

ELECTRONICS BENCH TOOL SOLUTIONS

SmartHeat Technology

Power on Demand vs Fixed Power

Tip Construction

SmartHeat™

Solder Tip

Conventional

Solder Tip

Tip Construction Comparison

SmartHeat® Technology

Q: How does SmartHeat® Work? What is Power on Demand?

A: The tip cartridge **senses** the thermal load and instantly delivers the right amount of power **directly** to the joint.

Q: What does Power on Demand do for the user?

A: It allows the user to solder and rework varying loads and only the power needed will be applied to the joint. **SmartHeat**® provides a fast, safe and repeatable process with no manual adjustments required.

SmartHeat® Technology

Fundamental Defining Equation: T2-T1 (temperature difference) = Power X Rt (Thermal Resistance)

T2= Heater temperature

T1 = Sensor temperature (Note - Pad temperature is predicted & secondary)

Result = System responds to Sensor Temperature (temperature gradient) & Applied Power defined by generalized CPU algorithm

Smartheat Technology:

T2= TH1....THn = Infinite layers of Heater temperature control loops (each responding to an incremental temp difference)

T1 = PAD temperature directly

Result: System responds to Pad Thermal Energy Demand & Applied Power is directly related to Pad temperature requirement

Power on Demand; Fixed vs. Variable Power

SmartHeat™ Soldering Iron = Varying Load Size, Varying Power

Conventional Soldering Iron = Varying Load Size, Fixed Power

LOAD SIZE

Heat Transfer

Fine Tip Geometry

- Small Load
- Medium Load
- Heavy Load

Heat Transfer

Medium Tip Geometry

Medium Load

Heat Transfer

Large Tip Geometry

Heavy Load

SH Thermal Energy Advantage

CONTROL TECHNOLOGY PERFORMANCE COMPARISIONS SMARTHEAT vs. CONVENTIONAL TIP IDLE CONTROL (IDLE TIP TEMP = 750F)

Attributes of Conventional & SmartHeat™

	CONVENTIONAL IRONS	SMARTHEAT™ IRONS
HEAT	Uses TC/Sensors to Monitor Heat Stored Heat	Self Regulated Heaters Rapid Heating
PROCESS CONTROL	In Operator's Control Possible Operator Error	No Operator Controls No Operator Errors
CALIBRATION	Required	Not Required
TEMPERATURE	Manually Set	Self Regulated Heater
POWER SYSTEMS	Fixed Power Stored Energy in Tip	Power on Demand Instantly Delivers Right Amount of Power Directly to the Joint

Calibration

Why do Conventional Irons Need Calibration?

- Thermocouples degrade over time.
- Repackaged conventional soldering irons still require calibration.
- Different heating requirements for different tip sizes.

Calibration

	CONVENTIONAL IRONS	SmartHeat™ IRONS
Calibration Required	YES	NO
	YES	NO
Thermocouples	Thermocouples / Sensors Degrade Over Time	No Thermocouples/SensorsTo Degrade
	VARIABLE	FIXED
Tip Temperature	 Different Heating Requirements for Different Tip Sizes Tip Temperature Can Vary from Set Point 	Tips Drive HeatingNot Power SupplyCannot Over Shoot
Over Shooting	Operator Controlled	Self Regulated Heater Controlled

Calibration

Conventional Tip Testing

Measures Idle Tip Temperature

SmartHeat™ Power Meter

Measures (Power) Wattage at the Solder Joint

Conventional vs. SmartHeat™ Technology Heat Transfer Characteristics

	Conventional Soldering	SmartHeat™ Soldering
HEAT TRANSFER PROCESS	Increase Tip Temperature	Increase (Vary) Power to Improve Heat Transfer
INTER-METALLICS	Can Increase Operator Control	Very Limited Equipment Controlled
FLUX PERFORMANCE	Good	Good Reduced Oxidation Controlled Solder Flow
SOLDERING TEMPERATURE	Increased Decrease Tip Life	Constant
CHANCE OF DAMAGE TO PCB AND/OR COMPONENTS	Increased Hard to Control Over Shooting	No Over Shooting

SmartHeat® Technology

Q: What makes up the SmartHeat® Soldering & Rework System?

A: The system consists of two basic elements: a constant-current RF power supply, and a self-regulating heating element: the tip cartridge.

The Metcal[®] tip cartridge is made of a heater of proprietary design, consisting of a **non-heating** copper core and an outer **heating** layer of magnetic alloy.

As a high-frequency current is passed over the heater, the magnetic alloy causes the current flow to become confined to the "skin." This is the **Skin Effect**. The resulting high current density causes rapid heating.

As it heats up, the magnetic alloy passes through its **Curie Point** temperature (T_c) , and it loses its magnetic properties.

This eliminates the **Skin Effect**, causing the migration of current to the low-resistance non-heating copper core of the heater.

Energized Coil

Non-heating Copper Core

Magnetic layer (cooling off)

As the tip cools slightly, the alloy passes back through the **Curie Point** temperature and its magnetic properties are restored. The **Skin Effect** immediately returns, and heating begins again, repeating the cyele.

Thus, the tip self-regulates very close to the **Curie Point**, maintaining constant temperature (*/_1.1°C). As the tip temperature is constant, and heat is not stored in the tip like a conventional soldering iron, the **SmartHeat**® system applies **Direct Power** to the joint.

Metcal Soldering Systems

- Rapid heating with Power on Demand
- Self-regulating heaters that require no calibration
- No operator controls
- Closer relationship between heater, tip, & pad.
- Soldering and rework in one station.
- Increased Productivity
- Reduced scrap with built in product process control.