#### Specifications

| Power Required       | None - self powered                  |
|----------------------|--------------------------------------|
| Output Switch        | Isolated Solid State Switch          |
| Switch Rating        | <u>NOU</u> - N.O. 0.15A, 240 VAC/VDC |
|                      | <u>NCU</u> -N.C. 0.2A, 135 VAC/VDC   |
| Off State Leakage    | NONE                                 |
| Response Time        | 0.120 Second                         |
| Hysteresis           | Approx 5% of Setpoint                |
| Set Point Ranges     | Fixed Core: 1-150 A                  |
|                      | Split Core: 1.75-150A                |
| Setpoint, -GO Option | Fixed Core: 0.75 A Max trip          |
|                      | Split Core: 1.25A Max trip           |
| Setpoint Adjust      | 4 Turn potentiometer (FF, SP)        |
|                      | 15 Turn Potentiometer (FT)           |
| Isolation Voltage    | UL Listed to 1,270 VAC               |
|                      | Tested to 5,000 VAC                  |
| Frequency Range      | 6-100Hz                              |
| Sensing Apeture      | -FF 0.55" (14mm)                     |
|                      | -FT 0.75" (19mm)                     |
|                      | -SP 0.85" (21.7mm)                   |
| Environmental        | -58 to149 DegF (-50 to 65 DegC)      |
|                      | 0-95% RH, Non Condensing             |
| Listings             | UL and ULC Listed                    |
|                      | CE Certified                         |
|                      |                                      |

#### **Model Number Key**

AS1 - NOU - FF - GO

| OPTIONS: GO - Go/No-Go Sensor NL No LED -- With LED (Blank)

#### CASE STYLE:

<u>FF</u> - Fixed Core, Front Terminals <u>FT</u> - Fixed Core, Top Terminals <u>SP</u> - Split-Core

#### OUTPUT (Solid State Switch):

<u>NOU</u> - Normally Open, 0.15A, 240 VAC/VDC <u>NCU</u> - Normally Closed, 0.2A, 135 VAC/VDC

#### **SENSOR TYPE:**

 $\underline{AS1}$  - AC current operated switch with a single extended range

## NK Technologies

### INSTRUCTIONS



#### AS1 SERIES AC Current Operated Switch Single Extended Range, Universal Output

#### **Ranges & Maximum Amps**

#### Adjustable Sensors

| TYPE       | RANGE     | MAXIMUM INPUT AMPS |        |        |
|------------|-----------|--------------------|--------|--------|
|            |           | CONTINUOUS         | 6 SEC. | 1 SEC. |
| FIXED CORE | 1-150 A   | 150A               | 400A   | 1000A  |
| SPLIT CORE | 1.75-150A | 150A               | 400A   | 1000A  |

#### Fixed Setpoint Sensors (-GO)

| TYPE            | MAX TRI | MAXIMUM INPUT AMPS |        |        |
|-----------------|---------|--------------------|--------|--------|
|                 | POINT   | CONTINUOUS         | 6 SEC. | 1 SEC. |
| FIXED CORE, NCU | 0.75A   | 250A               | 400A   | 1000A  |
| FIXED CORE, NOU | 0.75A   | 250A               | 400A   | 1000A  |
| SPLIT CORE, NCU | 1.25A   | 250A               | 400A   | 1000A  |
| SPLIT CORE, NOU | 1.25A   | 250A               | 400A   | 1000A  |

#### Know Your Power



# Other NK Technologies Products Include:AC & DC Current TransducersAC & DC Current Operated Switches1φ & 3φPower TransducersCurrent & Potential Transformers (CTs&PTs)



205 Westwood Ave Long Branch, NJ 07740 1-877-742-TEST (8378) Fax: (732) 222-7088 salesteam@Tequipment.NET

#### Quick "How To" Guide

- 1. Run the wire to be monitored through aperture.
- 2. Mount the sensor.
- 3. Connect output wiring.
  - A. Use up to 14 AWG copper wires.
  - B. Ensure load matches the output shown on the sensor label.
- 4. Adjust Setpoint
  - A. Use the potentiometer to adjust the setpoint.

#### Description

AS1 Series are self-powered, solid-state current-operated switches which trigger when the current level sensed through the aperature exceeds the adjusted setpoint. The solid state output contacts can switch AC or DC; this "universal" output makes them well suited for application in automation systems.

