
Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.

PicoScope 4000 Series

Programmer's Guide

ps4000pg.en r8

PC Oscilloscopes

IPicoScope 4000 Series Programmer's Guide

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

Contents
..11 Introduction

..11 Welcome

..12 Software licence conditions

..23 Trademarks

..24 Company details

..32 Product information

..31 System requirements

..42 Installation instructions

..53 Programming with the PicoScope 4000 Series

..51 Driver

..52 System requirements

..63 Voltage ranges

..64 Channel selection

..65 Triggering

..76 Sampling modes

..81 Block mode
..102 Rapid block mode
..143 ETS (Equivalent Time Sampling)
..154 Streaming mode
..165 Retrieving stored data

..167 Oversampling

..178 Timebases

..189 Combining several oscilloscopes

..1910 API functions

..201 ps4000BlockReady

..212 ps4000CloseUnit

..223 ps4000DataReady

..234 ps4000EnumerateUnits

..245 ps4000FlashLed

..256 ps4000GetChannelInformation

..267 ps4000GetMaxDownSampleRatio

..278 ps4000GetStreamingLatestValues

..289 ps4000GetTimebase

..2910 ps4000GetTimebase2

..3011 ps4000GetTriggerChannelTimeOffset

..3112 ps4000GetTriggerChannelTimeOffset64

..3213 ps4000GetTriggerTimeOffset

..3314 ps4000GetTriggerTimeOffset64

..3415 ps4000GetUnitInfo

..3516 ps4000GetValues

..3617 ps4000GetValuesAsync

..3718 ps4000GetValuesBulk

..3819 ps4000GetValuesTriggerChannelTimeOffsetBulk

..3920 ps4000GetValuesTriggerChannelTimeOffsetBulk64

..4021 ps4000GetValuesTriggerTimeOffsetBulk

..4122 ps4000GetValuesTriggerTimeOffsetBulk64

ContentsII

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

..4223 ps4000HoldOff

..4324 ps4000IsLedFlashing

..4425 ps4000IsReady

..4526 ps4000IsTriggerOrPulseWidthQualifierEnabled

..4627 ps4000MemorySegments

..4728 ps4000NoOfStreamingValues

..4829 ps4000OpenUnit

..4930 ps4000OpenUnitAsync

..5031 ps4000OpenUnitAsyncEx

..5132 ps4000OpenUnitEx

..5233 ps4000OpenUnitProgress

..5334 ps4000RunBlock

..5535 ps4000RunStreaming

..5736 ps4000RunStreamingEx

..5937 ps4000SetBwFilter

..6038 ps4000SetChannel

..6239 ps4000SetDataBuffer

..6340 ps4000SetDataBufferBulk

..6441 ps4000SetDataBuffers

..6542 ps4000SetDataBuffersWithMode

..6643 ps4000SetDataBufferWithMode

..6744 ps4000SetEts

..6845 ps4000SetEtsTimeBuffer

..6946 ps4000SetEtsTimeBuffers

..7047 ps4000SetExtTriggerRange

..7148 ps4000SetNoOfCaptures

..7249 ps4000SetPulseWidthQualifier

..7450 ps4000SetSigGenArbitrary

..7851 ps4000SetSigGenBuiltIn

..8052 ps4000SetSimpleTrigger

..8153 ps4000SetTriggerChannelConditions

..8354 ps4000SetTriggerChannelDirections

..8455 ps4000SetTriggerChannelProperties

..8656 ps4000SetTriggerDelay

..8757 ps4000SigGenSoftwareControl

..8858 ps4000Stop

..8959 ps4000StreamingReady
..9011 Enumerated types and constants

..9612 Driver error codes

..9913 Programming examples

..991 C

..992 Excel
..1003 LabVIEW

..1024 Glossary

..105Index

PicoScope 4000 Series Programmer's Guide 1

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

1 Introduction
1.1 Welcome

The PicoScope 4000 Series of PC Oscilloscopes
from Pico Technology is a range of compact,
high-resolution scope units designed to replace
traditional bench-top oscilloscopes.

This manual explains how to use the Application
Programming Interface (API) for the PicoScope
4000 Series scopes. For more information on the
hardware, see the PicoScope 4000 Series
User's Guide available as a separate manual.

1.2 Software licence conditions
The material contained in this release is licensed, not sold. Pico Technology Limited
grants a licence to the person who installs this software, subject to the conditions
listed below.

Access. The licensee agrees to allow access to this software only to persons who have
been informed of these conditions and agree to abide by them.

Usage. The software in this release is for use only with Pico products or with data
collected using Pico products.

Copyright. Pico Technology Ltd. claims the copyright of, and retains the rights to, all
material (software, documents, etc.) contained in this SDK except the example
programs. You may copy and distribute the SDK without restriction, as long as you do
not remove any Pico Technology copyright statements. The example programs in the
SDK may be modified, copied and distributed for the purpose of developing programs
to collect data using Pico products.

Liability. Pico Technology and its agents shall not be liable for any loss, damage or
injury, howsoever caused, related to the use of Pico Technology equipment or
software, unless excluded by statute.

Fitness for purpose. As no two applications are the same, Pico Technology cannot
guarantee that its equipment or software is suitable for a given application. It is your
responsibility, therefore, to ensure that the product is suitable for your application.

Mission-critical applications. This software is intended for use on a computer that
may be running other software products. For this reason, one of the conditions of the
licence is that it excludes use in mission-critical applications, for example life support
systems.

Viruses. This software was continuously monitored for viruses during production, but
you are responsible for virus-checking the software once it is installed.

Support. If you are dissatisfied with the performance of this software, please contact
our technical support staff, who will try to fix the problem within a reasonable time. If
you are still dissatisfied, please return the product and software to your supplier within
28 days of purchase for a full refund.

Upgrades. We provide upgrades, free of charge, from our web site at
www.picotech.com. We reserve the right to charge for updates or replacements sent
out on physical media.

Introduction2

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

1.3 Trademarks
Windows, Excel and Visual Basic are registered trademarks or trademarks of
Microsoft Corporation in the USA and other countries. LabVIEW is a registered
trademark of National Instruments Corporation.

Pico Technology and PicoScope are trademarks of Pico Technology Limited,
registered in the United Kingdom and other countries.

Pico Technology and PicoScope are registered in the U.S. Patent and Trademark
Office.

1.4 Company details
Address: Pico Technology

James House
Colmworth Business Park
St Neots
Cambridgeshire
PE19 8YP
United Kingdom

Phone: +44 (0) 1480 396 395
Fax: +44 (0) 1480 396 296

Email:
Technical Support: support@picotech.com
Sales: sales@picotech.com

Web site: www.picotech.com

mailto:support@picotech.com
mailto:sales@picotech.com
http://www.picotech.com

PicoScope 4000 Series Programmer's Guide 3

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

2 Product information
2.1 System requirements

Using with PicoScope for Windows

To ensure that your PicoScope 4000 Series PC Oscilloscope operates correctly with the
PicoScope software, you must have a computer with at least the minimum system
requirements to run one of the supported operating systems, as shown in the following
table. The performance of the oscilloscope will be better with a more powerful PC.
Please note the PicoScope software is not installed as part of the SDK.

Item Specification

Operating system
Windows XP SP3, Vista, 7 or 8

32 bit and 64 bit versions supported

Processor

As required by WindowsMemory

Free disk space

Ports
USB 2.0 compliant port (recommended)

USB 1.1 compliant port (not recommended)

Using with custom applications

Drivers are available for the operating systems mentioned above.

Product information4

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

2.2 Installation instructions

IMPORTANT
Do not connect your PicoScope 4000 Series

scope device to the PC before you
have installed the Pico Technology software.

If you do, Windows might not
recognise the scope device correctly.

Procedure

Follow the instructions in the Installation Guide included with your product package.
Connect your PC Oscilloscope to the PC using the USB cable supplied.

Checking the installation

Once you have installed the software and connected the PC Oscilloscope to the PC,
start the PicoScope software. PicoScope should now display any signal connected to
the scope inputs. If a probe is connected to your oscilloscope, you should see a small
50 or 60 hertz signal in the oscilloscope window when you touch the probe tip with
your finger.

Moving your PicoScope PC Oscilloscope to another USB port

Windows XP SP3
When you first installed the PicoScope 4000 Series PC Oscilloscope by plugging it into
a USB port, Windows associated the Pico driver with that port. If you later move the
oscilloscope to a different USB port, Windows will display the New Hardware Found
Wizard again. When this occurs, just click Next in the wizard to repeat the
installation. If Windows gives a warning about Windows Logo Testing, click Continue
Anyway. As all the software you need is already installed on your computer, there is
no need to insert the Pico Software CD again.

Windows Vista, 7 and 8
The process is automatic. When you move the device from one port to another,
Windows displays an Installing device driver software message and then a
PicoScope 4000 Series PC Oscilloscope message. The PC Oscilloscope is then
ready for use.

PicoScope 4000 Series Programmer's Guide 5

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3 Programming with the PicoScope 4000 Series
The ps4000.dll dynamic link library in your PicoScope installation directory allows

you to program a PicoScope 4000 Series oscilloscope using standard C function calls.

A typical program for capturing data consists of the following steps:

Open the scope unit.
Set up the input channels with the required voltage ranges and coupling mode.
Set up triggering.
Start capturing data. (See Sampling modes, where programming is discussed in
more detail).
Wait until the scope unit is ready.
Stop capturing data.
Copy data to a buffer.
Close the scope unit.

Numerous sample programs are installed with your PicoScope software. These show
how to use the functions of the driver software in each of the modes available.

3.1 Driver
Your application will communicate with a PicoScope 4000 API driver called
ps4000.dll. The driver exports the PicoScope 4000 function definitions in standard

C format, but this does not limit you to programming in C. You can use the API with
any programming language that supports standard C calls.

The API driver depends on a kernel driver, picopp.sys, which works with 32-bit

Windows XP SP2, Windows Vista and Windows 7. For 64-bit versions, the API depends
on the winusb.sys kernel driver. Your application does not need to call the kernel

driver. Once you have installed the PicoScope 6 software, Windows automatically
installs the kernel driver when you plug in the PicoScope 4000 Series PC Oscilloscope
for the first time.

3.2 System requirements
General requirements

See System Requirements.

USB

The PicoScope 4000 driver offers three different methods of recording data, all of
which support both USB 1.1 and USB 2.0, although the fastest transfer rates between
the PC and the PicoScope 4000 are achieved using USB 2.0.

Programming with the PicoScope 4000 Series6

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.3 Voltage ranges
The ps4000SetChannel function allows you to set the voltage range of each input
channel of the scope. Each device in the PicoScope 4000 Series has its own set of
voltage ranges described in its data sheet. Each sample is normalized to 16 bits
resulting in values returned to your application as follows:

Constant Voltage
Value returned

decimal hex

PS4000_MAX_VALUE
or
PS4262_MAX_VALUE

maximum
32 764

32 767

7FFC

7FFF

N/A zero 0 0000

PS4000_MIN_VALUE
or
PS4262_MIN_VALUE

minimum
–32 764

–32 767

8004

8001

PS4000_LOST_DATA Note 1 -32 768 8000

1. In streaming mode, this special value indicates a buffer overrun.

3.4 Channel selection
You can switch each channel on and off, and set its coupling mode to either AC or DC,
using the ps4000SetChannel function.

 DC coupling: The scope accepts all input frequencies from zero (DC) up to its
maximum analogue bandwidth.

 AC coupling: The scope accepts input frequencies from a few hertz up to its
maximum analogue bandwidth. The lower -3 dB cutoff frequency is
about 1 hertz.

3.5 Triggering
PicoScope 4000 Series PC Oscilloscopes can either start collecting data immediately, or
be programmed to wait for a trigger event to occur. In both cases you need to use the
three PicoScope 4000 trigger functions. These can be run collectively by calling
ps4000SetSimpleTrigger, or singularly:

ps4000SetTriggerChannelConditions
ps4000SetTriggerChannelDirections
ps4000SetTriggerChannelProperties

A trigger event can occur when one of the signal or trigger input channels crosses a
threshold voltage on either a rising or a falling edge.

The driver supports these triggering methods:

Simple Edge
Advanced Edge
Windowing
Pulse width
Logic
Delay
Drop-out
Runt

PicoScope 4000 Series Programmer's Guide 7

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.6 Sampling modes
PicoScope 4000 Series PC Oscilloscopes can run in various sampling modes.

Block mode. In this mode, the scope stores data in its buffer memory and then
transfers it to the PC. When the data has been collected it is possible to examine
the data, with an optional aggregation factor. The data is lost when a new run is
started in the same segment, the settings are changed, or the scope is powered
down.

Rapid block mode. This is a variant of block mode that allows you to capture more
than one waveform at a time with a minimum of delay between captures. You can
use aggregation in this mode if you wish.

Streaming mode. In this mode, data is passed directly to the PC without being
stored in the scope's buffer memory. This enables long periods of slow data
collection for chart recorder and data-logging applications. Streaming mode
provides fast streaming at up to 6.6 MS/s (150 ns per sample). Aggregation and
triggering are supported in this mode.

In all sampling modes, the driver returns data asynchronously using a callback. This is
a call to one of the functions in your own application. When you request data from the
scope, you pass to the driver a pointer to your callback function. When the driver has
written the data to your buffer, it makes a callback (calls your function) to signal that
the data is ready. The callback function then signals to the application that the data is
available.

Because the callback is called asynchronously from the rest of your application, in a
separate thread, you must ensure that it does not corrupt any global variables while it
runs.

In block mode, you can also poll the driver instead of using a callback.

Programming with the PicoScope 4000 Series8

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.6.1 Block mode

In block mode, the computer prompts a PicoScope 4000 Series PC Oscilloscope to
collect a block of data into its internal memory. When the oscilloscope has collected
the whole block, it signals that it is ready and then transfers the whole block to the
computer's memory through the USB port.

Block size. The maximum number of values depends upon the size of the
oscilloscope's memory. The memory buffer is shared between the enabled channels,
so if two channels are enabled, each receives half the memory. These features are
handled transparently by the driver. The block size also depends on the number of
memory segments in use (see ps4000MemorySegments).

Sampling rate. The PicoScope 4000 Series PC Oscilloscopes can sample at a
number of different rates according to their model, selected timebase and the
combination of channels that are enabled. The maximum sampling rate can be
achieved with a single channel enabled, or with these two-channel combinations:
AC, AD, BC and BD. All other combinations limit the maximum sampling rate of
scope, as specified in its Data Sheet.

Setup time. The driver normally performs a number of setup operations, which can
take up to 50 milliseconds, before collecting each block of data. If you need to
collect data with the minimum time interval between blocks, use rapid block mode
and avoid calling setup functions between calls to ps4000RunBlock, ps4000Stop
and ps4000GetValues.

Aggregation. When the data has been collected, you can set an optional
aggregation factor and examine the data. Aggregation is a process that reduces the
amount of data by combining adjacent samples using a maximum/minimum
algorithm. It is useful for zooming in and out of the data without having to
repeatedly transfer the entire contents of the scope's buffer to the PC.

Memory segmentation. The scope's internal memory can be divided into
segments so that you can capture several waveforms in succession. Configure this
using ps4000MemorySegments.

Data retention. The data is lost when a new run is started in the same segment or
the scope is powered down.

See Using block mode for programming details.

PicoScope 4000 Series Programmer's Guide 9

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.6.1.1 Using block mode

This is the general procedure for reading and displaying data in block mode using a
single memory segment:

1. Open the oscilloscope using ps4000OpenUnit.

2. Select channel ranges and AC/DC coupling using ps4000SetChannel.

3. Using ps4000GetTimebase, select timebases until the required nanoseconds

per sample is located.

4. Use the trigger setup functions [1] [2] [3] to set up the trigger if required.
5. Start the oscilloscope running using ps4000RunBlock.

6. Wait until the oscilloscope is ready using the ps4000BlockReady callback.

7. Use ps4000SetDataBuffer to tell the driver where your memory buffer is.
8. Transfer the block of data from the oscilloscope using ps4000GetValues.

