

3-349-450-03 10/10.11

The SECULIFE ST/ST HV test instruments can be configured for international utilization. The test socket, user interface language and the desired test regulation can all be configured to this end.

Universal test instrument for testing the electrical safety of:

- after repair and for periodic testing of electrical devices in accordance with DIN VDE 0701-0702:2008
- after repair and for periodic testing as well as for technical safety checks of electrical medical devices per IEC 62353 (VDE 0751-1) and/or DIN EN 60601 on the basis of the MPG¹)
- in the production of:
 - electrical measuring, control and laboratory devices per DIN EN 61010
 - data processing systems per DIN EN 60950
 - electrical medical devices per DIN EN 60601
 - household appliances per DIN EN 60335

DKD Calibration Certificate included

Power shutdown as soon as the leakage current exceeds approx. 15mA provides a maximum of safety for the user

High-voltage test for: DIN EN 60950, DIN EN 61010, DIN EN 60335 and DIN EN 60601

Features

The device under test can be connected:

- to the test socket with or without adapter for various types of mains connection
- to the connector jacks if the device under test does not have a mains plug
- with an adapter for extension cables
- with or without multiple outlet sockets
- connection for BE $^{2)}$ and FE $^{3)}$
- 10 application parts can be connected individually or in groups

Mains Plug Polarity Reversal

Mains plug polarity need not be reversed manually. Polarity reversal is accomplished internally during the test sequence (except if 3-phase current adapters are used).

Automatic Recognition

of mains connection errors and protection class (I or II). Measurement is automatically disabled in the event of danger.

Display

Menus, setting options, measurement results, instructions and error messages, as well as online help and schematic diagrams for test setups, can all be displayed at the backlit, dot matrix LCD.

- 1) MPG = German medical product law
- $^{2)}$ BE = Operational earth
- ³⁾ FE = Functional earth

Menu Driven Test Sequences

Fully automatic or manual

Selectable Test Current for Protective Conductor Testing (4-pole Measurement)

With 200 mA, 10 A or 25 A test current

Insulation Test

By means of insulation resistance or equivalent leakage current measurement or high-voltage test

Leakage Current Test

With measurement of earth, housing or patient leakage current, patient auxiliary current, protective conductor current, contact current, verification of absence of voltage by means of current measurement or device leakage current

Basic Instrument and Expansion Features

The test instrument can be configured with specific features required for the given application (see table on page 6).

Data Interface for PC, Printer and Barcode

Expandable

The SECUTEST SI+ option expands the basic instrument into a unique data logger with memory and alphanumeric keypad for data entry.

All required reports can be generated, and data can be analyzed and managed with the help of user-friendly WINDOWS software.

Applications

Testing for the Electrical Safety of Electrical Equipment in Accordance with BGV A3

The test instrument can be utilized for quick and safe testing of repaired or modified electrical devices and as well as for periodic testing in accordance with DIN VDE 0701-0702:2008.

The following are measured in accordance with the standards:

- Protective conductor resistance
- Insulation resistance
- Protective conductor current for SC1 devices
- Contact current for SC2 devices
- Absence of voltage at exposed conductive parts (= contact current)
- Measuring methods for leakage current measurements:
- Direct measurement
- Equivalent leakage current
- Residual current

Testing for the Electrical Safety of Electrical Medical Devices in Accordance with the German Medical Product Law (MPG) and the associated Operator's Regulations

The test instrument with feature KA01 is used for quick and safe testing and measurement of repaired or modified electrical medical devices or their components (e.g. patient ports) in accordance with IEC 62353/DIN EN 62353 (VDE 0751) and EN 60601.

Observance of technical safety requirements allows the user of the test instrument to operate electrical medical devices in a hazard-free fashion. The safety of the patient is also assured through the use of tested electrical medical devices.

The following are measured in accordance with IEC 62353 (VDE 0751-1) regulations:

- Protective conductor resistance
- Insulation resistance
- Equivalent device leakage current
- Equivalent patient leakage current
- Device leakage current
- Patient leakage current (AC/DC portions are measured separately)

Measuring methods for leakage current measurements:

- Direct measurement
- Equivalent leakage current
- Residual current

A software upgrade (optional) allows for measurement in accordance with EN 60601 regulations, see features on page 6 (with the following single-fault conditions: voltage at application part, interrupted neutral and interrupted protective conductor, with automatic polarity reversal L-N)

- Protective conductor resistance
- Insulation resistance
 - L and N connected to protective conductor
 Application parts connected to protective conductor
- Earth leakage current, housing leakage current, patient leakage current, patient auxiliary current

The following additional test conditions can be selected:

- Housing to ground, application parts to ground

Function Test with Power Analysis (also suitable for high power devices under test up to 16 A)

The device under test can be subjected to a function test with mains voltage via the integrated test socket. The following are measured or automatically calculated during the function test:

- Line voltage
- Residual current
- Power consumption
- Active and apparent power
- Power factor
- Electrical energy
- On-time

Multimeter Functions

Extensive multimeter functions including temperature measurement expand measuring options for the user in a sensible fashion. The following individual measurements can be performed:

- Direct and alternating voltage (momentary and min/max values)
- Resistance
- Voltage against PE, e.g. phase detection
- Current and protective conductor resistance with clip-on meter (accessory)
- Temperature with Pt100 or Pt1000 (accessory)

High-Voltage Test with Direct Voltage (SECULIFE ST HV)

The mains plug of the device under test (safety class I and II devices) is connected to the test socket at the test instrument. The test instrument monitors the mains connection. Incorrect or dangerous mains connection is indicated, and measurement is disabled in the event of danger.

Use of the test instrument for high-voltage testing is trouble-free because DIN VDE 0104 does not apply. The high-voltage test is performed with direct voltage. In order to comply with requirements for alternating voltage, testing is performed with 1.5-fold direct voltage. This multiplying factor is applied automatically during testing.

This DC high-voltage test complies with EN 60601 3rd edition/ EN 50106 (VDE 0700 part 500), as well as with other standards.

Report Functions

All values required for electrical device approval reports or device log books (e.g. for ZVEH) can be measured with the test instrument.

All measured data can be documented and archived with the measurement and test report, which can be saved to memory and printed out from a PC.

The measurement and test report substantiates regular maintenance and testing for users of electrical devices.

