X_LGY, TANFIT, TANFITSLP, TANFITXINT, TANFITYINT
Manipulation	AT, FINDD, FINDLIN, FINDU, FIRSTPOS, JOIN, LASTPOS, MAX, MAXPOS, MIN, MINPOX, POW, SMOOTH

Trace Mode supports interactive testing of a device.

1.888.KEITHLEY (U.S. only) www.keithley.com