9. Display the data.
10. Repeat steps 5 to 9.
11. Stop the oscilloscope using ps4000Stop.

12. Request new views of stored data using different aggregation parameters: see
Retrieving stored data.

Programming with the PicoScope 4000 Series10

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.6.2 Rapid block mode

In normal block mode, the PicoScope 4000 Series scopes collect one waveform at a
time. You start the the device running, wait until all samples are collected by the
device, and then download the data to the PC or start another run. There is a time
overhead of tens of milliseconds associated with starting a run, causing a gap between
waveforms. When you collect data from the device, there is another minimum time
overhead which is most noticeable when using a small number of samples.

Rapid block mode allows you to sample several waveforms at a time with the
minimum time between waveforms. It reduces the gap from milliseconds to about 2.5
microseconds.

See Using rapid block mode for details.

3.6.2.1 Using rapid block mode

You can use rapid block mode with or without aggregation. The following procedure
shows you how to use it without aggregation.

Without aggregation

1. Open the oscilloscope using ps4000OpenUnit.

2. Select channel ranges and AC/DC coupling using ps4000SetChannel.

3. Using ps4000GetTimebase, select timebases until the required nanoseconds

per sample is located.

4. Use the trigger setup functions [1] [2] [3] to set up the trigger if required.
5. Set the number of memory segments equal to or greater than the number of

captures required using ps4000MemorySegments. Use

ps4000SetNoOfCaptures before each run to specify the number of waveforms

to capture.
6. Start the oscilloscope running using ps4000RunBlock.

7. Wait until the oscilloscope is ready using the ps4000BlockReady callback.

8. Use ps4000SetDataBufferBulk to tell the driver where your memory buffers

are.
9. Transfer the blocks of data from the oscilloscope using ps4000GetValuesBulk.

10. Retrieve the time offset for each data segment using
ps4000GetValuesTriggerTimeOffsetBulk64.

11. Display the data.
12. Repeat steps 6 to 11 if necessary.
13. Stop the oscilloscope using ps4000Stop.

With aggregation

To use rapid block mode with aggregation, follow steps 1 to 9 above and then proceed
as follows:

10a. Call ps4000SetDataBuffers to set up one pair of buffers for every waveform

segment required.
11a. Call ps4000GetValues for each pair of buffers.

12a. Retrieve the time offset for each data segment using
ps4000GetTriggerTimeOffset64.

Continue from step 13 above.

PicoScope 4000 Series Programmer's Guide 11

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.6.2.2 Rapid block mode example 1: no aggregation

#define MAX_SAMPLES 1000

Set up the device up as usual.

Open the device
Channels
Trigger
Number of memory segments (this should be equal or more than the no of captures
required)

// set the number of waveforms to 100
ps4000SetNoOfCaptures (handle, 100);

pParameter = false;
ps4000RunBlock
(

handle,
0, //noOfPreTriggerSamples,
10000, // noOfPostTriggerSamples,
1, // timebase to be used,
1, // oversample
&timeIndisposedMs,
1, // oversample
lpReady,
&pParameter

);

Comment: these variables have been set as an example and can be any valid value.
pParameter will be set true by your callback function lpReady.

while (!pParameter) Sleep (0);

for (int i = 0; i < 10; i++)
{

for (int c = PS4000_CHANNEL_A; c <= PS4000_CHANNEL_D; c++)
{

ps4000SetDataBufferBulk
(

handle,
c,
&buffer[c][i],
MAX_SAMPLES,
i

);
}

}

Comments: buffer has been created as a two-dimensional array of pointers to
int16_t, which will contain 1000 samples as defined by MAX_SAMPLES. There are

only 10 buffers set, but it is possible to set up to the number of captures you have
requested.

Programming with the PicoScope 4000 Series12

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

ps4000GetValuesBulk
(

handle,
&noOfSamples, // set to MAX_SAMPLES on entering the function
10, // fromSegmentIndex,
19, // toSegmentIndex,
overflow // an array of size 10 int16_t

)

Comments: the number of samples could be up to noOfPreTriggerSamples +
noOfPostTriggerSamples, the values set in ps4000RunBlock. The samples are

always returned from the first sample taken, unlike the ps4000GetValues function

which allows the sample index to be set. This function does not support aggregation.
The above segments start at 10 and finish at 19 inclusive. It is possible for the
fromSegmentIndex to wrap around to the toSegementIndex, by setting the

fromSegmentIndex to 98 and the toSegmentIndex to 7.

ps4000GetValuesTriggerTimeOffsetBulk64
(

handle,
times,
timeUnits,
10,
19

)

Comments: the above segments start at 10 and finish at 19 inclusive. It is possible for
the fromSegmentIndex to wrap around to the toSegmentIndex, if the

fromSegmentIndex is set to 98 and the toSegmentIndex to 7.

PicoScope 4000 Series Programmer's Guide 13

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.6.2.3 Rapid block mode example 2: using aggregation

#define MAX_SAMPLES 1000

Set up the device up as usual.

Open the device
Channels
Trigger
Number of memory segments (this should be equal or more than the no of captures
required)

// set the number of waveforms to 100
ps4000SetNoOfCaptures (handle, 100);

pParameter = false;
ps4000RunBlock
(

handle,
0, //noOfPreTriggerSamples,
1000000, // noOfPostTriggerSamples,
1, // timebase to be used,
1, // oversample
&timeIndisposedMs,
1, // oversample
lpReady,
&pParameter

);

Comments: the set-up for running the device is exactly the same whether or not
aggregation will be used when you retrieve the samples.

for (int c = PS4000_CHANNEL_A; c <= PS4000_CHANNEL_D; c++)
{

ps4000SetDataBuffers
(

handle,
c,
&bufferMax[c],
&bufferMin[c]
MAX_SAMPLES,

);
}

Comments: since only one waveform will be retrieved at a time, you only need to set
up one pair of buffers; one for the maximum samples and one for the minimum
samples. Again, the buffer sizes are 1000 samples.

for (int segment = 10; segment < 20; segment++)
{

ps4000GetValues
(

handle,
0,
&noOfSamples, // set to MAX_SAMPLES on entering
1000,
&downSampleRatioMode, //set to RATIO_MODE_AGGREGATE
index,
overflow

Programming with the PicoScope 4000 Series14

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

);

ps4000GetTriggerTimeOffset64
(

handle,
&time,
&timeUnits,
index

)
}

Comments: each waveform is retrieved one at a time from the driver with an
aggregation of 1000.

3.6.3 ETS (Equivalent Time Sampling)

Note: ETS mode is not supported by the PicoScope 4262 oscilloscope.

ETS is a way of increasing the effective sampling rate of the scope when capturing
repetitive signals. It is a modified form of block mode, and is controlled by the
ps4000SetTrigger and ps4000SetEts functions.

Overview. ETS works by capturing several cycles of a repetitive waveform, then
combining them to produce a composite waveform that has a higher effective
sampling rate than the individual captures. The scope hardware adds a short,
variable delay, which is a small fraction of a single sampling interval, between each
trigger event and the subsequent sample. This shifts each capture slightly in time
so that the samples occur at slightly different times relative to those of the previous
capture. The result is a larger set of samples spaced by a small fraction of the
original sampling interval. The maximum effective sampling rates that can be
achieved with this method are listed in the User's Guide for the scope device.

Trigger stability. Because of the high sensitivity of ETS mode to small time
differences, the trigger must be set up to provide a stable waveform that varies as
little as possible from one capture to the next.

Callback. ETS mode returns data to your application using the
ps4000BlockReady callback function.

Applicability Available in block mode only.

Not suitable for one-shot (non-repetitive) signals.

Aggregation and oversampling are not supported.

Edge-triggering only.

Auto trigger delay (autoTriggerMilliseconds) is ignored.

3.6.3.1 Using ETS mode

Since ETS mode is a type of block mode, the procedure is the same as the one
described in Using block mode.

PicoScope 4000 Series Programmer's Guide 15

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.6.4 Streaming mode

Streaming mode can capture data without the gaps that occur between blocks when
using block mode. It can transfer data to the PC at speeds of up to 6.6 million samples
per second (150 nanoseconds per sample), depending on the computer's performance.
This makes it suitable for high-speed data acquisition, allowing you to capture long
data sets limited only by the computer's memory.

Aggregation. The driver returns aggregated readings while the device is
streaming. If aggregation is set to 1 then only one buffer is returned per channel.
When aggregation is set above 1 then two buffers (maximum and minimum) per
channel are returned.

Memory segmentation. The memory can be divided into segments to reduce the
latency of data transfers to the PC. However, this increases the risk of losing data if
the PC cannot keep up with the device's sampling rate.

See Using streaming mode for programming details.

3.6.4.1 Using streaming mode

This is the general procedure for reading and displaying data in streaming mode using
a single memory segment:

1. Open the oscilloscope using ps4000OpenUnit.

2. Select channels, ranges and AC/DC coupling using ps4000SetChannel.

3. Use the trigger setup functions [1] [2] [3] to set up the trigger if required.
4. Call ps4000SetDataBuffer to tell the driver where your data buffer is.

5. Set up aggregation and start the oscilloscope running using
ps4000RunStreaming.

6. Call ps4000GetStreamingLatestValues to get data.

7. Process data returned to your application's function. This example is using Auto
Stop, so after the driver has received all the data points requested by the
application, it stops the device streaming.

8. Call ps4000Stop, even if Auto Stop is enabled.

9. Request new views of stored data using different aggregation parameters: see
Retrieving stored data.

Programming with the PicoScope 4000 Series16

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.6.5 Retrieving stored data

You can collect data from the PicoScope 4000 driver with a different aggregation factor
when ps4000RunBlock or ps4000RunStreaming has already been called and has

successfully captured all the data. Use ps4000GetValuesAsync.

3.7 Oversampling
When the oscilloscope is operating at sampling rates less than its maximum, it is
possible to oversample. Oversampling is taking more than one measurement during
a time interval and returning the average as one sample. The number of
measurements per sample is called the oversampling factor. If the signal contains a
small amount of Gaussian noise, this technique can increase the effective vertical
resolution of the oscilloscope by n bits, where n is given approximately by the
equation below:

n = log (oversampling factor) / log 4

Conversely, for an improvement in resolution of n bits, the oversampling factor you
need is given approximately by:

oversampling factor = 4n

Applicability Available in block mode only.

Cannot be used at the same time as aggregation.

PicoScope 4000 Series Programmer's Guide 17

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.8 Timebases

The API allows you to select one of 230 different timebases related to the maximum
sampling rate of the oscilloscope. The timebases allow slow enough sampling in block
mode to overlap the streaming sample intervals, so that you can make a smooth
transition between block mode and streaming mode.

For all PicoScope 4000 Series scopes except the PicoScope 4262, the range of
timebase values is divided into "low" and "high" subranges, with the low sub-range
specifying a power of 2 and the high sub-range specifying a fraction of the clock
frequency. The PicoScope 4262 has a single range of timebases specifying a power of
2.

Timeb
ase
(n)

Sampling interval (t)

PicoScope 4223
PicoScope 4224
PicoScope 4423
PicoScope 4424

PicoScope 4226
PicoScope 4227

PicoScope 4262

Low

2n / 80,000,000

n=0: 12.5 ns
n=1: 25 ns
n=2: 50 ns

2n / 250,000,000

n=0*: 4 ns
n=1: 8 ns
n=2: 16 ns
n=3: 32 ns

(n+1) / 10,000,000

n=0: 100 ns
n=1: 200 ns
n=2: 300 ns

...

n=230-1:~107 sHigh

(n-1) / 20,000,000

n=3: 100 ns
n=4: 150 ns
n=5: 200 ns

...

n=230-1: ~54 s

(n-2) / 31,250,000

n=4: 64 ns
n=5: 96 ns
n=6: 128 ns

...

n=230-1: ~34 s

* PicoScope 4227 only

Applicability Use ps4000GetTimebase API call.

Programming with the PicoScope 4000 Series18

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.9 Combining several oscilloscopes
It is possible to collect data using up to 64 PicoScope 4000 Series PC Oscilloscopes at
the same time, depending on the capabilities of the PC. Each oscilloscope must be
connected to a separate USB port. The ps4000OpenUnit function returns a handle to

an oscilloscope. All the other functions require this handle for oscilloscope
identification. For example, to collect data from two oscilloscopes at the same time:

CALLBACK ps4000BlockReady(...)
// define callback function specific to application

handle1 = ps4000OpenUnit()
handle2 = ps4000OpenUnit()

ps4000SetChannel(handle1)
// set up unit 1
ps4000RunBlock(handle1)

ps4000SetChannel(handle2)
// set up unit 2
ps4000RunBlock(handle2)

// data will be stored in buffers
// and application will be notified using callback

ready = FALSE
while not ready

ready = handle1_ready
ready &= handle2_ready

Note: It is not possible to synchronize the collection of data between oscilloscopes that
are being used in combination.

PicoScope 4000 Series Programmer's Guide 19

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10 API functions
The PicoScope 4000 Series API exports the following functions for you to use in your
own applications. All functions are C functions using the standard call naming
convention (__stdcall). They are all exported with both decorated and undecorated

names.

ps4000BlockReady: receive notification when block-mode data ready
ps4000CloseUnit: close a scope device
ps4000DataReady: indicate when post-collection data ready
ps4000EnumerateUnits: find out how many units are connected
ps4000FlashLed: flash the front-panel LED
ps4000GetChannelInformation: find out if extra ranges available
ps4000GetMaxDownSampleRatio: find out aggregation ratio for data
ps4000GetStreamingLatestValues: get streaming data while scope is running
ps4000GetTimebase: find out what timebases are available
ps4000GetTimebase2: find out what timebases are available
ps4000GetTriggerChannelTimeOffset: get trigger times from specified channel
ps4000GetTriggerChannelTimeOffset64: get trigger times from specified channel
ps4000GetTriggerTimeOffset: find out when trigger occurred (32-bit)
ps4000GetTriggerTimeOffset64: find out when trigger occurred (64-bit)
ps4000GetUnitInfo: read information about scope device
ps4000GetValues: retrieve block-mode data with callback
ps4000GetValuesAsync: retrieve streaming data with callback
ps4000GetValuesBulk: retrieve more than one waveform at a time
ps4000GetValuesTriggerChannelTimeOffsetBulk: retrieve time offset from a channel
ps4000GetValuesTriggerChannelTimeOffsetBulk64: retrieve time offset (64-bit)
ps4000GetValuesTriggerTimeOffsetBulk: retrieve time offset for a group of waveforms
ps4000GetValuesTriggerTimeOffsetBulk64: set the buffers for each waveform (64-bit)
ps4000HoldOff: set trigger holdoff
ps4000IsLedFlashing: read status of LED
ps4000IsReady: poll driver in block mode
ps4000IsTriggerOrPulseWidthQualifierEnabled: find out whether trigger is enabled
ps4000MemorySegments: divide scope memory into segments
ps4000NoOfStreamingValues: get number of samples in streaming mode
ps4000OpenUnit: open a scope device
ps4000OpenUnitAsync: open a scope device without waiting
ps4000OpenUnitAsyncEx: open a specified device without waiting
ps4000OpenUnitEx: open a specified device
ps4000OpenUnitProgress: check progress of OpenUnit call
ps4000RunBlock: start block mode
ps4000RunStreaming: start streaming mode
ps4000RunStreamingEx: start streaming mode with a specified data reduction mode
ps4000SetChannel: set up input channels
ps4000SetDataBuffer: register data buffer with driver
ps4000SetDataBufferBulk: set the buffers for each waveform
ps4000SetDataBuffers: register min/max data buffers with driver
ps4000SetDataBuffersWithMode: register data buffers and specify aggregation mode
ps4000SetDataBufferWithMode: register data buffer and specify aggregation mode
ps4000SetEts: set up equivalent-time sampling (ETS)
ps4000SetEtsTimeBuffer: set up 64-bit buffer for ETS time data
ps4000SetEtsTimeBuffers: set up 32-bit buffers for ETS time data
ps4000SetExtTriggerRange: set EXT trigger input range
ps4000SetPulseWidthQualifier: set up pulse width triggering
ps4000SetSigGenArbitrary: set up arbitrary waveform generator
ps4000SetSigGenBuiltIn: set up function generator
ps4000SetSimpleTrigger: set up level triggers only
ps4000SetTriggerChannelConditions: specify which channels to trigger on
ps4000SetTriggerChannelDirections: set up signal polarities for triggering
ps4000SetTriggerChannelProperties: set up trigger thresholds
ps4000SetTriggerDelay: set up post-trigger delay
ps4000SigGenSoftwareControl: trigger the signal generator
ps4000Stop: stop data capture
ps4000StreamingReady: indicate when streaming-mode data ready

Programming with the PicoScope 4000 Series20

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.1 ps4000BlockReady
typedef void (CALLBACK *ps4000BlockReady)
(

int16_t handle,
PICO_STATUS status,
void * pParameter

)

This callback function is part of your application. You register it with the PicoScope
4000 Series driver using ps4000RunBlock, and the driver calls it back when block-

mode data is ready. You can then download the data using the ps4000GetValues
function.