The SECUTEST SI+ module (accessory equipment), a memory with integrated interface and keypad which can be mounted inside the lid of the test instrument, expands the applications range of the test instrument.

RPE

Sample displays, online help:

Measurement of equiv. leakage current between short-circuited N and L and apps. component.

Online Help Texts

▼ Schematics ● Exit Help

Schematic Diagrams

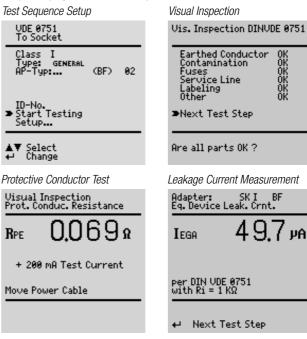
ontinue ∨it Helr

Patient Aux. Current

The test instrument has been manufactured and tested in accordance with the following standards:

IEC/EN 61 010-1:2001 VDE 0411-1:2002	Safety requirements for electrical measurement, control and laboratory devices – General requirements
DIN VDE 0404 Part 1: 2002	Test and measuring equipment for testing the safety of electrical devices – General requirements
DIN VDE 0404 Part 2: 2002	 Testing equipment for tests after repair, modification or in the case of periodical tests
DIN VDE 0404 Part 3: 2005	 Equipment for periodical tests and tests prior to commission- ing medical electrical devices or systems
DIN EN 60 529/ VDE 0470 Part 1	Test instruments and test procedures, protection provided by enclosures (IP code)
DIN EN 61 326-1 VDE 0843-20-1	Electrical equipment for measurement, control and laboratory use – EMC requirements – Part 1: General requirements

Regulations for the Use of the Test Instruments

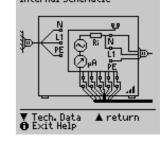

	Testing a Periodic	after Repairs / Testing	Rout	tine Te	esting	J
Devices under test to be tested in accordance with the following regulations	DIN VDE 0701-0702:2008	IEC 62353:2007 Din en 62353:2008 (VDE 0751-1)	DIN EN 60950	DIN EN 61010	DIN EN 60335/EN 50106	IEC 60601/DIN EN 60601 *
Electrical devices	•			٠		
Appliances and electric equipment	•				•	
Mains operated electronic devices	•					
Hand-held electric tools	•					
Extension cables	•					
Data processing devices	•		٠			
Electrical medical devices, application parts		•				•
 only test instruments with Fe 	eature K	401				

MPG	German medical product law:
	Regulation for the setup and operation of active medical products

Table: Individual Measurements and Regulations

Individual Measurements per Regulation	Test Current [A]	DIN VDE 0701-0702	DIN VDE 0701 Part 1	DIN VDE 0701 Part 240	DIN VDE 0701 attachment E	DIN EN 60950	DIN EN 61010	DIN EN 60335	IEC 62353 (VDE 0751-1)	IEC 601/EN 60 601 2nd	IEC 601/EN 60 601 3rd
	0.2	٠	•	•					•		
Protective Conductor Resistance	10								•		
	25					•	•	•	•	•	•
Insulation Resistance		•	•								
Equivalent Leakage Current		•	•	•							
High-Voltage Test						•	•	•		AC	AC
Equivalent (Device) Leakage Current								•	•		
Equivalent Patient Leakage Current									•		
Residual Current		•	•						•		
Contact Current		•	•								
Absence of Voltage (exposed conductive parts)		•		•							
Housing Leakage Current						•	•			•	•
Earth Leakage Current										•	•
Patient Leakage Current									•	•	•
Total Patient Leakage Current											•
Patient Auxiliary Current										•	•
Device Leakage Current									•		
Single Fault Conditions N PE Mains at Application Part							•	•		•	•

Sample displays, menu-driven operation:



Technical Data

Equiv. Leakage Cu	irrent
Range	0120 mA
Iκ	3.5 mA
Open-Circuit Volt	ta: 230 U
Ref. Resist. RREF Service Error	1 kΩ ±5%

Internal Circuit Diagrams Internal Schematic

Sample reports with measurement results:

return

Test Sequence Results					
To Socket: CL I BF DIN VDE 0751					
м	EAS. VAL	UES	LIMIT VALUES		
RSL Riso Uiso AI Iehl Ieplc	52 8.29 256	1Ω 8ΜΩ 7∪ 3 mA 7 μΑ 8 μΑ	<pre><0.300Ω >2.000MΩ 500U < 3.50MA <1.000MA < 5.00MA</pre>		
	sed ! i test				

Function Test Results	
All msrmnt vals at mains N/L	
ULN 233.0V	•
AI 0.001mA Ia 0.25A P 58W	
DP 38VH	
PF 1.00 ⊌ 0.000 kWh t 00:00:16	
▲ Reset msrmnt. values ▼ Functional Test ← End mains measurements	
+ End Harns heason energy	