#### Installation

#### For All Versions

Run wire to be monitored through aperature (opening) in the sensor.

AS1 switches can be located in the same environment as motors, contactors, heaters, pull-boxes, and other electrical enclosures. Mounting can be done in any position or hung directly on wires with a wire tie. Ensure at least one inch clearance exists between sensor and other magnetic devices.

#### Split-Core Versions (-SP Suffix)

Press the tab in the direction as shown to open the sensor. After placing wire in aperature, press the hinged portion firmly downward until a click is heard and the tab pops out fully.



#### KEEP SPLIT-CORE SENSORS CLEAN.

Silicone grease is factory applied on the mating surfaces to prevent rust and improve performance. Be careful not to allow grit or dirt onto the grease in the contact area. Operation can be impaired if the mating surfaces do not have good contact. Check visually before closing.

#### **Output Wiring**

Connect control or monitoring wires to the sensor. Use up to 14 AWG copper wire and tighten terminals to 5 inch-pounds torque. Be sure the output load does not exceed the switch rating.

**<u>CAUTION</u>** Incandescent lamps can have "Cold Filament Inrush" current of up to 10 times their rated amperage. Use caution when switching lamps.

#### Setpoint Adjustment

AS1 Series **SETPOINT** is adjusted with a 4-turn potentiometer (-FF and -SP) or a 15-turn potentiometer (-FT). The pot is shipped factory set to the lowest setpoint, fully clockwise (CW). Turning the pot counter-clockwise (CCW) will increase the setpoint. The pot has a slip-clutch to prevent damage at either end of its rotation. To determine where the adjustment is, turn the pot all the way CW. This will return it to the minimum setpoint.

#### **Adjustment Notes:**

- 1. Output contacts are solid-state. Check output status by applying voltage to the contacts and reading the voltage drop across the contacts. An Ohmmeter set on "Continuity" will give misleading results.
- 2. It is recommended that setpoint be adjusted to allow for voltage variations of 10-15%.



#### **Typical Adjustment**

- 1. Turn the pot to minimum setpoint (4 or 15 turns CW).
- 2. Have normal operating current running through sensor. The output should be tripped since the pot is at its minimum setpoint. For units with LED, it should be flashing fast (2 to 3 times per second).
- 3. Turn the pot CCW until the unit un-trips. This is indicated by the slow flashing of the LED (once every 2 to 3 seconds), or by the changing of the output switch status.
- 4. Now turn the pot CW slowly until the unit trips again. It now set at the current level being monitored.
  - A. To Set UNDERLOAD Turn the pot about 1/8 turn further CW.
  - B. To Set OVERLOAD Turn the pot about 1/8 turn further CCW.

| MONITORED<br>AMPS                                                             | OUT<br>-NCU<br>Normally Closed | PUT<br>-NOU<br>Normally Open | SMART-LED<br>(If Present) |
|-------------------------------------------------------------------------------|--------------------------------|------------------------------|---------------------------|
| None or <minimum.< td=""><td>CLOSED</td><td>OPEN</td><td>OFF</td></minimum.<> | CLOSED                         | OPEN                         | OFF                       |
| Below trip level                                                              | CLOSED                         | OPEN                         | SLOW (2 Sec)              |
| Above trip level                                                              | OPEN                           | CLOSED                       | FAST (0.5 Sec.)           |

#### **Trouble Shooting**

#### 1. Sensor is always tripped

- A. The setpoint may be too low. *Turn pot CCW to increase setpoint.*
- B. Switch has been overloaded and contacts are burned out. *Check the output load, remembering to include inrush on inductive loads (coils, motors, ballasts)*
- 2. Sensor will not trip
  - A. The setpoint may be too high. *Turn pot CW to decrease setpoint.*

- B. Split Core models: The core contact area may be dirty. *Open the sensor and clean the contact area.*
- *C.* Monitored current is below minimum required. *Loop* the monitored wire several times through the aperture until the "sensed" current rises above minimum. Sensed Amps = (Actual Amps) x (Number of Loops). Count loops on the <u>inside of</u> the aperture.
- D. Switch has been overloaded and contacts are burned out. *Check the output load, remembering to include inrush on inductive loads (coils, motors, ballasts).*