Applicability Block mode only

Arguments handle, the handle of the device returning the samples.

status, indicates whether an error occurred during collection of the

data.

pParameter, a void pointer passed from ps4000RunBlock. The

callback function can write to this location to send any data, such as
a status flag, back to your application.

Returns nothing

PicoScope 4000 Series Programmer's Guide 21

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.2 ps4000CloseUnit
PICO_STATUS ps4000CloseUnit
(

int16_t handle
)

This function shuts down a PicoScope 4000 scope device.

Applicability All modes

Arguments handle, the handle, returned by ps4000OpenUnit, of the scope

device to be closed.

Returns PICO_OK
PICO_HANDLE_INVALID

Programming with the PicoScope 4000 Series22

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.3 ps4000DataReady
typedef void (CALLBACK *ps4000DataReady)
(

int16_t handle,
int32_t noOfSamples,
int16_t overflow,
uint32_t triggerAt,
int16_t triggered,
void * pParameter

)

This function handles post-collection data returned by the driver after a call to
ps4000GetValuesAsync. It is a callback function that is part of your application. You

register it with the PicoScope 4000 Series driver using ps4000GetValuesAsync, and

the driver calls it back when the data is ready.

Applicability All modes

Arguments handle, the handle of the device returning the samples.

noOfSamples, the number of samples collected.

overflow, returns a flag that indicates whether an overvoltage has

occurred on any of the channels. It is a bit pattern with bit 0
denoting Channel A and bit 1 Channel B.

triggerAt, an index to the buffer indicating the location of the

trigger point. This parameter is valid only when triggered is non-

zero.

triggered, a flag indicating whether a trigger occurred. If non-

zero, a trigger occurred at the location indicated by triggerAt.

pParameter, a void pointer passed from

ps4000GetValuesAsync. The callback function can write to this

location to send any data, such as a status flag, back to the
application. The data type is defined by the application programmer.

Returns nothing

PicoScope 4000 Series Programmer's Guide 23

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.4 ps4000EnumerateUnits
PICO_STATUS ps4000EnumerateUnits
(

int16_t * count,
int8_t * serials,
int16_t * serialLth

)

This function counts the number of PicoScope 4000 units connected to the computer,
and returns a list of serial numbers as a string.

Applicability All modes

Arguments * count, on exit, the number of scopes found

* serials, on exit, a list of serial numbers separated by commas

and terminated by a final null. Example:
AQ005/139,VDR61/356,ZOR14/107. Can be NULL on entry if serial

numbers are not required.

* serialLth, on entry, the length of the int8_t buffer pointed to

by serials; on exit, the length of the string written to serials

Returns PICO_OK
PICO_BUSY
PICO_NULL_PARAMETER
PICO_FW_FAIL
PICO_CONFIG_FAIL
PICO_MEMORY_FAIL
PICO_ANALOG_BOARD
PICO_CONFIG_FAIL_AWG
PICO_INITIALISE_FPGA

Programming with the PicoScope 4000 Series24

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.5 ps4000FlashLed
PICO_STATUS ps4000FlashLed
(

int16_t handle,
int16_t start

)

This function flashes the LED on the front of the scope without blocking the calling
thread. Calls to ps4000RunStreaming and ps4000RunBlock cancel any flashing

started by this function.

Applicability All modes

Arguments handle, the handle of the scope device

start, the action required:

< 0 :flash the LED indefinitely.
0 :stop the LED flashing.
> 0 :flash the LED start times. If the LED is already flashing

on entry to this function, the flash count will be reset to
start.

Returns PICO_OK
PICO_HANDLE_INVALID
PICO_BUSY

PicoScope 4000 Series Programmer's Guide 25

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.6 ps4000GetChannelInformation
PICO_STATUS ps4000GetChannelInformation
(

int16_t handle,
PS4000_CHANNEL_INFO info,
int32_t probe,
int32_t * ranges,
int32_t * length,
int32_t channel

)

This function queries which extra ranges are available on a scope device.

Applicability Reserved for future expansion

Arguments handle, the handle of the required device

info, the type of information required, chosen from the list of

PS4000_CHANNEL_INFO values

probe, not used, must be set to 0

ranges, an array that will be populated with available ranges for

the given value of info. May be NULL. See PS4000_RANGE for

possible values.

length, on entry: the length of the ranges array; on exit: the

number of elements written to ranges or, if ranges is NULL, the

number of elements that would have been written.

channel, the channel for which the information is required. See

PS4000_CHANNEL for possible values.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER

Programming with the PicoScope 4000 Series26

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.7 ps4000GetMaxDownSampleRatio
PICO_STATUS ps4000GetMaxDownSampleRatio
(

int16_t handle,
uint32_t noOfUnaggregatedSamples,
uint32_t * maxDownSampleRatio,
int16_t downSampleRatioMode,
uint16_t segmentIndex

)

This function returns the maximum downsampling ratio that can be used for a given
number of samples.

Applicability All modes

Arguments handle, the handle of the required device

noOfUnaggregatedSamples, the number of unaggregated

samples to be used to calculate the maximum downsampling ratio

maxDownSampleRatio, returns the aggregation ratio

downSampleRatioMode, see ps4000GetValues

segmentIndex, the memory segment where the data is stored

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF_RANGE
PICO_TOO_MANY_SAMPLES

PicoScope 4000 Series Programmer's Guide 27

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.8 ps4000GetStreamingLatestValues
PICO_STATUS ps4000GetStreamingLatestValues
(

int16_t handle,
ps4000StreamingReady lpPs4000Ready,
void * pParameter

)

This function is used to collect the next block of values while streaming is running. You
must call ps4000RunStreaming beforehand to set up streaming.

Applicability Streaming mode only

Arguments handle, the handle of the required device.

lpPs4000Ready, a pointer to your ps4000StreamingReady
callback function that will return the latest aggregated values.

pParameter, a void pointer that will be passed to the

ps4000StreamingReady callback function.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_INVALID_CALL
PICO_BUSY
PICO_NOT_RESPONDING

Programming with the PicoScope 4000 Series28

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.9 ps4000GetTimebase
PICO_STATUS ps4000GetTimebase
(

int16_t handle,
uint32_t timebase,
int32_t noSamples,
int32_t * timeIntervalNanoseconds,
int16_t oversample,
int32_t * maxSamples
uint16_t segmentIndex

)

This function discovers which timebases are available on the oscilloscope. You should
set up the channels using ps4000SetChannel first.

Applicability All modes

Arguments handle, the handle of the required device.

timebase, a code between 0 and 230–1 that specifies the sampling

interval (see timebase guide).

noSamples, the number of samples required. This value is used to

calculate the most suitable time unit to use.

timeIntervalNanoseconds, a pointer to the time interval

between readings at the selected timebase. If a null pointer is
passed, nothing will be written here.

oversample, the amount of oversample required. An oversample

of 4, for example, would quadruple the time interval and quarter the
maximum samples, and at the same time would increase the
effective resolution by one bit. See the topic on oversampling.

maxSamples, a pointer to the maximum number of samples

available. The maximum samples may vary depending on the
number of channels enabled, the timebase chosen and the
oversample selected. If this pointer is null, nothing will be written
here.

segmentIndex, the number of the memory segment to use.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_TOO_MANY_SAMPLES
PICO_INVALID_CHANNEL
PICO_INVALID_TIMEBASE
PICO_INVALID_PARAMETER

PicoScope 4000 Series Programmer's Guide 29

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.10 ps4000GetTimebase2
PICO_STATUS ps4000GetTimebase2
(

int16_t handle,
uint32_t timebase,
int32_t noSamples,
float * timeIntervalNanoseconds,
int16_t oversample,
int32_t * maxSamples
uint16_t segmentIndex

)

This function differs from ps4000GetTimebase only in the float * type of the

timeIntervalNanoseconds argument.

Applicability All modes

Arguments timeIntervalNanoseconds, a pointer to the time interval

between readings at the selected timebase. If a null pointer is
passed, nothing will be written here.

All others as in ps4000GetTimebase.

Returns See ps4000GetTimebase.

Programming with the PicoScope 4000 Series30

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.11 ps4000GetTriggerChannelTimeOffset
PICO_STATUS ps4000GetTriggerChannelTimeOffset
(

int16_t handle,
uint32_t * timeUpper,
uint32_t * timeLower,
PS4000_TIME_UNITS * timeUnits,
uint16_t segmentIndex,
PS4000_CHANNEL channel

)

This function gets the time, as two 4-byte values, at which the trigger occurred,
adjusted for the time skew of the specified channel relative to the trigger source. Call
it after block-mode data has been captured or when data has been retrieved from a
previous block-mode capture.

Applicability Block mode, rapid block mode

Arguments handle, the handle of the required device

timeUpper, a pointer to the upper 32 bits of the time at which the

trigger point occurred

timeLower, a pointer to the lower 32 bits of the time at which the

trigger point occurred

timeUnits, returns the time units in which timeUpper and

timeLower are measured. The allowable values are:

PS4000_FS: femtoseconds

PS4000_PS: picoseconds

PS4000_NS: nanoseconds

PS4000_US: microseconds

PS4000_MS: milliseconds

PS4000_S: seconds

segmentIndex, the number of the memory segment for which the

information is required.

channel, the scope channel for which the information is required

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF_RANGE
PICO_NULL_PARAMETER
PICO_NO_SAMPLES_AVAILABLE

PicoScope 4000 Series Programmer's Guide 31

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.12 ps4000GetTriggerChannelTimeOffset64
PICO_STATUS ps4000GetTriggerChannelTimeOffset64
(

int16_t handle,
int64_t * time,
PS4000_TIME_UNITS * timeUnits,
uint16_t segmentIndex,
PS4000_CHANNEL channel

)

This function gets the time, as a single 8-byte value, at which the trigger occurred,
adjusted for the time skew of the specified channel relative to the trigger source. Call
it after block-mode data has been captured or when data has been retrieved from a
previous block-mode capture.

Applicability Block mode, rapid block mode

Arguments handle, the handle of the required device

time, a pointer to the time at which the trigger point occurred

timeUnits, returns the time units in which time is measured. See

ps4000GetTriggerChannelTimeOffset.

segmentIndex, the number of the memory segment for which the

information is required

channel, the scope channel for which the information is required

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF_RANGE
PICO_NULL_PARAMETER
PICO_NO_SAMPLES_AVAILABLE

Programming with the PicoScope 4000 Series32

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.13 ps4000GetTriggerTimeOffset
PICO_STATUS ps4000GetTriggerTimeOffset
(

int16_t handle
uint32_t * timeUpper
uint32_t * timeLower
PS4000_TIME_UNITS * timeUnits
uint16_t segmentIndex

)

This function gets the time, as two 4-byte values, at which the trigger occurred. Call it
after block-mode data has been captured or when data has been retrieved from a
previous block-mode capture.

Applicability Block mode, rapid block mode

Arguments handle, the handle of the required device

timeUpper, a pointer to the upper 32 bits of the time at which the

trigger point occurred

timeLower, a pointer to the lower 32 bits of the time at which the

trigger point occurred

timeUnits, see ps4000GetTriggerChannelTimeOffset.

segmentIndex, the number of the memory segment for which the

information is required.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF_RANGE
PICO_NULL_PARAMETER
PICO_NO_SAMPLES_AVAILABLE

PicoScope 4000 Series Programmer's Guide 33

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.14 ps4000GetTriggerTimeOffset64
PICO_STATUS ps4000GetTriggerTimeOffset64
(

int16_t handle,
int64_t * time,
PS4000_TIME_UNITS * timeUnits,
uint16_t segmentIndex

)

This function gets the time, as a single 8-byte value, at which the trigger occurred.
Call it after block-mode data has been captured or when data has been retrieved from
a previous block-mode capture.

Applicability Block mode, rapid block mode

Arguments handle, the handle of the required device

time, a pointer to the time at which the trigger point occurred

timeUnits, returns the time units in which time is measured. See

ps4000GetTriggerChannelTimeOffset.

segmentIndex, the number of the memory segment for which the

information is required

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF_RANGE
PICO_NULL_PARAMETER
PICO_NO_SAMPLES_AVAILABLE

Programming with the PicoScope 4000 Series34

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.15 ps4000GetUnitInfo
PICO_STATUS ps4000GetUnitInfo
(

int16_t handle,
int8_t * string,
int16_t stringLength,
int16_t * requiredSize
PICO_INFO info

)

This function writes information about the specified scope device to a character string.
If the device fails to open, only the driver version and error code are available to
explain why the last open unit call failed.

Applicability All modes

Arguments handle, the handle of the device from which information is

required. If an invalid handle is passed, the error code from the last
unit that failed to open is returned.

string, a pointer to the character string buffer in the calling

function where the unit information string (selected with info) will

be stored. If a null pointer is passed, only the requiredSize,
pointer to an int16_t, of the character string buffer is returned.

stringLength, used to return the size of the character string

buffer.

requiredSize, used to return the required character string buffer

size.

info, an enumerated type specifying what information is required

from the driver.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_INVALID_INFO
PICO_INFO_UNAVAILABLE

PICO_INFO constant Example

0: PICO_DRIVER_VERSION, version number of PicoScope 4000 DLL 1,0,0,1

1: PICO_USB_VERSION, type of USB connection to device: 1.1 or

2.0

2.0

2: PICO_HARDWARE_VERSION, hardware version of device 1

3: PICO_VARIANT_INFO, variant number of device 4224

4: PICO_BATCH_AND_SERIAL, batch and serial number of device KJL87/6

5: PICO_CAL_DATE, calibration date of device 11Nov08

6: PICO_KERNEL_VERSION, version of kernel driver 1,1,2,4

PicoScope 4000 Series Programmer's Guide 35

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.16 ps4000GetValues
PICO_STATUS ps4000GetValues
(

int16_t handle,
uint32_t startIndex,
uint32_t * noOfSamples,
uint32_t downSampleRatio,
int16_t downSampleRatioMode,
uint16_t segmentIndex,
int16_t * overflow

)

This function returns block-mode data, either with or without aggregation, starting at
the specified sample number. It is used to get the stored data from the scope after
data collection has stopped.