Characteristic Values

	Measured Quantity	Measuring Range/ Nominal Range of Use	Resolu- tion	Nominal Voltage U _N	Open- Circuit Voltage U ₀	Nominal Current I _N	Short- Circuit Current I _K	Internal Resis- tance R _I	Refer- ence Resis- tance R _{REF}	Measuring Uncertainty ⁸⁾	Intrinsic Uncertainty	Overload Value	d Capacity Time
		0.000 2.100 Ω	1 m Ω		4.5 9 V		> 200 mA		nLr			252 V	cont
Refer to	Device Protective Conductor Resis-	2.11 31.00 Ω	10 m Ω		DC		DC		_	\pm (5% rdg.+10 digits)		253 V	cont.
page 3 for	tance R _{PE}	$0.000 \dots 2.100 \Omega$	1 m Ω	_	< 6 V AC	_	> 10 A AC ⁴⁾ >5 s	_	_	> 10 d	> 10 digits	no prot	tection ⁵⁾
as-		$0.050 \dots 1.500 \ \text{M}\Omega$	1 kΩ							\pm (5% rdg.+10 digits)	\pm (2.5 % rdg.+5 digits) > 10 digits		
sign-	Insulation Resistance R _{ISO}	1.01 10.00 M Ω	10 k Ω	50 500 V DC	1.0 • U _N 1.5 • U _N	> 1mA	< 10 mA	_	_	,	> 10 digits	253 V	cont.
ing in- divid-	"ISO	10.1 310.0 M Ω	100 k Ω	000 1 00	1.0 ° 0 _N					$\pm(10\%)$ rdg.+10 digits)	\pm (10 % rdg.+10digits)		
ual	Equivalent Leakage	0.00 21.00 mA	10 µA		230 V ~		< 0.5 mA	$> 72 \text{ k}\Omega$	210	$\pm (E)(rda + 10 digita)$	±(2.5 % rdg.+5 digits)	050 V	cont
mea- sure-	Current I _{EL}	20.1 120.0 mA	100 µA		- 20/ +10 %	_	< 3.5 MA	> 7 2 KS 2	2 kΩ	\pm (5% rdg.+10 digits)	> 10 digits	253 V	cont.
ments to the	Contact Current (Absence of Voltage) I _{probe}	0 3.500 mA	1 μΑ	_	_	-	_	2 k Ω	_	\pm (5% rdg.+10 digits)	\pm (2.5 % rdg.+5 digits) > 10 digits	253 V	cont.
regu- lations	Residual Current I _{DI} between L and N	0.000 3.100 mA \sim 3.00 31.00 mA \sim	1 μΑ 10 μΑ	_	_	_	_	_	_	\pm (10% rdg.+10 digits) > 10 digits	\pm (5 % rdg.+5 digits) > 10 digits	1)	1)
	Equivalent Device	0.0 310.0 μA	0.1 µA										
	and/or Equivalent Patient Leakage	0.000 2.100 mA	1 μΑ		230 V ~ - 20/	_	< 3.5 mA	$>$ 72 k Ω	1 kΩ	\pm (5% rdg.+10 digits)	±(2.5 % rdg.+5 digits)	253 V	cont.
	Current	2.101 21.00 mA	10 µA		+10 %		< 3.5 IIIA	>12 NS2	$\pm 50 \Omega$	±(3 % rug.+ r0 uigits)	> 10 digits	233 V	1) 3)
	IEDL and/or IEPL	20.1 120.0 mA	100 µA										
	Leakage Current IL ²⁾	0.0 310.0 μA	100 nA	approx.									
	All Leakage 7)	0.210 3.600 mA	1 μΑ	line voltage	_	-	_	1 kΩ	—	\pm (5% rdg.+10 digits)	\pm (2.5 % rdg.+5 digit) > 10 digit	253 V	cont. 1) 3)
	Current IL	3.10 > 15.00 mA	10 µA					÷					
			10 part										
Func-	Measured Quantity				Open-		Short-	Internal		Measuring	Intrinsic Uncertainty	Overload	l Capacity
Func- tion	Measured Quantity	Measuring Range / Nominal Range of Use	Resolu- tion		Open- Circuit Voltage U ₀		Short- Circuit Current I _K	Internal Resis- tance R _I		Measuring Uncertainty	Intrinsic Uncertainty	Overload Value	l Capacity Duration
	Measured Quantity	Measuring Range / Nominal Range of	Resolu-		Circuit Voltage		Circuit Current	Resis- tance			Intrinsic Uncertainty ±(2.5%rdg.+5 digits)		
		Measuring Range / Nominal Range of Use	Resolu- tion		Circuit Voltage		Circuit Current	Resis- tance				Value	Duration
tion	Nominal Voltage U _{L-N} Load Current I _V	Measuring Range / Nominal Range of Use 103,5 V 126,5 V 207.0 253.0 V ~ 0 16.00 A _{RMS}	Resolu- tion 0.1 V 10 mA		Circuit Voltage U ₀ —		Circuit Current I _K	Resis- tance R _I —			\pm (2.5%rdg.+5 digits) \pm (2.5%rdg.+5 digits) \pm (5% rdg.+10 digits)	Value 253 V	Duration cont.
tion	Nominal Voltage U _{L–N}	Measuring Range / Nominal Range of Use 103,5 V 126,5 V 207.0 253.0 V ~	Resolu- tion		Circuit Voltage U ₀		Circuit Current I _K	Resis- tance R _I —			±(2.5%rdg.+5 digits) ±(2.5%rdg.+5 digits)	Value 253 V 20 A	Duration cont. 10 min
	Nominal Voltage U _{L-N} Load Current I _V	Measuring Range / Nominal Range of Use 103,5 V 126,5 V 207.0 253.0 V ~ 0 16.00 A _{RMS}	Resolu- tion 0.1 V 10 mA		Circuit Voltage U ₀ —	Calo	Circuit Current I _K	Resis- tance R _I —			\pm (2.5%rdg.+5 digits) \pm (2.5%rdg.+5 digits) \pm (5% rdg.+10 digits)	Value 253 V 20 A 253 V	Duration cont. 10 min cont.
tion	Nominal Voltage U _{L-N} Load Current I _V Active Power P	Measuring Range / Nominal Range of Use 103,5 V 126,5 V 207.0 253.0 V ~ 0 16.00 A _{RMS} 0 3700 W ⁹⁾	Resolu- tion 0.1 V 10 mA 1 W		Circuit Voltage U ₀ —		Circuit Current I _K —	Resis- tance RI 			\pm (2.5%rdg.+5 digits) \pm (2.5%rdg.+5 digits) \pm (5% rdg.+10 digits) > 20 digits \pm (5% rdg.+10 digits)	Value 253 V 20 A 253 V	Duration cont. 10 min cont.
tion	Nominal Voltage U _{L-N} Load Current I _V Active Power P Apparent Power S Power Factor PF,	Measuring Range / Nominal Range of Use 103,5 V 126,5 V 207.0 253.0 V ~ 0 16.00 A _{RMS} 0 3700 W ⁹⁾ 0 4000 VA	Resolu- tion 0.1 V 10 mA 1 W 1 VA		Circuit Voltage U ₀ —		Circuit Current IK — — — — Culated Value	Resis- tance RI 			\pm (2.5%rdg.+5 digits) \pm (2.5%rdg.+5 digits) \pm (5% rdg.+10 digits) > 20 digits \pm (5% rdg.+10 digits) > 20 digits	Value 253 V 20 A 253 V	Duration cont. 10 min cont.
tion	Nominal Voltage U _{L-N} Load Current I _V Active Power P Apparent Power S Power Factor PF, sinusoidal: cos φ Residual Current ΔI	Measuring Range / Nominal Range of Use 103,5 V 126,5 V 207.0 253.0 V ~ 0 16.00 A RMS 0 3700 W ⁹ 0 4000 VA 0.00 1.00	Resolution 0.1 V 10 mA 1 W 1 VA 0.01		Circuit Voltage U ₀		Circuit Current I _K — — ulated Value J Value P / S	Resis- tance R_l e U _{L-N} • I _V S, Display >		Uncertainty	\pm (2.5%rdg.+5 digits) \pm (2.5%rdg.+5 digits) \pm (5% rdg.+10 digits) > 20 digits \pm (5% rdg.+10 digits) > 20 digits \pm (10% rdg.+5 digits)	Value 253 V 20 A 253 V 20 A	Duration Cont. 10 min cont. 10 min
Functions Test	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Measuring Range / Nominal Range of Use 103,5 V 126,5 V 207.0 253.0 V ~ 0 16.00 A _{RMS} 0 3700 W ⁹⁾ 0 4000 VA 0.00 1.00 0.00 31.00 mA ~ 0 253.0 V	Resolu- tion 0.1 V 10 mA 1 W 1 VA 0.01 10 µA		Circuit Voltage U ₀		Circuit Current I _K — — — — ulated Value d Value P / S	Resistance Rı e U _{L-N} • I _V S, Display >		Uncertainty 	$\pm (2.5\% rdg. + 5 digits)$ $\pm (2.5\% rdg. + 5 digits)$ $\pm (5\% rdg. + 10 digits)$ $\geq 20 digits$ $\pm (5\% rdg. + 10 digits)$ $\geq 20 digits$ $\pm (10\% rdg. + 5 digits)$ $\pm (5\% rdg. + 5 digits)$ $\pm (2.5\% rdg. + 5 digits)$	Value 253 V 20 A 253 V 20 A 1)	Duration Cont. 10 min Cont. 10 min I10 min I1) I1)