Applicability Block mode, rapid block mode

Arguments handle, the handle of the required device.

startIndex, a zero-based index that indicates the start point for

data collection. It is measured in sample intervals from the start of
the buffer.

noOfSamples, on entry: the number of samples requested; on exit,

the number of samples actually returned.

downSampleRatio, the aggregation factor that will be applied to

the raw data.

downSampleRatioMode, whether to use aggregation to reduce the

amount of data. The available values are:
RATIO_MODE_NONE (downSampleRatio is ignored)
RATIO_MODE_AGGREGATE (uses aggregation)

segmentIndex, the zero-based number of the memory segment

where the data is stored.

overflow, returns a set of flags that indicate whether an

overvoltage has occurred on any of the channels. It is a bit pattern
with bit 0 denoting Channel A and bit 1 Channel B.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_DEVICE_SAMPLING
PICO_NULL_PARAMETER
PICO_SEGMENT_OUT_OF_RANGE
PICO_INVALID_PARAMETER
PICO_TOO_MANY_SAMPLES
PICO_DATA_NOT_AVAILABLE
PICO_STARTINDEX_INVALID
PICO_INVALID_SAMPLERATIO
PICO_INVALID_CALL
PICO_NOT_RESPONDING
PICO_MEMORY

Programming with the PicoScope 4000 Series36

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.17 ps4000GetValuesAsync
PICO_STATUS ps4000GetValuesAsync
(

int16_t handle,
uint32_t startIndex,
uint32_t noOfSamples,
uint32_t downSampleRatio,
int16_t downSampleRatioMode,
uint16_t segmentIndex,
void * lpDataReady,
void * pParameter

)

This function returns streaming data, either with or without aggregation, starting at
the specified sample number. It is used to get the stored data from the scope after
data collection has stopped. It returns the data using a callback.

Applicability Streaming mode only

Arguments handle, the handle of the required device

startIndex, see ps4000GetValues
noOfSamples, see ps4000GetValues
downSampleRatio, see ps4000GetValues
downSampleRatioMode, see ps4000GetValues
segmentIndex, see ps4000GetValues

lpDataReady, a pointer to the ps4000StreamingReady function

that is called when the data is ready

pParameter, a void pointer that will be passed to the

ps4000StreamingReady callback function. The data type depends

on the design of the callback function, which is determined by the
application programmer.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_DEVICE_SAMPLING – streaming only
PICO_NULL_PARAMETER
PICO_STARTINDEX_INVALID
PICO_SEGMENT_OUT_OF_RANGE
PICO_INVALID_PARAMETER
PICO_DATA_NOT_AVAILABLE
PICO_INVALID_SAMPLERATIO
PICO_INVALID_CALL

PicoScope 4000 Series Programmer's Guide 37

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.18 ps4000GetValuesBulk
PICO_STATUS ps4000GetValuesBulk
(

int16_t handle,
uint32_t * noOfSamples,
uint16_t fromSegmentIndex,
uint16_t toSegmentIndex,
int16_t * overflow

)

This function allows more than one waveform to be retrieved at a time in rapid block
mode. The waveforms must have been collected sequentially and in the same run. This
method of collection does not support aggregation.

Applicability Rapid block mode

Arguments handle, the handle of the device

* noOfSamples, On entering the API, the number of samples

required. On exiting the API, the actual number retrieved. The
number of samples retrieved will not be more than the number
requested. The data retrieved always starts with the first sample
captured.

fromSegmentIndex, the first segment from which the waveform

should be retrieved

toSegmentIndex, the last segment from which the waveform

should be retrieved

* overflow, equal to or larger than the number of waveforms to

be retrieved. Each segment index has a separate overflow element,

with overflow[0] containing the fromSegmentIndex and the last

index the toSegmentIndex.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF_RANGE
PICO_NO_SAMPLES_AVAILABLE
PICO_STARTINDEX_INVALID
PICO_NOT_RESPONDING

Programming with the PicoScope 4000 Series38

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.19 ps4000GetValuesTriggerChannelTimeOffsetBulk
PICO_STATUS ps4000GetValuesTriggerChannelTimeOffsetBulk
(

int16_t handle,
uint32_t * timesUpper,
uint32_t * timesLower,
PS4000_TIME_UNITS * timeUnits,
uint16_t fromSegmentIndex,
uint16_t toSegmentIndex,
PS4000_CHANNEL channel

)

This function retrieves the time offset, as lower and upper 32-bit values, for a group of
waveforms obtained in rapid block mode, adjusted for the time skew relative to the
trigger source. The array size for timesUpper and timesLower must be greater

than or equal to the number of waveform time offsets requested. The segment indexes
are inclusive.

Applicability Rapid block mode

Arguments handle, the handle of the device

* timesUpper, a pointer to 32-bit integers. This will hold the most

significant 32 bits of the time offset for each requested segment
index. times[0] will hold the fromSegmentIndex time offset and

the last times index will hold the toSegmentIndex time offset.

* timesLower, a pointer to 32-bit integers. This will hold the least-

significant 32 bits of the time offset for each requested segment
index. times[0] will hold the fromSegmentIndex time offset and

the last times index will hold the toSegmentIndex time offset.

* timeUnits, a pointer to a range of PS4000_TIME_UNITS. This

must be equal to or larger than the number of requested times.
timeUnits[0] will contain the time unit for fromSegmentIndex
and the last index will contain the time unit for toSegmentIndex.

fromSegmentIndex, the first segment for which the time offset is

required

toSegmentIndex, the last segment for which the time offset is

required. If toSegmentIndex is less than fromSegmentIndex then

the driver will wrap around from the last segment to the first.

channel, the channel for which the information is required.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF_RANGE
PICO_NO_SAMPLES_AVAILABLE

PicoScope 4000 Series Programmer's Guide 39

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.20 ps4000GetValuesTriggerChannelTimeOffsetBulk64
PICO_STATUS ps4000GetValuesTriggerChannelTimeOffsetBulk64
(

int16_t handle,
int64_t * times,
PS4000_TIME_UNITS * timeUnits,
uint16_t fromSegmentIndex,
uint16_t toSegmentIndex,
PS4000_CHANNEL channel

)

This function retrieves the time offset, as a 64-bit integer, for a group of waveforms
captured in rapid block mode, adjusted for the time skew relative to the trigger source.
The array size of times must be greater than or equal to the number of waveform

time offsets requested. The segment indexes are inclusive.

Applicability Rapid block mode

Arguments handle, the handle of the device

* times, a pointer to 64-bit integers. This will hold the time offset

for each requested segment index. times[0] will hold the time

offset for fromSegmentIndex, and the last times index will hold

the time offset for toSegmentIndex.

* timeUnits, a pointer to a range of PS4000_TIME_UNITS. This

must be equal or larger than the number of requested times.
timeUnits[0] will contain the time unit for fromSegmentIndex,
and the last index will contain the toSegmentIndex.

fromSegmentIndex, the first segment for which the time offset is

required. The result will be placed in times[0] and timeUnits[0].

toSegmentIndex, the last segment for which the time offset is

required. The result will be placed in the last elements of the times
and timeUnits arrays. If toSegmentIndex is less than

fromSegmentIndex then the driver will wrap around from the last

segment to the first.

channel, the scope channel for which information is required

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF_RANGE
PICO_NO_SAMPLES_AVAILABLE

Programming with the PicoScope 4000 Series40

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.21 ps4000GetValuesTriggerTimeOffsetBulk
PICO_STATUS ps4000GetValuesTriggerTimeOffsetBulk
(

int16_t handle,
uint32_t * timesUpper,
uint32_t * timesLower,
PS4000_TIME_UNITS * timeUnits,
uint16_t fromSegmentIndex,
uint16_t toSegmentIndex

)

This function retrieves the time offset, as lower and upper 32-bit values, for a group of
waveforms obtained in rapid block mode. The array size for timesUpper and

timesLower must be greater than or equal to the number of waveform time offsets

requested. The segment indexes are inclusive.

Applicability Rapid block mode

Arguments handle, the handle of the device

* timesUpper, a pointer to 32-bit integers. This will hold the most

significant 32 bits of the time offset for each requested segment
index. times[0] will hold the fromSegmentIndex time offset and

the last times index will hold the toSegmentIndex time offset.

* timesLower, a pointer to 32-bit integers. This will hold the least-

significant 32 bits of the time offset for each requested segment
index. times[0] will hold the fromSegmentIndex time offset and

the last times index will hold the toSegmentIndex time offset.

* timeUnits, a pointer to a range of PS4000_TIME_UNITS. This

must be equal to or larger than the number of requested times.
timeUnits[0] will contain the time unit for fromSegmentIndex
and the last index will contain the time unit for toSegmentIndex.

fromSegmentIndex, the first segment for which the time offset is

required

toSegmentIndex, the last segment for which the time offset is

required. If toSegmentIndex is less than fromSegmentIndex then

the driver will wrap around from the last segment to the first.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF_RANGE
PICO_NO_SAMPLES_AVAILABLE

PicoScope 4000 Series Programmer's Guide 41

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.22 ps4000GetValuesTriggerTimeOffsetBulk64
PICO_STATUS ps4000GetValuesTriggerTimeOffsetBulk64
(

int16_t handle,
int64_t * times,
PS4000_TIME_UNITS * timeUnits,
uint16_t fromSegmentIndex,
uint16_t toSegmentIndex

)

This function retrieves the time offset, as a 64-bit integer, for a group of waveforms
captured in rapid block mode. The array size of times must be greater than or equal

to the number of waveform time offsets requested. The segment indexes are inclusive.

Applicability Rapid block mode

Arguments handle, the handle of the device

* times, a pointer to 64-bit integers. This will hold the time offset

for each requested segment index. times[0] will hold the time

offset for fromSegmentIndex, and the last times index will hold

the time offset for toSegmentIndex.

* timeUnits, a pointer to a range of PS4000_TIME_UNITS. This

must be equal or larger than the number of requested times.
timeUnits[0] will contain the time unit for fromSegmentIndex,
and the last index will contain the toSegmentIndex.

fromSegmentIndex:, the first segment for which the time offset is

required. The result will be placed in times[0] and timeUnits[0].

toSegmentIndex, the last segment for which the time offset is

required. The result will be placed in the last elements of the times
and timeUnits arrays. If toSegmentIndex is less than

fromSegmentIndex then the driver will wrap around from the last

segment to the first.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF_RANGE
PICO_NO_SAMPLES_AVAILABLE

Programming with the PicoScope 4000 Series42

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.23 ps4000HoldOff
PICO_STATUS ps4000HoldOff
(
 int16_t handle,
 uint64_t holdoff,
 PS4000_HOLDOFF_TYPE type
)

This function sets the holdoff time - the time that the scope waits after each trigger
event before allowing the next trigger event.

Applicability Not currently supported. Reserved for future use.

Arguments holdoff, the number of samples between trigger events. The time

is calculated by multiplying the sample interval by the holdoff.

type, the type of hold-off. Only holdoff by time is currently

supported:
PS4000_TIME

Returns PICO_OK - success
PICO_DRIVER_FUNCTION
PICO_INVALID_PARAMETER

PicoScope 4000 Series Programmer's Guide 43

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.24 ps4000IsLedFlashing
PICO_STATUS ps4000IsLedFlashing
(

int16_t handle,
int16_t * status

)

This function reports whether or not the LED is flashing.

Applicability All modes

Arguments handle, the handle of the scope device

status, returns a flag indicating the status of the LED:

<> 0 : flashing
0 : not flashing

Returns PICO_OK
PICO_HANDLE_INVALID
PICO_NULL_PARAMETER

Programming with the PicoScope 4000 Series44

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.25 ps4000IsReady
PICO_STATUS ps4000IsReady
(

int16_t handle,
int16_t * ready

)

This function may be used instead of a callback function to receive data from
ps4000RunBlock. To use this method, pass a NULL pointer as the lpReady argument

to ps4000RunBlock. You must then poll the driver to see if it has finished collecting

the requested samples.

Applicability Block mode

Arguments handle, the handle of the required device

ready, on exit, indicates the state of the collection. If zero, the

device is still collecting. If non-zero, the device has finished collecting
and ps4000GetValues can be used to retrieve the data.

Returns

PicoScope 4000 Series Programmer's Guide 45

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.26 ps4000IsTriggerOrPulseWidthQualifierEnabled
PICO_STATUS ps4000IsTriggerOrPulseWidthQualifierEnabled
(

int16_t handle,
int16_t * triggerEnabled,
int16_t * pulseWidthQualifierEnabled

)

This function discovers whether a trigger, or pulse width triggering, is enabled.

Applicability Call after setting up the trigger, and just before calling either
ps4000RunBlock or ps4000RunStreaming.

Arguments handle, the handle of the required device

triggerEnabled, indicates whether the trigger will successfully be

set when ps4000RunBlock or ps4000RunStreaming is called. A

non-zero value indicates that the trigger is set, otherwise the trigger
is not set.

pulseWidthQualifierEnabled, indicates whether the pulse

width qualifier will successfully be set when ps4000RunBlock or

ps4000RunStreaming is called. A non-zero value indicates that the

pulse width qualifier is set, otherwise the pulse width qualifier is not
set.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER

Programming with the PicoScope 4000 Series46

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.27 ps4000MemorySegments
PICO_STATUS ps4000MemorySegments
(

int16_t handle
uint16_t nSegments,
int32_t * nMaxSamples

)

This function sets the number of memory segments that the scope device will use.

By default, each capture fills the scope device's available memory. This function allows
you to divide the memory into a number of segments so that the scope can store
several captures sequentially. The number of segments defaults to 1 when the scope
device is opened.

Applicability All modes

Arguments handle, the handle of the required device

nSegments, the number of segments to be used, from 1 to 8192

nMaxSamples, returns the number of samples that are available in

each segment. This is independent of the number of channels, so if
more than one channel is in use then the number of samples
available to each channel is nMaxSamples divided by the number of

channels.

Returns PICO_OK
PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_TOO_MANY_SEGMENTS
PICO_MEMORY

PicoScope 4000 Series Programmer's Guide 47

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.28 ps4000NoOfStreamingValues
PICO_STATUS ps4000NoOfStreamingValues
(

int16_t handle,
uint32_t * noOfValues

)

This function returns the available number of samples from a streaming run.

Applicability Streaming mode. Call after ps4000Stop.

Arguments handle, the handle of the required device

noOfValues, returns the number of samples

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_NO_SAMPLES_AVAILABLE
PICO_NOT_USED
PICO_BUSY

Programming with the PicoScope 4000 Series48

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.29 ps4000OpenUnit
PICO_STATUS ps4000OpenUnit
(

int16_t * handle
)

This function opens a scope device. The maximum number of units that can be opened
is determined by the operating system, the kernel driver and the PC's hardware.

Applicability All modes

Arguments handle, pointer to an int16_t that receives the handle number:

-1 : if the unit fails to open,
0 : if no unit is found or
> 0 : if successful (value is handle of the device opened)

The handle number must be used in all subsequent calls to API
functions to identify this scope device.

Returns PICO_OK
PICO_OS_NOT_SUPPORTED
PICO_OPEN_OPERATION_IN_PROGRESS
PICO_EEPROM_CORRUPT
PICO_KERNEL_DRIVER_TOO_OLD
PICO_FW_FAIL
PICO_MAX_UNITS_OPENED
PICO_NOT_FOUND
PICO_NOT_RESPONDING

PicoScope 4000 Series Programmer's Guide 49

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.30 ps4000OpenUnitAsync
PICO_STATUS ps4000OpenUnitAsync
(

int16_t * status
)

This function opens a scope device without blocking the calling thread. You can find
out when it has finished by periodically calling ps4000OpenUnitProgress until that

function returns a non-zero value.

Applicability All modes

Arguments status, pointer to an int16_t that indicates:

0 if there is already an open operation in progress
1 if the open operation is initiated

Returns PICO_OK
PICO_OPEN_OPERATION_IN_PROGRESS
PICO_OPERATION_FAILED

Programming with the PicoScope 4000 Series50

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.31 ps4000OpenUnitAsyncEx
PICO_STATUS ps4000OpenUnitAsyncEx
(

int16_t * status,
int8_t * serial

)

This function opens a scope device selected by serial number without blocking the
calling thread. You can find out when it has finished by periodically calling
ps4000OpenUnitProgress until that function returns a non-zero value.

Applicability All modes

Arguments status, pointer to a int16_t that indicates:

0 if there is already an open operation in progress
1 if the open operation is initiated

serial, the serial number of the device to be opened. A null-

terminated string.

Returns PICO_OK
PICO_OPEN_OPERATION_IN_PROGRESS
PICO_OPERATION_FAILED

PicoScope 4000 Series Programmer's Guide 51

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.32 ps4000OpenUnitEx
PICO_STATUS ps4000OpenUnitEx
(

int16_t * handle,
int8_t * serial

)

This function opens a scope device. The maximum number of units that can be opened
is determined by the operating system, the kernel driver and the PC's hardware.

Applicability All modes

Arguments handle, pointer to an int16_t that receives the handle number:

-1 : if the unit fails to open,
0 : if no unit is found or
> 0 : if successful (value is handle to the device opened)

The handle number must be used in all subsequent calls to API
functions to identify this scope device.

serial, the serial number of the device to be opened. A null-

terminated string.

Returns PICO_OK
PICO_OS_NOT_SUPPORTED
PICO_OPEN_OPERATION_IN_PROGRESS
PICO_EEPROM_CORRUPT
PICO_KERNEL_DRIVER_TOO_OLD
PICO_FW_FAIL
PICO_MAX_UNITS_OPENED
PICO_NOT_FOUND
PICO_NOT_RESPONDING

Programming with the PicoScope 4000 Series52

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.33 ps4000OpenUnitProgress
PICO_STATUS ps4000OpenUnitProgress
(

int16_t * handle,
int16_t * progressPercent,
int16_t * complete

)

This function checks on the progress of ps4000OpenUnitAsync.

Applicability Use after ps4000OpenUnitAsync

Arguments handle, pointer to an int16_t where the unit handle is to be

written. -1 if the unit fails to open, 0 if no unit is found or a non-zero
handle to the device.

Note: This handle is not valid unless the function returns
PICO_OK.

progressPercent, pointer to an int16_t to which the

percentage progress is to be written. 100% implies that the open
operation is complete.

complete, pointer to an int16_t that is set to 1 when the open

operation has finished

Returns PICO_OK
PICO_NULL_PARAMETER
PICO_OPERATION_FAILED

PicoScope 4000 Series Programmer's Guide 53

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.34 ps4000RunBlock
PICO_STATUS ps4000RunBlock
(

int16_t handle,
int32_t noOfPreTriggerSamples,
int32_t noOfPostTriggerSamples,
uint32_t timebase,
int16_t oversample,
int32_t * timeIndisposedMs,
uint16_t segmentIndex,
ps4000BlockReady lpReady,
void * pParameter

)

This function starts a collection of data points (samples) in block mode.

The number of samples is determined by noOfPreTriggerSamples and

noOfPostTriggerSamples (see below for details). The total number of samples

must not be more than the memory depth of the segment referred to by
segmentIndex.

Programming with the PicoScope 4000 Series54

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

Applicability Block mode, rapid block mode

Arguments handle, the handle of the required device.

noOfPreTriggerSamples, the number of samples to return before

the trigger event. If no trigger has been set then this argument is
ignored and noOfPostTriggerSamples specifies the maximum

number of data points (samples) to collect.

noOfPostTriggerSamples, the number of samples to be taken

after a trigger event. If no trigger event is set then this specifies the
maximum number of samples to be taken. If a trigger condition has
been set, this specifies the number of data points (samples) to be
taken after a trigger has fired, and the number of data points to be
collected is:

noOfPreTriggerSamples + noOfPostTriggerSamples

timebase, a number in the range 0 to 230–1. See the guide to

calculating timebase values.

oversample, the oversampling factor, a number in the range 1 to

16.

timeIndisposedMs, returns the time, in milliseconds, that the

PicoScope4000 will spend collecting samples. This does not include
any auto trigger timeout. If this pointer is null, nothing will be
written here.

segmentIndex, zero-based, specifies which memory segment to

use.

lpReady, a pointer to the ps4000BlockReady callback that the

driver will call when the data has been collected. To use the
ps4000IsReady polling method instead of a callback function, set

this pointer to NULL.

pParameter, a void pointer that is passed to the

ps4000BlockReady callback function. The callback can use the

pointer to return arbitrary data to your application.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_SEGMENT_OUT_OF_RANGE
PICO_INVALID_CHANNEL
PICO_INVALID_TRIGGER_CHANNEL
PICO_INVALID_CONDITION_CHANNEL
PICO_TOO_MANY_SAMPLES
PICO_INVALID_TIMEBASE
PICO_NOT_RESPONDING
PICO_CONFIG_FAIL
PICO_INVALID_PARAMETER
PICO_NOT_RESPONDING
PICO_TRIGGER_ERROR

PicoScope 4000 Series Programmer's Guide 55

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.35 ps4000RunStreaming
PICO_STATUS ps4000RunStreaming
(

int16_t handle,
uint32_t * sampleInterval,
PS4000_TIME_UNITS sampleIntervalTimeUnits
uint32_t maxPreTriggerSamples,
uint32_t maxPostTriggerSamples,
int16_t autoStop
uint32_t downSampleRatio,
uint32_t overviewBufferSize

)

This function tells the oscilloscope to start collecting data in streaming mode. When
data has been collected from the device it is aggregated and the values returned to
the application. Call ps4000GetStreamingLatestValues to retrieve the data.

When a trigger is set, the sum of maxPreTriggerSamples and

maxPostTriggerSamples is the total number of samples stored in the driver. If

autoStop is false then this will become the maximum number of unaggregated

samples.

Programming with the PicoScope 4000 Series56

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

Applicability Streaming mode only

Arguments handle, the handle of the required device.

sampleInterval, a pointer to the requested time interval between

data points on entry and the actual time interval assigned on exit.

sampleIntervalTimeUnits, the unit of time that the

sampleInterval is set to. Use one of these values:
PS4000_FS
PS4000_PS
PS4000_NS
PS4000_US
PS4000_MS
PS4000_S

maxPreTriggerSamples, the maximum number of raw samples

before a trigger condition for each enabled channel. If no trigger
condition is set this argument is ignored.

maxPostTriggerSamples, the maximum number of raw samples

after a trigger condition for each enabled channel. If no trigger
condition is set this argument states the maximum number of
samples to be stored.

autoStop, a flag to specify if the streaming should stop when all

of maxSamples have been taken.

downSampleRatio, the number of raw values to each aggregated

value.

overviewBufferSize, the size of the overview buffers. These are

temporary buffers used for storing the data before returning it to the
application. The size is the same as the bufferLth value passed to

ps4000SetDataBuffer.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_STREAMING_FAILED
PICO_NOT_RESPONDING
PICO_TRIGGER_ERROR
PICO_INVALID_SAMPLE_INTERVAL
PICO_INVALID_BUFFER

PicoScope 4000 Series Programmer's Guide 57

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.36 ps4000RunStreamingEx
PICO_STATUS ps4000RunStreamingEx
(

int16_t handle,
uint32_t * sampleInterval,
PS4000_TIME_UNITS sampleIntervalTimeUnits
uint32_t maxPreTriggerSamples,
uint32_t maxPostTriggerSamples,
int16_t autoStop
uint32_t downSampleRatio,
int16_t downSampleRatioMode,
uint32_t overviewBufferSize

)

This function tells the oscilloscope to start collecting data in streaming mode and with
a specified data reduction mode. When data has been collected from the device it is
aggregated and the values returned to the application. Call
ps4000GetStreamingLatestValues to retrieve the data.

When a trigger is set, the sum of maxPreTriggerSamples and

maxPostTriggerSamples is the total number of samples stored in the driver. If

autoStop is false then this will become the maximum number of unaggregated

samples.

Programming with the PicoScope 4000 Series58

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

Applicability Streaming mode only

Arguments handle, the handle of the required device.

sampleInterval, a pointer to the requested time interval between

data points on entry and the actual time interval assigned on exit.

sampleIntervalTimeUnits, the unit of time that the

sampleInterval is set to. Use one of these values:
PS4000_FS
PS4000_PS
PS4000_NS
PS4000_US
PS4000_MS
PS4000_S

maxPreTriggerSamples, the maximum number of raw samples

before a trigger condition for each enabled channel. If no trigger
condition is set this argument is ignored.

maxPostTriggerSamples, the maximum number of raw samples

after a trigger condition for each enabled channel. If no trigger
condition is set this argument states the maximum number of
samples to be stored.

autoStop, a flag to specify if the streaming should stop when all

of maxSamples have been taken.

downSampleRatio, the number of raw values to each aggregated

value.

downSampleRatioMode, the data reduction mode to use.

overviewBufferSize, the size of the overview buffers. These are

temporary buffers used for storing the data before returning it to the
application. The size is the same as the bufferLth value passed to

ps4000SetDataBuffer.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_STREAMING_FAILED
PICO_NOT_RESPONDING
PICO_TRIGGER_ERROR
PICO_INVALID_SAMPLE_INTERVAL
PICO_INVALID_BUFFER

PicoScope 4000 Series Programmer's Guide 59

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.37 ps4000SetBwFilter
PICO_STATUS ps4000SetBwFilter
(
 int16_t handle,
 PS4000_CHANNEL channel,
 int16_t enable
)

This function enables or disables the bandwidth-limiting filter on the specified channel.

Applicability PicoScope 4262 only

Arguments handle, the handle of the required device

channel, an enumerated type. The values are:
PS4000_CHANNEL_A
PS4000_CHANNEL_B

enable, whether to enable or disable the filter:

TRUE = enable

FALSE = disable

Returns PICO_OK
PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL

Programming with the PicoScope 4000 Series60

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.38 ps4000SetChannel
PICO_STATUS ps4000SetChannel
(

int16_t handle,
PS4000_CHANNEL channel,
int16_t enabled,
int16_t dc,
PS4000_RANGE range

)

This function specifies whether an input channel is to be enabled, the AC/DC coupling
mode and the voltage range.

Applicability All modes

Arguments handle, the handle of the required device

channel, an enumerated type. The values are: -
PS4000_CHANNEL_A
PS4000_CHANNEL_B
PS4000_CHANNEL_C (4-channel scopes only)

PS4000_CHANNEL_D (4-channel scopes only)

enabled, specifies if the channel is active. The values are: -

TRUE = active

FALSE = inactive

dc, specifies the AC/DC coupling mode. The values are: -

TRUE = DC

FALSE = AC

range, specifies the measuring range. Measuring ranges 0 to 12, for

standard scopes, are shown in the table below. Additional ranges for
special-purpose scopes are listed under PS4000_RANGE. For

example, to enable IEPE input mode on an IEPE-enabled scope,
select one of the ranges beginning with PS4000_ACCELEROMETER_.

Returns PICO_OK
PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL
PICO_INVALID_VOLTAGE_RANGE

PicoScope 4000 Series Programmer's Guide 61

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

range Voltage range

0 PS4000_10MV ±10 mV

1 PS4000_20MV ±20 mV

2 PS4000_50MV ±50 mV

3 PS4000_100MV ±100 mV

4 PS4000_200MV ±200 mV

5 PS4000_500MV ±500 mV

6 PS4000_1V ±1 V

7 PS4000_2V ±2 V

8 PS4000_5V ±5 V

9 PS4000_10V ±10 V

10 PS4000_20V ±20 V

11 PS4000_50V ±50 V

12 PS4000_100V ±100 V

Programming with the PicoScope 4000 Series62

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.39 ps4000SetDataBuffer
PICO_STATUS ps4000SetDataBuffer
(

int16_t handle,
PS4000_CHANNEL channel,
int16_t * buffer,
int32_t bufferLth

)

This function registers your data buffer, for non-aggregated data, with the PicoScope
4000 driver. You need to allocate the buffer before calling this function.

Applicability All modes.

For aggregated data, use ps4000SetDataBuffers instead.

Arguments handle, the handle of the required device

channel, the channel for which you want to set the buffers. Use

one of these values: -
PS4000_CHANNEL_A
PS4000_CHANNEL_B
PS4000_CHANNEL_C (4-channel scopes only)

PS4000_CHANNEL_D (4-channel scopes only)

buffer, a buffer to receive the data values

bufferLth, the size of the buffer array

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL

PicoScope 4000 Series Programmer's Guide 63

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.40 ps4000SetDataBufferBulk
PICO_STATUS ps4000SetDataBufferBulk
(

int16_t handle,
PS4000_CHANNEL channel,
int16_t * buffer,
int32_t bufferLth,
uint16_t waveform

)

This function allows the buffers to be set for each waveform in rapid block mode. The
number of waveforms captured is determined by the nCaptures argument sent to

ps4000SetNoOfCaptures. There is only one buffer for each waveform, because bulk

collection does not support aggregation.

Applicability Rapid block mode

Arguments handle, the handle of the device

channel, the scope channel with which the buffer is to be

associated. The data should be retrieved from this channel by calling
one of the GetValues functions.

* buffer, an array in which the captured data is stored

bufferLth, the size of the buffer

waveform, an index to the waveform number, between 0 and
nCaptures–1

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL
PICO_INVALID_PARAMETER

Programming with the PicoScope 4000 Series64

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.41 ps4000SetDataBuffers
PICO_STATUS ps4000SetDataBuffers
(

int16_t handle,
PS4000_CHANNEL channel,
int16_t * bufferMax,
int16_t * bufferMin,
int32_t bufferLth

)

This function registers your data buffers, for receiving aggregated data, with the
PicoScope 4000 driver. You need to allocate memory for the buffers before calling this
function.

Applicability All sampling modes.

For non-aggregated data, use ps4000SetDataBuffer instead.

Arguments handle, the handle of the required device.

channel, the channel for which you want to set the buffers. Use

one of these constants: -
PS4000_CHANNEL_A
PS4000_CHANNEL_B
PS4000_CHANNEL_C (4-channel scopes only)

PS4000_CHANNEL_D (4-channel scopes only)

bufferMax, a buffer to receive the maximum data values in

aggregation mode, or the non-aggregated values otherwise.

bufferMin, a buffer to receive the minimum data values when

downSampleRatio > 1. Not used when downSampleRatio is 1.

bufferLth, specifies the size of the bufferMax and bufferMin
arrays.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL

PicoScope 4000 Series Programmer's Guide 65

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.42 ps4000SetDataBuffersWithMode
PICO_STATUS ps4000SetDataBuffersWithMode
(

int16_t handle,
PS4000_CHANNEL channel,
int16_t * bufferMax,
int16_t * bufferMin,
int32_t bufferLth,
RATIO_MODE mode

)

This function registers your data buffers, for receiving aggregated data, with the
PicoScope 4000 driver. You need to allocate memory for the buffers before calling this
function.

Applicability All sampling modes.

For non-aggregated data, use ps4000SetDataBuffer instead.

Arguments handle, the handle of the required device.

channel, the channel for which you want to set the buffers. Use

one of these constants: -
PS4000_CHANNEL_A
PS4000_CHANNEL_B
PS4000_CHANNEL_C (4-channel scopes only)

PS4000_CHANNEL_D (4-channel scopes only)

bufferMax, a buffer to receive the maximum data values in

aggregation mode, or the non-aggregated values otherwise.

bufferMin, a buffer to receive the minimum data values when

downSampleRatio > 1. Not used when downSampleRatio is 1.

bufferLth, specifies the size of the bufferMax and bufferMin
arrays.

mode, the data reduction mode to use

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL

Programming with the PicoScope 4000 Series66

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.43 ps4000SetDataBufferWithMode
PICO_STATUS ps4000SetDataBufferWithMode
(

int16_t handle,
PS4000_CHANNEL channel,
int16_t * buffer,
int32_t bufferLth,
RATIO_MODE mode

)

This function registers your data buffer, for non-aggregated data, with the PicoScope
4000 driver. You need to allocate the buffer before calling this function.

Applicability All modes.

For aggregated data, use ps4000SetDataBuffers instead.