tion Functions Test U _{AC/DC}	Nominal Voltage U _{L-N} Load Current I _V Active Power P Apparent Power S Power Factor PF, sinusoidal: cos φ Residual Current ΔI between L and N Voltage	Measuring Range / Nominal Range of Use 103,5 V 126,5 V 207.0 253.0 V ~ 0 126,5 V 0 3700 W ⁹ 0 3700 W ⁹ 0 4000 VA 0.00 1.00 0.00 31.00 mA ~ 0 253.0 V	Resolu- tion 0.1 V 10 mA 1 W 1 VA 0.01 10 μA 0.1 V		Circuit Voltage U ₀		Circuit Current Ix — — — ulated Value I Value P / S —	Resis- tance R _I		Uncertainty 	$\begin{array}{c} \pm (2.5\% rdg. + 5 \ digits) \\ \pm (2.5\% rdg. + 5 \ digits) \\ \pm (2.5\% rdg. + 10 \ digits) \\ > 20 \ digits \\ \pm (6\% \ rdg. + 10 \ digits) \\ \geq 20 \ digits \\ \pm (10\% \ rdg. + 5 \ digits) \\ \pm (10\% \ rdg. + 5 \ digits) \\ \pm (2.5\% rdg. + 5 \ digits) \\ > 10 \ digits \\ \pm (2.5\% rdg. + 5 \ digits) \\ \end{array}$	Value 253 V 20 A 253 V 20 A 1) 1) 253 V	Duration Cont. 10 min cont. 10 min 10 min cont. 10 min cont. 10 cont.
tion tion U _{AC/DC} U _{probe}	Nominal Voltage U _{L-N} Load Current I _V Active Power P Apparent Power S Power Factor PF, sinusoidal: cos φ Residual Current ΔI between L and N Voltage Probe Voltage Resistance Current via	Measuring Range / Nominal Range of Use 103,5 V 126,5 V 207.0 253.0 V ~ 0 126,5 V 0 3700 W ⁹ 0 3700 W ⁹ 0 4000 VA 0.00 1.00 0.00 31.00 mA ~ 0 253.0 V = , ~ and ≂ 0 253.0 V = , ~ and ≂ 0 253.0 V = , ~ and ≂	Resolu- tion 0.1 V 10 mA 1 W 0.01 10 μA 0.1 V		Circuit Voltage U ₀ — — — — — — — — — — — — — — — — — — —		Circuit Current I _K — — — ulated Value I Value P / S — — — —	Resis- tance RI e UL-N • Iv S, Display >		Uncertainty 	$\begin{array}{c} \pm (2.5\% rdg. + 5 \ digits) \\ \pm (2.5\% rdg. + 5 \ digits) \\ \pm (2.5\% rdg. + 10 \ digits) \\ > 20 \ digits \\ \pm (5\% \ rdg. + 10 \ digits) \\ > 20 \ digits \\ \pm (10\% \ rdg. + 5 \ digits) \\ \pm (10\% \ rdg. + 5 \ digits) \\ \pm (10\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 3 \ digits) \\ \pm (1\% \ rdg. + 3 \ digits) \\ $	Value 253 V 20 A 253 V 20 A 10 11 253 V 253 V	Duration Cont. 10 min Cont. 10 min 10 min 10 11 Cont. Cont.
tion tion U _{AC/DC} U _{probe}	Nominal Voltage U _{L-N} Load Current I _V Active Power P Apparent Power S Power Factor PF, sinusoidal: cos φ Residual Current ΔI between L and N Voltage Probe Voltage Resistance	Measuring Range / Nominal Range of Use 103,5 V 126,5 V 207.0 253.0 V ~ 0 16.00 A RMS 0 3700 W ⁹ 0 4000 VA 0.00 1.00 0.00 31.00 mA ~ 0 253.0 V 253.0 V 253.0 V 7 and 7 and 7 and 253.0 V 253.0 V 150.0 kΩ	Resolu- tion 0.1 V 10 mA 1 W 0.01 10 μA 0.11 V 10 μA 0.11 V		Circuit Voltage U ₀ — — — — — ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Circuit Current IK — — — = = = = = = = = = = = = = = = =	Resistance RI		Uncertainty 	$\begin{array}{c} \pm (2.5\% rdg. + 5 \ digits) \\ \pm (2.5\% rdg. + 5 \ digits) \\ \pm (2.5\% rdg. + 10 \ digits) \\ > 20 \ digits \\ \pm (5\% \ rdg. + 10 \ digits) \\ \pm (10\% \ rdg. + 5 \ digits) \\ \pm (10\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ = 10 \ digits \\ \end{array}$	Value 253 V 20 A 253 V 20 A 10 253 V 253 V 253 V	Duration cont. 10 min cont. 10 min 10 min 1) cont. cont.
tion tion Uac/DC Uprobe R	Nominal Voltage U _{L-N} Load Current I _V Active Power P Apparent Power S Power Factor PF, sinusoidal: cos φ Residual Current ΔI between L and N Voltage Probe Voltage Resistance Current via Clip-On Current- Voltage Converter WZ12C	Measuring Range / Nominal Range of Use 103,5 V 126,5 V 207.0 253.0 V ~ 0 16.00 A RMS 0 3700 W ⁹ 0 3700 M ⁹ 0 3700 M ⁹ 0 4000 VA 0.000 1.00 0.000 31.00 mA ~ 0 253.0 V 253.0 V 253.0 V 253.0 V 0 150.0 kΩ 0.000 10.00 A ~	Resolu- tion 0.1 V 10 mA 1 W 1 VA 0.01 10 μA 0.1 V 0.1 V 10 μA 1.1 V		Circuit Voltage U ₀ — — — — — ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Circuit Current Ix — — ulated Value d Value P / S — — 1.1 mA —	Resis- tance R_I		Uncertainty 	$\begin{array}{c} \pm (2.5\% rdg. + 5 \ digits) \\ \pm (2.5\% rdg. + 5 \ digits) \\ \geq 20 \ digits \\ \geq 20 \ digits \\ \pm (5\% \ rdg. + 10 \ digits) \\ \geq 20 \ digits \\ \pm (10\% \ rdg. + 5 \ digits) \\ \pm (10\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (1\% \ rdg. + 3 \ digits) \\ \pm (1\% \ rdg. + 3 \ digits) \\ \pm (1\% \ rdg. + 3 \ digits) \\ \pm (1\% \ rdg. + 10 \ digits) \\ \pm (1\% \ rdg. + 10 \ digits) \\ \pm (1\% \ rdg. + 10 \ digits) \\ \pm (1\% \ rdg. + 10 \ digits) \\ \pm (1\% \ rdg. + 10 \ digits) \\ \pm (1\% \ rdg. + 10 \ digits) \\ \end{array}$	Value 253 V 20 A 253 V 20 A 10 11 253 V 253 V 253 V 253 V	Duration Cont. 10 min cont. 10 min n formation
tion tion Uac/DC Uprobe R	Nominal Voltage U _{L-N} Load Current I _V Active Power P Apparent Power S Power Factor PF, sinusoidal: cos φ Residual Current ΔI between L and N Voltage Probe Voltage Resistance Current via Clip-On Current Clip-On Current	Measuring Range / Nominal Range of Use 103,5 V 126,5 V 207.0 253.0 V ~ 0 16.00 A RMS 0 3700 W ⁹) 0 4000 VA 0.00 1.00 0.00 31.00 mA ~ 0 253.0 V 253.0 V 253.0 V 7 and 0 150.0 kΩ 0.000 10.00 A ~ 0 100 A ~	Resolu- tion 0.1 V 10 mA 1 W 0.1 V 10 mA 0.01 10 μA 0.1 V 10 μA 0.1 V 10 μA 1.1 VA 0.1 V 1.1 M 1.1 N 1.1 N		Circuit Voltage U ₀ — — — — — ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Circuit Current Ix — — — Ulated Value I Value P / S — — — — 1.1 mA —	Resis- tance R_I - - - - - - - - - -		Uncertainty 	$\begin{array}{c} \pm (2.5\% rdg. + 5 \ digits) \\ \pm (2.5\% rdg. + 5 \ digits) \\ \pm (2.5\% rdg. + 10 \ digits) \\ > 20 \ digits \\ \pm (5\% \ rdg. + 10 \ digits) \\ > 20 \ digits \\ \pm (10\% \ rdg. + 5 \ digits) \\ \pm (10\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 5 \ digits) \\ \pm (2.5\% \ rdg. + 10 \ digits) \\ \pm (1\% \ rdg. + 3 \ digits) \\ \pm (1\% \ rdg. + 10 \ digits) \\ \pm (1\% \ rdg. + 10 \ digits) \\ \pm (1\% \ rdg. + 10 \ digits) \\ \pm (1\% \ rdg. + 10 \ digits) \\ \pm (1\% \ rdg. + 10 \ digits) \\ + 10 \ digits \\ + 10 \ $	Value 253 V 20 A 253 V 20 A 10 253 V 253 V 253 V 253 V 253 V 253 V	Duration Cont. 10 min Cont. 10 min I I I I I Cont. Con