Arguments handle, the handle of the required device

channel, the channel for which you want to set the buffers. Use

one of these values: -
PS4000_CHANNEL_A
PS4000_CHANNEL_B
PS4000_CHANNEL_C (4-channel scopes only)

PS4000_CHANNEL_D (4-channel scopes only)

buffer, a buffer to receive the data values

bufferLth, the size of the buffer array

mode, the type of data reduction to use

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL

PicoScope 4000 Series Programmer's Guide 67

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.44 ps4000SetEts
PICO_STATUS ps4000SetEts
(

int16_t handle,
PS4000_ETS_MODE mode,
int16_t etsCycles,
int16_t etsInterleave,
int32_t * sampleTimePicoseconds

)

This function is used to enable or disable ETS (equivalent time sampling) and to set
the ETS parameters.

Applicability Block mode only. ETS is not supported by PicoScope 4262.

Arguments handle, the handle of the required device

mode, the ETS mode. Use one of these values: -

PS4000_ETS_OFF disables ETS

PS4000_ETS_FAST enables ETS and provides ets_cycles
cycles of data, which may contain data
from previously returned cycles

PS4000_ETS_SLOW enables ETS and provides fresh data

every ets_cycles cycles. This mode

takes longer to provide each data set,
but the data sets are more stable and
are guaranteed to contain only new data.

ets_cycles, the number of cycles to store: the computer can then

select ets_interleave cycles to give the most uniform spread of

samples. ets_cycles should be between two and five times the

value of ets_interleave.

ets_interleave, the number of ETS interleaves to use. If the

sample time is 20 ns and the interleave is 10, the approximate time
per sample will be 2 ns.

sampleTimePicoseconds, returns the effective sample time used

by the function

Returns PICO_OK
PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER

Programming with the PicoScope 4000 Series68

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.45 ps4000SetEtsTimeBuffer
PICO_STATUS ps4000SetEtsTimeBuffer
(

int16_t handle,
int64_t * buffer,
int32_t bufferLth

)

This function tells the PicoScope 4000 driver where to find your application's ETS time
buffers. These buffers contain the 64-bit timing information for each ETS sample after
you run a block-mode ETS capture.

Applicability ETS mode only.

ETS mode is not supported by the PicoScope 4262 oscilloscope.

If your programming language does not support 64-bit data, use the
32-bit version ps4000SetEtsTimeBuffers instead.

Arguments handle, the handle of the required device

buffer, a pointer to a set of 8-byte words, the time in nanoseconds

at which the first data point occurred

bufferLth, the size of the buffer array

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER

PicoScope 4000 Series Programmer's Guide 69

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.46 ps4000SetEtsTimeBuffers
PICO_STATUS ps4000SetEtsTimeBuffers
(

int16_t handle,
uint32_t * timeUpper,
uint32_t * timeLower,
int32_t bufferLth

)

This function tells the PicoScope 4000 driver where to find your application's ETS time
buffers. These buffers contain the timing information for each ETS sample after you
run a block-mode ETS capture. There are two buffers containing the upper and lower
32-bit parts of the timing information, to allow programming languages that do not
support 64-bit data to retrieve the timings correctly.

Note: ETS mode is not supported by the PicoScope 4262 oscilloscope.

Applicability ETS mode only.

If your programming language supports 64-bit data, then you can
use ps4000SetEtsTimeBuffer instead.

Arguments handle, the handle of the required device

timeUpper, a pointer to a set of 4-byte words, the time in

nanoseconds at which the first data point occurred, top 32 bits only

timeLower, a pointer to a set of 4-byte words, the time in

nanoseconds at which the first data point occurred, bottom 32 bits
only

bufferLth, the size of the timeUpper and timeLower arrays

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER

Programming with the PicoScope 4000 Series70

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.47 ps4000SetExtTriggerRange
PICO_STATUS ps4000SetExtTriggerRange
(

int16_t handle,
PS4000_RANGE extRange

)

This function sets the range of the external trigger.

Applicability PicoScope 4262 only

Arguments handle, the handle of the required oscilloscope

extRange, specifies the range for the external trigger (±500 mV

or ±5 V)

Returns PICO_OK
PICO_INVALID_PARAMETER

extRange Voltage range

5 PS4000_500MV ±500 mV

8 PS4000_5V ±5 V

PicoScope 4000 Series Programmer's Guide 71

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.48 ps4000SetNoOfCaptures
PICO_STATUS ps4000SetNoOfCaptures
(

int16_t handle,
uint16_t nCaptures

)

This function sets the number of captures to be collected in one run of rapid block
mode. If you do not call this function before a run, the driver will capture one
waveform.

Applicability Rapid block mode

Arguments handle, the handle of the device

nCaptures, the number of waveforms to be captured in one run

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER

Programming with the PicoScope 4000 Series72

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.49 ps4000SetPulseWidthQualifier
PICO_STATUS ps4000SetPulseWidthQualifier
(

int16_t handle,
PWQ_CONDITIONS * conditions,
int16_t nConditions,
THRESHOLD_DIRECTION direction,
uint32_t lower,
uint32_t upper,
PULSE_WIDTH_TYPE type

)

This function sets up pulse width qualification, which can be used on its own for pulse
width triggering or combined with window triggering to produce more complex
triggers. The pulse width qualifier is set by defining one or more conditions structures
that are then ORed together. Each structure is itself the AND of the states of one or
more of the inputs. This AND-OR logic allows you to create any possible Boolean
function of the scope's inputs.

Applicability All modes

Arguments handle, the handle of the required device

conditions, a pointer to an array of PWQ_CONDITIONS structures

specifying the conditions that should be applied to each channel. In
the simplest case, the array consists of a single element. When there
are several elements, the overall trigger condition is the logical OR of
all the elements. If conditions is set to null then the pulse width

qualifier is not used.

nConditions, the number of elements in the conditions array.

If nConditions is zero then the pulse width qualifier is not used.

direction, the direction of the signal required for the trigger to fire

lower, the lower limit of the pulse width counter

upper, the upper limit of the pulse width counter. This parameter is

used only when the type is set to PW_TYPE_IN_RANGE or
PW_TYPE_OUT_OF_RANGE.

type, the pulse width type, one of these constants: -

PW_TYPE_NONE (do not use the pulse width qualifier)

PW_TYPE_LESS_THAN (pulse width less than lower)

PW_TYPE_GREATER_THAN (pulse width greater than lower)

PW_TYPE_IN_RANGE (pulse width between lower and upper)

PW_TYPE_OUT_OF_RANGE (pulse width not between lower and

upper)

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_CONDITIONS
PICO_PULSE_WIDTH_QUALIFIER

PicoScope 4000 Series Programmer's Guide 73

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.49.1 PWQ_CONDITIONS structure

A structure of this type is passed to ps4000SetPulseWidthQualifier in the

conditions argument to specify the trigger conditions, and is defined as follows: -

typedef struct tPwqConditions
{

TRIGGER_STATE channelA;
TRIGGER_STATE channelB;
TRIGGER_STATE channelC;
TRIGGER_STATE channelD;
TRIGGER_STATE external;
TRIGGER_STATE aux;

} PWQ_CONDITIONS

Each structure is the logical AND of the states of the scope's inputs. The
ps4000SetPulseWidthQualifier function can OR together a number of these

structures to produce the final pulse width qualifier, which can be any possible Boolean
function of the scope's inputs.

Elements channelA, channelB, channelC, channelD: the type of

condition that should be applied to each channel. Use these constants:
-

CONDITION_DONT_CARE
CONDITION_TRUE
CONDITION_FALSE

The channels that are set to CONDITION_TRUE or CONDITION_FALSE
must all meet their conditions simultaneously to produce a trigger.
Channels set to CONDITION_DONT_CARE are ignored.

external, aux: not used

Programming with the PicoScope 4000 Series74

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.50 ps4000SetSigGenArbitrary
PICO_STATUS ps4000SetSigGenArbitrary (

int16_t handle,
int32_t offsetVoltage,
uint32_t pkToPk,
uint32_t startDeltaPhase,
uint32_t stopDeltaPhase,
uint32_t deltaPhaseIncrement,
uint32_t dwellCount,
int16_t * arbitraryWaveform,
int32_t arbitraryWaveformSize,
SWEEP_TYPE sweepType,
int16_t operationType,
INDEX_MODE indexMode,
uint32_t shots,
uint32_t sweeps,
SIGGEN_TRIG_TYPE triggerType,
SIGGEN_TRIG_SOURCE triggerSource,
int16_t extInThreshold

)

This functions instructs the signal generator to produce an arbitrary waveform.

The arbitrary waveform generator uses direct digital synthesis (DDS). It maintains a
phase accumulator of phaseAccumulatorSize bits (see parameter table below) that
indicates the present location in the waveform. The top bufferAddressWidth bits of the
counter are used as an index into a buffer containing the arbitrary waveform. The
remaining bits act as the fractional part of the index, enabling high-resolution control
of output frequency and allowing the generation of lower frequencies.

0

bufferAddressWidth
phaseAccumulatorSize

arbitraryWaveform[0]

arbitraryWaveform[arbitraryWaveformSize-1]

…

Phase Accumulator

The generator steps through the waveform by adding a deltaPhase value between 1

and 2phaseAccumulatorSize-1 to the phase accumulator every clock period (dacPeriod). If
the deltaPhase is constant, the generator produces a waveform at a constant
frequency that can be calculated as follows:

outputFrequency=
dacFrequency

arbitraryWaveformSize
×

deltaPhase

2
(phaseAccumulatorSize-bufferAddressWidth)

It is also possible to sweep the frequency by continually modifying the deltaPhase.
This is done by setting up a deltaPhaseIncrement that the oscilloscope adds to the
deltaPhase at specified intervals.

Parameter PicoScope 4226/4227 PicoScope 4262

phaseAccumulatorSize 32 bits 32 bits

bufferAddressWidth 13 bits 12 bits

dacFrequency 20 MHz 192 kHz

dacPeriod (= 1/dacFrequency) 50 ns ≈ 5.208 µs

PicoScope 4000 Series Programmer's Guide 75

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

Applicability PicoScope 4226, 4227 and 4262 only

Arguments

handle, the handle of the required device.

offsetVoltage, the voltage offset, in microvolts, to be applied to the waveform.

pkToPk, the peak-to-peak voltage, in microvolts, of the waveform signal.

startDeltaPhase, the initial value added to the phase counter as the generator

begins to step through the waveform buffer.

stopDeltaPhase, the final value added to the phase counter before the generator

restarts or reverses the sweep. When frequency sweeping is not required, set equal
to startDeltaPhase.

deltaPhaseIncrement, the amount added to the delta phase value every time

the dwellCount period expires. This determines the amount by which the generator

sweeps the output frequency in each dwell period. When frequency sweeping is not
required, set to zero.

dwellCount, the time, in multiples of dacPeriod, between successive additions of

deltaPhaseIncrement to the delta phase counter. This determines the rate at

which the generator sweeps the output frequency. Minimum allowable values are as
follows:

PicoScope 4226 and 4227: MIN_DWELL_COUNT (10)

PicoScope 4262: PS4262_MIN_DWELL_COUNT (3)

arbitraryWaveform, a pointer to a buffer that holds the waveform pattern as a

set of samples equally spaced in time. Sample value ranges are as follows:
PicoScope 4226 and 4227: [0, 4095]
PicoScope 4262: [–32768, 32767]

arbitraryWaveformSize, the size of the arbitrary waveform buffer, in samples:

All models: Min: MIN_SIG_GEN_BUFFER_SIZE (1)

PicoScope 4226 and 4227: Max: MAX_SIG_GEN_BUFFER_SIZE (8192)

PicoScope 4262: Max: PS4262_MAX_WAVEFORM_BUFFER_SIZE (4096)

sweepType, determines whether the startDeltaPhase is swept up to the

stopDeltaPhase, or down to it, or repeatedly up and down. Use one of the

following values: UP, DOWN, UPDOWN, DOWNUP.

operationType, configures the white noise/PRBS (pseudo-random binary

sequence) generator:
PS4000_OP_NONE: White noise/PRBS output disabled. The waveform is

defined by the other arguments.
PS4000_WHITENOISE: The signal generator produces white noise and

ignores all settings except offsetVoltage and
pkTopk.

PS4000_PRBS: The signal generator produces a PRBS (PicoScope
4262 only).

indexMode, specifies how the signal will be formed from the arbitrary waveform

data. SINGLE, DUAL and QUAD index modes are possible (see AWG index modes).

Programming with the PicoScope 4000 Series76

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

shots, the number of cycles of the waveform to be produced after a trigger event.

If this is set to a non-zero value [1, MAX_SWEEPS_SHOTS], then sweeps must be set

to zero.

sweeps, the number of times to sweep the frequency after a trigger event,

according to sweepType. If this is set to a non-zero value [1, MAX_SWEEPS_SHOTS],

then shots must be set to zero.

triggerType, the type of trigger that will be applied to the signal generator:
SIGGEN_RISING: rising edge
SIGGEN_FALLING: falling edge
SIGGEN_GATE_HIGH: high level
SIGGEN_GATE_LOW: low level

triggerSource, the source that will trigger the signal generator:
SIGGEN_NONE: no trigger (free-running)
SIGGEN_SCOPE_TRIG: the selected oscilloscope channel (see

ps4000SetSimpleTrigger)
SIGGEN_AUX_IN: the AUX input
SIGGEN_EXT_IN: the EXT input
SIGGEN_SOFT_TRIG: a software trigger (see

ps4000SigGenSoftwareControl)

If a trigger source other than SIGGEN_NONE is specified, then either shots or

sweeps, but not both, must be set to a non-zero value.

extInThreshold, an ADC count for use when the trigger source is

SIGGEN_EXT_IN. If the EXT input is also being used as the scope trigger then the

same ADC count must be specified in both places, otherwise a warning will be issued.
Minimum and maximum 16-bit values correspond to the following voltages:

PicoScope 4226 & 4227: ±20 V
PicoScope 4262: ±500 mV or ±5 V depending on range selected by

ps4000SetExtTriggerRange()

Returns 0: if successful.
Error code: if failed

PicoScope 4000 Series Programmer's Guide 77

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.50.1 AWG index modes

The arbitrary waveform generator supports SINGLE, DUAL and QUAD index modes to

make the best use of the waveform buffer.

SINGLE mode. The generator outputs the raw

contents of the buffer repeatedly. This mode is
the only one that can generate asymmetrical
waveforms. You can also use this mode for
symmetrical waveforms, but the dual and
quad modes make more efficient use of the
buffer memory.

DUAL mode. The generator outputs the

contents of the buffer from beginning to end,
and then does a second pass in the reverse
direction through the buffer. This allows you
to specify only the first half of a waveform
with twofold symmetry, such as a Gaussian
function, and let the generator fill in the other
half.

QUAD mode. The generator outputs the

contents of the buffer, then on its second pass
through the buffer outputs the same data in
reverse order as in dual mode. On the third
and fourth passes it does the same but with a
negative version of the data. This allows you
to specify only the first quarter of a waveform
with fourfold symmetry, such as a sine wave,
and let the generator fill in the other three
quarters.

Programming with the PicoScope 4000 Series78

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.51 ps4000SetSigGenBuiltIn
PICO_STATUS ps4000SetSigGenBuiltIn (

int16_t handle,
int32_t offsetVoltage,
uint32_t pkToPk,
int16_t waveType,
float startFrequency,
float stopFrequency,
float increment,
float dwellTime,
SWEEP_TYPE sweepType,
int16_t operationType,
uint32_t shots,
uint32_t sweeps,
SIGGEN_TRIG_TYPE triggerType,
SIGGEN_TRIG_SOURCE triggerSource,
int16_t extInThreshold

)

This function sets up the signal generator to produce a signal from a list of built-in
waveforms. If different start and stop frequencies are specified, the oscilloscope will
sweep either up, down or up and down.

Applicability PicoScope 4226, 4227 and 4262 only

Arguments handle, the handle of the required oscilloscope.

offsetVoltage, the voltage offset, in microvolts, to be applied to

the waveform.

pkToPk, the peak-to-peak voltage, in microvolts, of the waveform

signal.

waveType, the type of waveform to be generated by the

oscilloscope:

PS4000_SINE sine wave
PS4000_SQUARE square wave
PS4000_TRIANGLE triangle wave
PS4000_RAMP_UP rising sawtooth
PS4000_RAMP_DOWN falling sawtooth
PS4000_SINC sin(x)/x
PS4000_GAUSSIAN normal distribution
PS4000_HALF_SINE full-wave rectified sinusoid
PS4000_DC_VOLTAGE DC voltage
PS4000_WHITE_NOISE random values

startFrequency, the frequency at which the signal generator

should begin. Range: MIN_SIG_GEN_FREQ to MAX_SIG_GEN_FREQ.

stopFrequency, the frequency at which the sweep should reverse

direction or return to the start frequency. Range:
MIN_SIG_GEN_FREQ to MAX_SIG_GEN_FREQ.

increment, the amount by which the frequency rises or falls

every dwellTime seconds in sweep mode.

PicoScope 4000 Series Programmer's Guide 79

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

dwellTime, the time in seconds between frequency changes in

sweep mode.

sweepType, see ps4000SetSigGenArbitrary

operationType, see ps4000SetSigGenArbitrary

shots, see ps4000SigGenArbitrary

sweeps, see ps4000SigGenArbitrary

triggerType, see ps4000SigGenArbitrary

triggerSource, see ps4000SigGenArbitrary

extInThreshold, see ps4000SigGenArbitrary

Returns 0: if successful.
Error code: if failed.

Programming with the PicoScope 4000 Series80

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.52 ps4000SetSimpleTrigger
PICO_STATUS ps4000SetSimpleTrigger
(

int16_t handle,
int16_t enable,
PS4000_CHANNEL source,
int16_t threshold,
THRESHOLD_DIRECTION direction,
uint32_t delay,
int16_t autoTrigger_ms

)

This function simplifies arming the trigger. It supports only the LEVEL trigger types
and does not allow more than one channel to have a trigger applied to it. Any previous
pulse width qualifier is cancelled.

Applicability All modes

Arguments handle, the handle of the required device.

enabled, zero to disable the trigger, any non-zero value to set the

trigger.

source, the channel on which to trigger.

threshold, the ADC count at which the trigger will fire.

direction, the direction in which the signal must move to cause a

trigger. The following directions are supported: ABOVE, BELOW,

RISING, FALLING and RISING_OR_FALLING.

delay, the time, in sample periods, between the trigger occurring

and the first sample being taken.

autoTrigger_ms, the number of milliseconds the device will wait if

no trigger occurs.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_DRIVER_FUNCTION

PicoScope 4000 Series Programmer's Guide 81

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.53 ps4000SetTriggerChannelConditions
PICO_STATUS ps4000SetTriggerChannelConditions
(

int16_t handle,
TRIGGER_CONDITIONS * conditions,
int16_t nConditions

)

This function sets up trigger conditions on the scope's inputs. The trigger is set up by
defining one or more TRIGGER_CONDITIONS structures that are then ORed together.
Each structure is itself the AND of the states of one or more of the inputs. This AND-
OR logic allows you to create any possible Boolean function of the scope's inputs.

Applicability All modes

Arguments handle, the handle of the required device.

conditions, a pointer to an array of TRIGGER_CONDITIONS

structures specifying the conditions that should be applied to each
channel. In the simplest case, the array consists of a single element.
When there are several elements, the overall trigger condition is the
logical OR of all the elements.

nConditions, the number of elements in the conditions array.

If nConditions is zero then triggering is switched off.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_CONDITIONS
PICO_MEMORY_FAIL

Programming with the PicoScope 4000 Series82

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.53.1 TRIGGER_CONDITIONS structure

A structure of this type is passed to ps4000SetTriggerChannelConditions in the
conditions argument to specify the trigger conditions, and is defined as follows: -

typedef struct tTriggerConditions
{

TRIGGER_STATE channelA;
TRIGGER_STATE channelB;
TRIGGER_STATE channelC;
TRIGGER_STATE channelD;
TRIGGER_STATE external;
TRIGGER_STATE aux;
TRIGGER_STATE pulseWidthQualifier;

} TRIGGER_CONDITIONS

Each structure is the logical AND of the states of the scope's inputs. The
ps4000SetTriggerChannelConditions function can OR together a number of these
structures to produce the final trigger condition, which can be any possible Boolean
function of the scope's inputs.

Elements channelA, channelB, channelC, channelD, external,
pulseWidthQualifier, the type of condition that should be

applied to each channel. Use these constants: -
CONDITION_DONT_CARE
CONDITION_TRUE
CONDITION_FALSE

The channels that are set to CONDITION_TRUE or

CONDITION_FALSE must all meet their conditions simultaneously

to produce a trigger. Channels set to CONDITION_DONT_CARE are

ignored.

aux, not used

PicoScope 4000 Series Programmer's Guide 83

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.54 ps4000SetTriggerChannelDirections
PICO_STATUS ps4000SetTriggerChannelDirections
(

int16_t handle,
THRESHOLD_DIRECTION channelA,
THRESHOLD_DIRECTION channelB,
THRESHOLD_DIRECTION channelC,
THRESHOLD_DIRECTION channelD,
THRESHOLD_DIRECTION ext,
THRESHOLD_DIRECTION aux

)

This function sets the direction of the trigger for each channel.

Applicability All modes.

Arguments handle, the handle of the required device

channelA, channelB, channelC, channelD, ext all specify

the direction in which the signal must pass through the threshold to
activate the trigger. See the table below.

aux, not used

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_INVALID_PARAMETER

Trigger direction constants

Constant Type Direction

ABOVE gated above the upper threshold

ABOVE_LOWER gated above the lower threshold

BELOW gated below the upper threshold

BELOW_LOWER gated below the lower threshold

RISING threshold rising edge, using upper threshold

RISING_LOWER threshold rising edge, using lower threshold

FALLING threshold falling edge, using upper threshold

FALLING_LOWER threshold falling edge, using lower threshold

RISING_OR_FALLING threshold either edge

INSIDE window-qualified inside window

OUTSIDE window-qualified outside window

ENTER window entering the window

EXIT window leaving the window

ENTER_OR_EXIT window either entering or leaving the window

POSITIVE_RUNT window-qualified entering and leaving from below

NEGATIVE_RUNT window-qualified entering and leaving from above

NONE none none

Programming with the PicoScope 4000 Series84

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.55 ps4000SetTriggerChannelProperties
PICO_STATUS ps4000SetTriggerChannelProperties
(

int16_t handle,
TRIGGER_CHANNEL_PROPERTIES * channelProperties
int16_t nChannelProperties
int16_t auxOutputEnable,
int32_t autoTriggerMilliseconds

)

This function is used to enable or disable triggering and set its parameters.

Applicability All modes

Arguments handle, the handle of the required device.

channelProperties, a pointer to an array of

TRIGGER_CHANNEL_PROPERTIES structures describing the requested

properties. The array can contain a single element describing the
properties of one channel, or a number of elements describing several
channels. If null is passed, triggering is switched off.

nChannelProperties, the size of the channelProperties
array. If zero, triggering is switched off.

auxOutputEnable, not used

autoTriggerMilliseconds, the time in milliseconds for which the

scope device will wait before collecting data if no trigger event occurs.
If this is set to zero, the scope device will wait indefinitely for a
trigger.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_TRIGGER_ERROR
PICO_MEMORY_FAIL
PICO_INVALID_TRIGGER_PROPERTY

PicoScope 4000 Series Programmer's Guide 85

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.55.1 TRIGGER_CHANNEL_PROPERTIES structure

A structure of this type is passed to ps4000SetTriggerChannelProperties in the

channelProperties argument to specify the trigger mechanism, and is defined as

follows: -

typedef struct tTriggerChannelProperties
{

int16_t thresholdUpper;
uint16_t thresholdUpperHysteresis;
int16_t thresholdLower;
uint16_t thresholdLowerHysteresis;
PS4000_CHANNEL channel;
THRESHOLD_MODE thresholdMode;

} TRIGGER_CHANNEL_PROPERTIES

Elements thresholdUpper, the upper threshold at which the trigger must

fire. This is scaled in 16-bit ADC counts at the currently selected range
for that channel.

thresholdUpperHysteresis, the hysteresis by which the trigger

must exceed the upper threshold before it will fire. It is scaled in 16-
bit counts.

thresholdLower, the lower threshold at which the trigger must

fire. This is scaled in 16-bit ADC counts at the currently selected range
for that channel.

thresholdLowerHysteresis, the hysteresis by which the trigger

must exceed the lower threshold before it will fire. It is scaled in 16-
bit counts.

channel, the channel to which the properties apply. See

ps4000SetChannel for possible values.

thresholdMode, either a level or window trigger. Use one of these

constants: -
LEVEL
WINDOW

Programming with the PicoScope 4000 Series86

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.56 ps4000SetTriggerDelay
PICO_STATUS ps4000SetTriggerDelay
(

int16_t handle,
uint32_t delay

)

This function sets the post-trigger delay, which causes capture to start a defined time
after the trigger event.

Applicability All modes

Arguments handle, the handle of the required device

delay, the time between the trigger occurring and the first sample,

in sample periods. For example, if delay=100 then the scope would

wait 100 sample periods before sampling. Example: with the
PicoScope 4224, at a timebase of 80 MS/s, or 12.5 ns per sample
(timebase=0) the total delay would then be 100 x 12.5 ns =

1.25 µs.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK

PicoScope 4000 Series Programmer's Guide 87

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.57 ps4000SigGenSoftwareControl
PICO_STATUS ps4000SigGenSoftwareControl
(

int16_t handle,
int16_t state

)

This function causes a trigger event, or starts and stops gating. It is used when the
signal generator is set to SIGGEN_SOFT_TRIG .

Applicability Use with ps4000SetSigGenBuiltIn or

ps4000SetSigGenArbitrary.

Arguments handle, the handle of the required device

state, sets the trigger gate high or low when the trigger type is

set to either SIGGEN_GATE_HIGH or SIGGEN_GATE_LOW. Ignored

for other trigger types.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SIGNAL_GENERATOR
PICO_SIGGEN_TRIGGER_SOURCE

Programming with the PicoScope 4000 Series88

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.10.58 ps4000Stop
PICO_STATUS ps4000Stop
(

int16_t handle
)

This function stops the scope device from sampling data. If this function is called
before a trigger event occurs, the oscilloscope may not contain valid data.

Always call this function after the end of a capture to ensure that the scope is ready
for the next capture.

Applicability All modes

Arguments handle, the handle of the required device.

Returns PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK

PicoScope 4000 Series Programmer's Guide 89

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.10.59 ps4000StreamingReady
typedef void (CALLBACK *ps4000StreamingReady)
(

int16_t handle,
int32_t noOfSamples,
uint32_t startIndex,
int16_t overflow,
uint32_t triggerAt,
int16_t triggered,
int16_t autoStop,
void * pParameter

)

This callback function is part of your application. You register it with the PicoScope
4000 Series driver using ps4000GetStreamingLatestValues, and the driver calls it

back when streaming-mode data is ready. You can then download the data using the
ps4000GetValuesAsync function.

Applicability Streaming mode only

Arguments handle, the handle of the device returning the samples.

noOfSamples, the number of samples to collect.

startIndex, an index to the first valid sample in the buffer. This is

the buffer that was previously passed to ps4000SetDataBuffer.

overflow, returns a set of flags that indicate whether an

overvoltage has occurred on any of the channels. It is a bit pattern
with bit 0 corresponding to Channel A and so on.

triggerAt, an index to the buffer indicating the location of the

trigger point relative to startIndex. This parameter is valid only

when triggered is non-zero.

triggered, a flag indicating whether a trigger occurred. If non-

zero, a trigger occurred at the location indicated by triggerAt.

autoStop, the flag that was set in the call to

ps4000RunStreaming.

pParameter, a void pointer passed from

ps4000GetStreamingLatestValues. The callback function can

write to this location to send any data, such as a status flag, back to
the application.

Returns nothing

Programming with the PicoScope 4000 Series90

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.11 Enumerated types and constants
The following types and constants are defined in the file ps4000Api.h, which is

included in the SDK.

#define PS4000_MAX_OVERSAMPLE_12BIT 16
#define PS4000_MAX_OVERSAMPLE_8BIT 256

#define PS4XXX_MAX_ETS_CYCLES 400
#define PS4XXX_MAX_INTERLEAVE 80

#define PS4000_MAX_VALUE 32764
#define PS4000_MIN_VALUE -32764
#define PS4000_LOST_DATA -32768

#define PS4262_MAX_VALUE 32767
#define PS4262_MIN_VALUE -32767

#define PS4000_EXT_MAX_VALUE 32767
#define PS4000_EXT_MIN_VALUE -32767

#define MAX_PULSE_WIDTH_QUALIFIER_COUNT 16777215L
#define MAX_DELAY_COUNT 8388607L

#define MIN_SIG_GEN_FREQ 0.0f
#define MAX_SIG_GEN_FREQ 100000.0f
#define MAX_SIG_GEN_FREQ_4262 20000.0f

#define MAX_SIG_GEN_BUFFER_SIZE 8192
#define PS4262_MAX_WAVEFORM_BUFFER_SIZE 4096
#define MIN_SIG_GEN_BUFFER_SIZE 1
#define MIN_DWELL_COUNT 10
#define PS4262_MIN_DWELL_COUNT 3
#define MAX_SWEEPS_SHOTS ((1 << 30) - 1)

typedef enum enChannelBufferIndex
{
 PS4000_CHANNEL_A_MAX,
 PS4000_CHANNEL_A_MIN,
 PS4000_CHANNEL_B_MAX,
 PS4000_CHANNEL_B_MIN,
 PS4000_CHANNEL_C_MAX,
 PS4000_CHANNEL_C_MIN,
 PS4000_CHANNEL_D_MAX,
 PS4000_CHANNEL_D_MIN,
 PS4000_MAX_CHANNEL_BUFFERS
} PS4000_CHANNEL_BUFFER_INDEX;

typedef enum enPS4000Channel
{
 PS4000_CHANNEL_A,
 PS4000_CHANNEL_B,
 PS4000_CHANNEL_C,
 PS4000_CHANNEL_D,
 PS4000_EXTERNAL,
 PS4000_MAX_CHANNELS = PS4000_EXTERNAL,
 PS4000_TRIGGER_AUX,
 PS4000_MAX_TRIGGER_SOURCES

PicoScope 4000 Series Programmer's Guide 91

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

} PS4000_CHANNEL;

typedef enum enPS4000Range
{

PS4000_10MV,
 PS4000_20MV,
 PS4000_50MV,
 PS4000_100MV,
 PS4000_200MV,
 PS4000_500MV,
 PS4000_1V,
 PS4000_2V,
 PS4000_5V,
 PS4000_10V,
 PS4000_20V,
 PS4000_50V,
 PS4000_100V,
 PS4000_MAX_RANGES,

PS4000_RESISTANCE_100R = PS4000_MAX_RANGES,
 PS4000_RESISTANCE_1K,
 PS4000_RESISTANCE_10K,
 PS4000_RESISTANCE_100K,
 PS4000_RESISTANCE_1M,
 PS4000_MAX_RESISTANCES,

 PS4000_ACCELEROMETER_10MV = PS4000_MAX_RESISTANCES,
 PS4000_ACCELEROMETER_20MV,
 PS4000_ACCELEROMETER_50MV,
 PS4000_ACCELEROMETER_100MV,
 PS4000_ACCELEROMETER_200MV,
 PS4000_ACCELEROMETER_500MV,
 PS4000_ACCELEROMETER_1V,
 PS4000_ACCELEROMETER_2V,
 PS4000_ACCELEROMETER_5V,
 PS4000_ACCELEROMETER_10V,
 PS4000_ACCELEROMETER_20V,
 PS4000_ACCELEROMETER_50V,
 PS4000_ACCELEROMETER_100V,
 PS4000_MAX_ACCELEROMETER,

 PS4000_TEMPERATURE_UPTO_40 = PS4000_MAX_ACCELEROMETER,
 PS4000_TEMPERATURE_UPTO_70,
 PS4000_TEMPERATURE_UPTO_100,
 PS4000_TEMPERATURE_UPTO_130,
 PS4000_MAX_TEMPERATURES,