1) As of 25 mA: shutdown by residual current measurement within 100 ms

 ²⁾ Except for earth leakage current: only 0.000 to 3.100 mA
 ³⁾ Measuring circuit is highly resistive, indication at display
 ⁴⁾ Measurement with AC test current is not possible at jacks (1) to (3); feature G01: > 25 A: Short-circuit current is less than 25 A if the SK5 special cable is used. ⁵⁾ Test duration max. 40 s, protection against overheating: measurement cannot be

restarted until a waiting period of 1 minute has elapsed

- 6) Calculated value: max. 253 V 7)
- AC and DC are measured for patient leakage current and patient auxiliary current. The data are only valid for the values displayed at the test instrument. Data which 8)

are transmitted via the RS232 interface may deviate. ⁹⁾ Measured value P and calculated value S are compared, and the smaller value is displayed.

Key: rdg. = reading, d = digits

 I_L = patient, housing and earth leakage current, as well as patient auxiliary current

High Voltage Test (feature F02 or SECULIFE ST HV) Transducer

Nominal Voltage, AC	$\mathrm{U}_{\mathrm{N}_{\sim}}$ adjustable		0.5 0.99 kV 1 4 kV
Open-Circuit Voltage, DC	Uo		$((U_{N\sim} \cdot 1.5) \cdot 1.011) + 60 \text{ V}$
Intrinsic Uncertainty, Uo	Uo		±1.5%
Nominal Current	per DIN VDE 01	04	< 3.5 mA DC
Short-Circuit Current	discharge currer	nt from 6 x 2.7 nF	> 5 A at 5 kV
Resistance to Interference Voltage			none

Measuring

J		
Measuring Range	Display Range	Intrinsic Uncertainty, Uo
0 Uomax	0.000 > 10.00 kV DC	$\pm 1.5\%$ rdg. + 2 digits

Testing for Correct Mains Connection

The test instrument automatically recognizes mains connection errors, if the conditions in the following table have been fulfilled. The user is informed of the type of error, and all measuring functions are disabled in the event of danger.

Type of Mains Connection Error	Message	Condition	Measurements
Voltage at protective conductor PE to finger contact	Text appears at LCD	Press key U > 40 V	disabled
Protective conductor PE and phase conductor L reversed and/or neutral conductor N interrupted	lamp lights up	Voltage at PE > 65 V	impossible (no supply power)
Contact voltage at protective conductor PE to neutral conductor N or phase conductor L	Text appears at LCD	U > 25 V	disabled, although disabling can be deactivated (e.g. IT network)
Mains voltage too low	lamp lights up	U _{L-N} < 90/180 V	possible under certain circumstances

Influencing Quantities and Influence Error

Influencing Quantity/ Sphere of Influence	Designation per DIN VDE 0404	Influence Error $\pm \dots$ % of Measured Value
Position Change	E1	—
Change in Test Setup Supply Power	E2	2.5
Temperature Fluctuation	50	Specified influence error applies per 10 K change in temperature:
0 21 °C and 25 40 °C	E3	1 in case of PE measurement
021 Gand 2540 G		0.5 of all other measuring ranges
Current at Device Under Test	E4	2.5
Low-Frequency Magnetic Fields	E5	2.5
Impedance at Device Under Test	E6	2.5
Capacitance, Insulation Measurement	E7	2.5
Waveshape of Measured Current		
49 51 Hz	E8	2 for capacitive load (for equivalent leakage current)
45 100 Hz		1 (for contact current)
		2.5 for all other measuring ranges

Reference Ranges

Line Voltage $115/230 V \pm$ Line Frequency $50/60 Hz \pm 0$ Waveshapesine (deviation
rectified value)Ambient Temperature $+23 \ ^{\circ}C \pm 2 \ K$ Relative Humidity $40\% \dots 60\%$ Load Impedancelinear

115/230 V \pm 0.2% 50/60 Hz \pm 0.1% sine (deviation between effective and rectified value < 0.5%) +23 °C \pm 2 K 40% ... 60% linear

Nominal Ranges of Use

Line Voltage Eline Frequency Eline Voltage Voltage Vaveshape Elimeter Temperature Control Cont

103.5 V ... 126.5 V or 207 V ... 253 V 50 Hz or 60 Hz sine 0 °C ... + 50 °C

Ambient Conditions

Storage Temperature	– 20 °C + 60 °C
Operating Temp.	– 10 °C + 50 °C
Accuracy Range	0 °C + 50 °C
Relative Humidity	max. 75%, no condensation allowed
Elevation	max. 2000 m

Electromagnetic Compatibility

Product standard DIN EN 61326-1

Interference emission		Class
EN 55011		В
Interference immunity	Test Value	Evaluation Criteria
EN 61000-4-2	Contact/Atmos. – 4 kV/8 kV	А
EN 61000-4-3	3 V/m or 1 V/m	A
EN 61000-4-4	1 kV	В
EN 61000-4-5	1 kV bzw. 2 kV	A
EN 61000-4-6	3 V/m	A
EN 61000-4-11	0.5/1/25 Periods	А
	250 Periods	С

Power Supply

Line Voltage Line Frequency Power Consumption for 10 A test current for 25 A test current for function test

50 Hz or 60 Hz approx. 30 VA approx. 95 VA, test duration max. 40 s approx. 180 VA, test duration max. 40 s continuous max. 3600 VA, power is conducted through the instrument only, switching capacity \leq 16 A

103.5 V ... 126.5 V or 207 V ... 253 V

RS 232 Data Interface

Type Format Connector

Electrical Safety

Safety Class Nominal Voltage Test Voltage Measuring Category Pollution degree Safety Shutdown

Mechanical Design

Display Dimensions Weight

Protection

RS 232C, serial, per DIN 19241 9600, N, 8, 1 9-pin subminiature socket connector

I per IEC 61010-1/EN 61010-1/ VDE 0411-1 115/230 V 3.7 kV 50 Hz 250 V CAT II 2

for residual current at device under test >25 mA, disconnecting time <100 ms probe current >10 mA, <1 ms

multiple backlit dot matrix display, 128 x 128 pixels test instruments without high-voltage module: LxWxH: 292 mm x 138 mm x 243 mm test instruments with high-voltage module: LxWxH: 292 mm x 138 mm x 300 mm standard device:

stanuaru uevice.	approx. 4.5 kg
device with HV test:	approx. 5.24 kg
device with 25 A PE test:	approx. 5.5 kg
with 25 A PE and HV tes	t: approx. 5.9 kg
housing: IP 40, connection	ons: IP 20 per
DIN VDE 0470 Part 1/EN	60529,
Extract from table on the me	eaning of IP codes

IP XY (1 st digit X)	Protection against foreign object entry	IP XY (2 nd digit Y)	Protection against the penetration of water					
2	≥ 12.5 mm Ø	0	not protected					
4	\geq 1.0 mm Ø	0	not protected					

Standard equipment SECULIFE ST/ST HV

- 1 test instrument with 10 + 2 connectors for application parts
- 1 probe cable with test probe
- 1 plug-on alligator clip for test probes
- З plug-on quick-connect terminals
- 10 conductor patient connection cable 2 mm

Features and Options

List of possible options

Feature		00	01	02	03	04	05	06	07	08	09	10	11	XX
Mains Connection for Country of Use	В	D	D + ser- vice socket	UK ⁴⁾	F/CZE		DK ⁴⁾			China/ AUS ⁴⁾	СН		Adapter kit	
User Interface Language	C	D	UK	F	Ι	E	CZE	NL						
High-Voltage Test HV DC	F	without		max. 6,126 kV DC (
AC Test Current 50/60 Hz for Protective Conductor Measurement	G	10 A	25 A											
Test Sequence for IEC 60 601	KA	without	with											
Data Memory for up to 125 Tests ⁵⁾	KB	without	with											
Recognition of Probe on Protective Conductor	KD	without	with											
Direct Printing after each Measurement for Auto-ma- tic Test Sequences ¹⁾ via RS232	KE	without	with											

1

1

1

¹⁾ Each measured value is documented in this case, as opposed to the results of a test sequence for which the poorest value for each given test is displayed (via the PSI module, the SECUSTORE memory adapter or a PC) ²⁾ Adapter kit for international use (equipped with Feature B01)

10 Clip-on alligator clip 2 mm Calibration Certificate per DKD

operating instructions

carrying strap

⁴⁾ for mains connections B02, B05, B08 and/or if adapter (feature B11) is applied: HV-DC max. 1.5 kV DC

⁵⁾ without function test values and without comments on DUT

Enter the designation of the basic instrument to your order, i.e. M6930, and only those desired features which are other than 00!

Example of a complete type designation (= article number, = order designation) for a SECULIFEST:

For Standard types available from stock, see order information page 10.

Features which are additionally required can be retrofitted by GMC-I Service GmbH upon request.

SECULIFEST with Swiss plug and Swiss socket in French language, without high-voltage test, with AC test current 25 A, without test sequence for IEC 60601, without data memory, with recognition of probe on protective conductor, without direct print-out option: Features: M6930 B09 C02 F00 G01 KA00 KB00 KD01 KE00

Feature KA01: Tests per IEC 60 601/EN 60 601

Measurements in accordance with this standard are made possible by uploading the appropriate software to the instrument with the help of a PC via the included interface cable. Special features:

- Patient ports can be assigned to groups
- Automatic sequence under all single-fault conditions

Feature KB01:

Data memory for up to 125 tests Memory expansion for test results

If no (P)SI module is connected, up to **125 test results*** are stored to the test instrument. The test results can be viewed on the display and printed out, for example, via a terminal program. The test results are sorted in chronological order and are shown with the associated ID number. If no ID number has been allocated, date and time of storage are automatically saved instead. Alternatively, a consecutive number can be entered.

* without function test values and without comments on DUT

Storage of parameter settings

for test sequences per IEC/DIN EN 60335/60950/61010

Test sequences can be configured on-site and performed in the appropriate selector switch position in accordance with the respective regulations. These **configurations for various test sequences** are stored to the test instrument and can be reactivated as required.

Feature KD01: (Recognition of Probe on Protective Conductor)

For freely configurable instruments the feature additionally includes a 5 m long probe cable with a test probe. The protective conductor measurement is expanded to include the function: "automatic recognition of measuring point change".

During protective conductor measurement, the instrument recognizes whether or not the probe is in contact with the protective conductor, and indicates these two possible conditions by means of acoustic signals. This function is helpful if several protective conductor connections need to be tested.

Feature KE01: Direct Print-Out

After completion of each test (individual test or at the end of a test sequence), test results are read out directly via the RS232 interface.

User interface languages which are not included as a standard feature can also be uploaded from our homepage (www.gossenmetrawatt.com). One language at a time can be uploaded to the test instrument.

Software Installation Requirements

Software:

- MS WINDOWS 2000 or XP.

Hardware:

- IBM compatible WINDOWS PC, as from 200 MHz Pentium-CPU with at least 64 MB RAM
- SVGA monitor
- Hard disk with at least 20 MB available memory
- MICROSOFT compatible mouse

Accessories

Memory and Input Module SECUTEST SI+

Values measured by the test instrument can be stored to this module, and can be furnished with comments with the help of the alphanumeric keypad. The LCD panel at the test instrument is used as a display for the module. Statistical analysis of the measurement results is also possible (percentage of tests which have been successfully passed. The SI module is screwed into the lid of the test instrument in a space-saving fashion.

Please request our SECUTEST SI+ data sheet for further information.

SECUSTORE - Memory Adapter for SECULIFE ST/ST HV

Test reports and individual test steps and/or test series can be directly written ("printed") from the **SECULIFE ST/ST HV** test instrument to the memory adapter. They can be subsequently read out and processed at the PC. This memory adapter is therefore an excellent tool for the archiving and transmission of test reports. Depending upon the size of the reports, up to 1,000 test reports or test series can be stored.

Please note that the direct print-out option must be enabled in the **SECULIFE ST/ST HV** to allow for the storage of individual test steps and test series.

Comparison of Memory Adapters / Testers with Memory Option

Features	SECUSTORE (Z745U)	SECUTEST SI (M702F)	SECUTEST SI+ (M702G)	SECUTEST PSI (GTM5016000R0001)	SECUTEST SIII+ Feature KB01 SECULIFEST	SECUTEST S2N+ Option DBmed
Integrated printer for recording charts	—	—	—	•	—	—
Annotations via keyboard	—	•	•	•	—	—
Data memory (flash)	•	•	•	—	—	—
Data memory (battery buffered)	—	•	•	•	•	•
Protocol functions	•	•	•	•	—	—
Statistical evaluation of up to 8 instrument classes	—	٠	•	•	—	—
Data transmission to PC via RS232 interface	•	٠	•	•	•	•
Data transmission to PC via USB interface	_	—	•	—	—	—
Connection of a barcode scanner	•	٠	٠	•	•	٠
Connection of an RFID scanner	•	•	•	•	•	•
Storage of function test values	•	•	•	•	-	—
Storage of comments on DUT	—	•	•	•	—	—

SECU-cal 10 Calibration Adapter

The calibration adapter is used for testing the measuring uncertainty of test instruments in accordance with

DIN VDE 0701-0702 and IEC 62353 (VDE 0751-1). As a rule, these instruments must be tested once each year, as set forth by accident prevention regulation BGV A3 (previously VBG 4) as well as for certification in accordance with the ISO 9000 quality standard.

All limit values for the required tests per DIN VDE, as well as protective conductor resistance, insulation resistance, equivalent leakage current, differential and/or contact as well as housing leakage current must be tested.

K2010 Accessory Case for SECULIFEST and Accessories (not suited for Feature F02 or SECULIFE ST HV)

F2000 Accessory Pouch for SECULIFEST and Accessories (not suited for Feature F02 or SECULIFE ST HV)

Туре

Article Number

GTZ3409000R0001 GTZ3408000R0001

Z745L

Z219C

Z864A

Z723A

Z501A

Z745W Z750A Z750B

Z745T

Z745X

Z745S

Z745A

Z715A Z700D

GTY3624065P01

GTY3520034P01

GTZ3225000R0001 GTZ3226000R0001 GTZ3226000R0002

GTZ3227000R0001 GTZ3219000R0001

GTZ3214000R0003

GTZ3214000R0002

GTZ3228000R0001

Designation

Order Information

			Designation	lype
Designation	Туре	Article Number	12 conductor patient connection cable, each conductor with 4 mm plug	PA4
Test instrument with automatic test se- quence, interface, German online instruc-			Pt100 temperature sensor for surface and	
tions, earthing contact plug and socket, with 10 + 2 connectors for application			immersion measurements, -40 +600 °C	
parts, probe cable with test probe, plug-on			Pt100 oven sensor, -50 +550 °C	TF550
alligator clip, 3 plug-on quick-connect ter- minals, DKD calibration certificate, operat- ing instructions. See table on page 6 for features and expansions.	SECU LIFEST	M6930 (all features: 00)	Clip-on current sensor, can be set to 1 mA to 15 A or 1 A to 150 A, Frequency range: <u>4565</u> 500 Hz, 1 mV/mA and 1 mV/A	WZ12C ^{D)}
Standard types available from stock			Shunt for measuring range matching when using the instrument with feature G01	
Test instrument with test current			in combination with WZ12C transformer	Z864A
± 200 mA DC and 10 A AC Sequences for IEC 61 010, IEC 60 335, IEC 60 950 and IEC 60 601, data memory for up to 125 tests	SECU LIFEST	M693A	Adapter for testing single-phase extension ca- bles including earthing contact and inlet plug in- serts, do not use for high- voltage tests	EL1
Same instrument as M693A, however,			Plug insert for EL1 in Switzerland per SEV	PRO-CH
suited to international use with adapter set for mains connection in the respective			Plug insert for EL1 in Great Britain	PRO-GB
user country and English user interface			Plug insert for EL1 GB measurement	PRO-GB/rir
language	SECULIFEST	M693B	Plug insert for EL1 in Italy per IMQ	PRO-I
Same instrument as M693A, however, with			Plug insert for EL1 in Denmark	PRO-DK
test current ±200 mA DC or 25 A AC, additionally with high-voltage test max.			Plug insert for EL1 in South Africa	PRO-RSA
6.126 kV DC (\cong 4 KV AC) Same instrument as M693C, however,	SECULIFE ST HV	M693C	Plug insert for EL1 with 3 connector cables for any desired connection standards	PRO-UNI
suited to international use with adapter set (application of adapter: high-voltage			Plug insert for EL1 with 10 m cable for PE measurements and the like	PRO-RLO
test max. 1.5 kV DC) for mains connection in the respective user country and English		MCCOD	Plug insert Schuko or the like (replacement plug, included in EL1)	PRO-Schuk
user interface language PC Analysis Software	SECULIFE ST HV	M693D	test adapter with single-phase and three- phase plug connectors up to CEE 32A – for all tests on single-phase and	
For further information on software, please	refer to our website		 for all rests of single-phase and three-phase electrical devices without mains voltage per DIN VDE for tests on single-phase and three-phase extension cables per DIN VDE 	VL2E
$(\rightarrow$ Products \rightarrow Electrical Testing \rightarrow \rightarrow Testing of Electric. Appliances \rightarrow SECU	TEST)		3 phase 16 A differential current adapter	AT16-DI
, rooming of 2000 room of ppinaliood () 0200			3 phase 32 A differential current adapter	AT32-DI
or http://www.gossenmetrawatt.com (→ Products → Software → Software for 1	Testers		Test adapter for tests on devices with CEE16 and CEE32 connections (load rating of max 20 A)	AT3-II-S D)
			same as AT3-II-S, however, with a load rating of 32 A	AT3-II S32
Accessories for Report Generation	1		3-phase current adapter 16A/32A (test case)	
SI module with RS232 and USB interface, with user languagues D, GB, F, NL, I, E and CZ, batteries and operating instructions	SECUTEST SI+ D)	M702F	for connection to the test instrument for tests per DIN VDE 0701-0702/IEC 62353 (VDE 0751) and IEC 601	AT3-III-E D)
same as SECUTEST SI+, without USB inter- face, however, with additional integrated printer including 2 rolls of recording charts and 1 printer ribbon cartridge	SECUTEST PSI ^{D)}	GTM5016000R0001	Adapter for connecting devices under test: 3-pole 16 A, 5-pole 16 A and 32 A, 5 ea. 4 mm jack – for all tests in accordance with DIN VDE	
Memory adapter for "direct print-out" and internal test reports	SECUSTORE D)	Z745U	 For all tests in accordance with DIN VDE without line voltage at single and 3 phase electrical devices 	CEE-Adapt
Firmware upgrade for SECUTEST data base: data memory for up to 125 tests (without function test values and without			Cable set for connecting test instruments to the mains without earthing contact socket and for connection of DUIs, do not use for	
comments on DUT)	DBmed	Z853H	high-voltage tests Cable set (1 pair of measuring cables)	KS13
For barcode scanner, printer and RFID scan	ner see separate data	asheet ID systems	1.2 m, with VDE-GS sign1000 V/CAT III, 600 V/CAT IV 16 A	KS17-2
Accessory Probes, Sensors, Adapters ar	nd Cables		Further Accessories	1
Test probe with cable (no coil cord), 2 m, suitable for high-voltage test	SK2	Z745D	Calibration adapter for test instruments per DIN VDE 0701-0702 and IEC 62 353	
Test probe with cable (coil-cable),2 meters long, suitable for high-voltage test	SK2W	Z745N	(VDE 0751) (max. 200 mA), do not use for high-voltage tests and for protective conductor test current of 10 A or 25 A	SECU-cal 1
Probe cable 5 m	SK5	Z745K	Pouch for SECULIFEST	F2000 ^{D)}
Brush probe	Z745G	Z745G		

Designation	Туре	Article Number
Pouch big for SECULIFE ST HV and accessories	F2020	Z700F
Carrying case SECULIFEST	K2010	Z504L

D) Data sheet available

For additional information on accessories, please refer to:

- Measuring Instruments and Testers catalog
- our website www.gossenmetrawatt.com

Edited in Germany • Subject to change without notice • A pdf version is available on the internet

GMC-I Messtechnik GmbH Südwestpark 15 90449 Nürnberg • Germany Phone +49 911 8602-111 Fax +49 911 8602-777 E-Mail info@seculife.eu www.seculife.eu