 PS4000_RESISTANCE_5K = PS4000_MAX_TEMPERATURES,
 PS4000_RESISTANCE_25K,
 PS4000_RESISTANCE_50K,
 PS4000_MAX_EXTRA_RESISTANCES
} PS4000_RANGE;

typedef enum enPS4000Probe
{
 P_NONE,
 P_CURRENT_CLAMP_10A,
 P_CURRENT_CLAMP_1000A,
 P_TEMPERATURE_SENSOR,

Programming with the PicoScope 4000 Series92

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

 P_CURRENT_MEASURING_DEVICE,
 P_PRESSURE_SENSOR_50BAR,
 P_PRESSURE_SENSOR_5BAR,
 P_OPTICAL_SWITCH,
 P_UNKNOWN,
 P_MAX_PROBES = P_UNKNOWN
} PS4000_PROBE;

typedef enum enPS4000ChannelInfo
{
 CI_RANGES,
 CI_RESISTANCES,
 CI_ACCELEROMETER,
 CI_PROBES,
 CI_TEMPERATURES
} PS4000_CHANNEL_INFO;

typedef enum enPS4000EtsMode
 {
 PS4000_ETS_OFF, // ETS disabled
 PS4000_ETS_FAST,
 PS4000_ETS_SLOW,
 PS4000_ETS_MODES_MAX
 } PS4000_ETS_MODE;

typedef enum enPS4000TimeUnits
 {
 PS4000_FS,
 PS4000_PS,
 PS4000_NS,
 PS4000_US,
 PS4000_MS,
 PS4000_S,
 PS4000_MAX_TIME_UNITS,
 } PS4000_TIME_UNITS;

typedef enum enSweepType
{
 UP,
 DOWN,
 UPDOWN,
 DOWNUP,
 MAX_SWEEP_TYPES
} SWEEP_TYPE;

typedef enum enPS4000OperationTypes
{

PS4000_OP_NONE,
PS4000_WHITENOISE,
PS4000_PRBS

} PS4000_OPERATION_TYPES;

typedef enum enWaveType
{
 PS4000_SINE,
 PS4000_SQUARE,
 PS4000_TRIANGLE,
 PS4000_RAMP_UP,
 PS4000_RAMP_DOWN,

PicoScope 4000 Series Programmer's Guide 93

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

 PS4000_SINC,
 PS4000_GAUSSIAN,
 PS4000_HALF_SINE,
 PS4000_DC_VOLTAGE,
 PS4000_WHITE_NOISE,
 MAX_WAVE_TYPES
} WAVE_TYPE;

typedef enum enSigGenTrigType
{
 SIGGEN_RISING,
 SIGGEN_FALLING,
 SIGGEN_GATE_HIGH,
 SIGGEN_GATE_LOW
} SIGGEN_TRIG_TYPE;

typedef enum enSigGenTrigSource
{
 SIGGEN_NONE,
 SIGGEN_SCOPE_TRIG,
 SIGGEN_AUX_IN,
 SIGGEN_EXT_IN,
 SIGGEN_SOFT_TRIG
} SIGGEN_TRIG_SOURCE;

typedef enum enIndexMode
{
 SINGLE,
 DUAL,
 QUAD,
 MAX_INDEX_MODES
} INDEX_MODE;

typedef enum enThresholdMode
{
 LEVEL,
 WINDOW
} THRESHOLD_MODE;

typedef enum enThresholdDirection
{
 ABOVE, // using upper threshold
 BELOW,
 RISING, // using upper threshold
 FALLING, // using upper threshold
 RISING_OR_FALLING, // using both threshold
 ABOVE_LOWER, // using lower threshold
 BELOW_LOWER, // using lower threshold
 RISING_LOWER, // using upper threshold
 FALLING_LOWER, // using upper threshold

 // Windowing using both thresholds
 INSIDE = ABOVE,
 OUTSIDE = BELOW,
 ENTER = RISING,
 EXIT = FALLING,
 ENTER_OR_EXIT = RISING_OR_FALLING,
 POSITIVE_RUNT = 9,
 NEGATIVE_RUNT,

Programming with the PicoScope 4000 Series94

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

 // no trigger set
 NONE = RISING
} THRESHOLD_DIRECTION;

typedef enum enTriggerState
{
 CONDITION_DONT_CARE,
 CONDITION_TRUE,
 CONDITION_FALSE,
 CONDITION_MAX
} TRIGGER_STATE;

#pragma pack(1)
typedef struct tTriggerConditions
{
 TRIGGER_STATE channelA;
 TRIGGER_STATE channelB;
 TRIGGER_STATE channelC;
 TRIGGER_STATE channelD;
 TRIGGER_STATE external;
 TRIGGER_STATE aux;
 TRIGGER_STATE pulseWidthQualifier;
} TRIGGER_CONDITIONS;
#pragma pack()

#pragma pack(1)
typedef struct tPwqConditions
{
 TRIGGER_STATE channelA;
 TRIGGER_STATE channelB;
 TRIGGER_STATE channelC;
 TRIGGER_STATE channelD;
 TRIGGER_STATE external;
 TRIGGER_STATE aux;
} PWQ_CONDITIONS;
#pragma pack()

#pragma pack(1)
typedef struct tTriggerChannelProperties
{
 int16_t thresholdUpper;
 uint16_t thresholdUpperHysteresis;
 int16_t thresholdLower;
 uint16_t thresholdLowerHysteresis;
 PS4000_CHANNEL channel;
 THRESHOLD_MODE thresholdMode;
} TRIGGER_CHANNEL_PROPERTIES;
#pragma pack()

typedef enum enRatioMode
{
 RATIO_MODE_NONE,
 RATIO_MODE_AGGREGATE = 1,
 RATIO_MODE_AVERAGE = 2
} RATIO_MODE;

typedef enum enPulseWidthType
{

PicoScope 4000 Series Programmer's Guide 95

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

 PW_TYPE_NONE,
 PW_TYPE_LESS_THAN,
 PW_TYPE_GREATER_THAN,
 PW_TYPE_IN_RANGE,
 PW_TYPE_OUT_OF_RANGE
} PULSE_WIDTH_TYPE;

typedef enum enPs4000HoldOffType
{
 PS4000_TIME,
 PS4000_MAX_HOLDOFF_TYPE
} PS4000_HOLDOFF_TYPE;

typedef enum enPS4000FrequencyCounterRange
{
 FC_2K,
 FC_20K,
 FC_20,
 FC_200,
 FC_MAX
} PS4000_FREQUENCY_COUNTER_RANGE;

ps4000Api.h issue: 1.36 8/9/2011, updated 12/9/12

Programming with the PicoScope 4000 Series96

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.12 Driver error codes
This description of the driver error codes is aimed at those people who intend to
write their own programs for use with the driver. Every function in the ps4000.dll
driver returns an error code from the following list of PICO_STATUS values. They are

declared in the picoStatus.h header file supplied with the SDK.

Code
(hex)

Enum

00 PICO_OK. The PicoScope 4000 is functioning correctly.

01 PICO_MAX_UNITS_OPENED. An attempt has been made to open more than

PS4000_MAX_UNITS. (Reserved)

02 PICO_MEMORY_FAIL. Not enough memory could be allocated on the host machine.

03 PICO_NOT_FOUND. No PicoScope 4000 could be found.

04 PICO_FW_FAIL. Unable to download firmware.

05 PICO_OPEN_OPERATION_IN_PROGRESS. The driver is busy opening a device.

06 PICO_OPERATION_FAILED. An unspecified error occurred.

07 PICO_NOT_RESPONDING. The PicoScope 4000 is not responding to commands from

the PC.

08 PICO_CONFIG_FAIL. The configuration information in the PicoScope 4000 has

become corrupt or is missing.

09 PICO_KERNEL_DRIVER_TOO_OLD. The picopp.sys file is too old to be used with

the device driver.

0A PICO_EEPROM_CORRUPT. The EEPROM has become corrupt, so the device will use a

default setting.

0B PICO_OS_NOT_SUPPORTED. The operating system on the PC is not supported by this

driver.

0C PICO_INVALID_HANDLE. There is no device with the handle value passed.

0D PICO_INVALID_PARAMETER. A parameter value is not valid.

0E PICO_INVALID_TIMEBASE. The time base is not supported or is invalid.

0F PICO_INVALID_VOLTAGE_RANGE. The voltage range is not supported or is invalid.

10 PICO_INVALID_CHANNEL. The channel number is not valid on this device or no

channels have been set.

11 PICO_INVALID_TRIGGER_CHANNEL. The channel set for a trigger is not available on

this device.

12 PICO_INVALID_CONDITION_CHANNEL. The channel set for a condition is not

available on this device.

13 PICO_NO_SIGNAL_GENERATOR. The device does not have a signal generator.

14 PICO_STREAMING_FAILED. Streaming has failed to start or has stopped without user

request.

15 PICO_BLOCK_MODE_FAILED. Block failed to start - a parameter may have been set

wrongly.

16 PICO_NULL_PARAMETER. A parameter that was required is NULL.

17 PICO_ETS_MODE_SET. The function call failed because ETS mode is being used.

18 PICO_DATA_NOT_AVAILABLE. No data is available from a run block call.

19 PICO_STRING_BUFFER_TOO_SMALL. The buffer passed was too small for the string

to be returned.

1A PICO_ETS_NOT_SUPPORTED. ETS is not supported on this device variant.

1B PICO_AUTO_TRIGGER_TIME_TOO_SHORT. The auto trigger time is less than the time

it will take to collect the data.

1C PICO_BUFFER_STALL. The collection of data has stalled as unread data would be

overwritten.

1D PICO_TOO_MANY_SAMPLES. Number of samples requested is more than available in

the current memory segment.

PicoScope 4000 Series Programmer's Guide 97

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

1E PICO_TOO_MANY_SEGMENTS. Not possible to create number of segments requested.

1F PICO_PULSE_WIDTH_QUALIFIER. A null pointer has been passed in the trigger

function or one of the parameters is out of range.

20 PICO_DELAY. One or more of the hold-off parameters are out of range.

21 PICO_SOURCE_DETAILS. One or more of the source details are incorrect.

22 PICO_CONDITIONS. One or more of the conditions are incorrect.

23 PICO_USER_CALLBACK. The driver's thread is currently in the ps4000...Ready

callback function and therefore the action cannot be carried out.

24 PICO_DEVICE_SAMPLING. An attempt is being made to get stored data while

streaming. Either stop streaming by calling ps4000Stop, or use
ps4000GetStreamingLatestValues.

25 PICO_NO_SAMPLES_AVAILABLE. ...because a run has not been completed.

26 PICO_SEGMENT_OUT_OF_RANGE. The memory index is out of range.

27 PICO_BUSY. The driver cannot return data yet.

28 PICO_STARTINDEX_INVALID. The start time to get stored data is out of range.

29 PICO_INVALID_INFO. The information number requested is not a valid number.

2A PICO_INFO_UNAVAILABLE. The handle is invalid so no information is available about

the device. Only PICO_DRIVER_VERSION is available.

2B PICO_INVALID_SAMPLE_INTERVAL. The sample interval selected for streaming is

out of range.

2C PICO_TRIGGER_ERROR. ETS is set but no trigger has been set. A trigger setting is

required for ETS.

2D PICO_MEMORY. Driver cannot allocate memory

2E PICO_SIG_GEN_PARAM. Error in signal generator parameter

2F PICO_SHOTS_SWEEPS_WARNING. The signal generator will output the signal

required but sweeps and shots
will be ignored. Only one parameter can be non-zero.

30 PICO_SIGGEN_TRIGGER_SOURCE. A software trigger has been sent but the

trigger source is not a software trigger.
31 PICO_AUX_OUTPUT_CONFLICT. A ps4000SetTrigger... call has found a conflict

between the trigger source and the AUX output enable.
32 PICO_AUX_OUTPUT_ETS_CONFLICT. ETS mode is being used and AUX is set as an

input.

33 PICO_WARNING_EXT_THRESHOLD_CONFLICT. The EXT threshold is being set in both

a ps4000SetTrigger... function and in the signal generator but the threshold values
differ. The last value set will be used.

34 PICO_WARNING_AUX_OUTPUT_CONFLICT. A ps4000SetTrigger... function has set

AUX as an output and the signal generator is using it as a trigger.
35 PICO_SIGGEN_OUTPUT_OVER_VOLTAGE. The requested voltage and offset levels

combine to give an overvoltage.

36 PICO_DELAY_NULL. NULL pointer passed as delay parameter.

37 PICO_INVALID_BUFFER. The buffers for overview data have not been set while

streaming.

38 PICO_SIGGEN_OFFSET_VOLTAGE. The signal generator offset voltage is higher than

allowed.

39 PICO_SIGGEN_PK_TO_PK. The signal generator peak-to-peak voltage is higher than

allowed.

3A PICO_CANCELLED. A block collection has been cancelled.

3B PICO_SEGMENT_NOT_USED. The specified segment index is not in use.

3C PICO_INVALID_CALL. The wrong GetValues function has been called for the

collection mode in use.

3D PICO_GET_VALUES_INTERRUPTED

3F PICO_NOT_USED. The function is not available.

Programming with the PicoScope 4000 Series98

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

40 PICO_INVALID_SAMPLERATIO. The aggregation ratio requested is out of range.

41 PICO_INVALID_STATE. Device is in an invalid state.

42 PICO_NOT_ENOUGH_SEGMENTS. The number of segments allocated is fewer than

the number of captures requested.

43 PICO_DRIVER_FUNCTION. You called a driver function while another driver

function was still being processed.

44 PICO_RESERVED

45 PICO_INVALID_COUPLING. The dc argument passed to ps4000SetChannel

was invalid.

46 PICO_BUFFERS_NOT_SET. Memory buffers were not set up before calling one

of the ps4000Run... functions.

47 PICO_RATIO_MODE_NOT_SUPPORTED. downSampleRatioMode is not valid

for the connected device.

48 PICO_RAPID_NOT_SUPPORT_AGGREGATION. Aggregation was requested in

rapid block mode.

49 PICO_INVALID_TRIGGER_PROPERTY. An incorrect value was passed to

ps4000SetTriggerChannelProperties.

picoStatus.h revision 1.36, 8/9/2011

PicoScope 4000 Series Programmer's Guide 99

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

3.13 Programming examples
Your PicoScope installation includes programming examples in the following languages
and development environments:

C
Excel
LabView

3.13.1 C

The SDK includes a console-mode program (ps4000con.c) that demonstrates how to

use the PicoScope 4000 driver in Windows. The program demonstrates the following
procedures:

Open a PicoScope 4000 oscilloscope
Collect a block of samples immediately
Collect a block of samples when a trigger event occurs
Collect a stream of data immediately
Collect a stream of data when a trigger event occurs

To build this application:

Set up a project for a 32-bit console mode application
Add ps4000con.c to the project

Add ps4000.lib to the project (Microsoft C only)

Add ps4000Api.h and picoStatus.h to the project

Build the project

3.13.2 Excel

The Excel example demonstrates how to capture data in Excel from a PicoScope 4000
Series scope.

1. Copy the following files from the SDK to a location that is on your Windows
execution path (for example, C:\windows\system32):

ps4000wrap.dll
ps4000.dll
PicoIpp.dll

2. Load the spreadsheet ps4000.xls
3. Select Tools > Macro
4. Select GetData
5. Select Run

Note: The Excel macro language is similar to Visual Basic. The functions which return
a TRUE/FALSE value, return 0 for FALSE and 1 for TRUE, whereas Visual Basic

expects 65 535 for TRUE. Check for >0 rather than =TRUE.

Programming with the PicoScope 4000 Series100

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

3.13.3 LabVIEW

The SDK contains a library of VIs that can be used to control the PicoScope 4000 and
some simple examples of using these VIs in streaming mode, block mode and rapid
block mode.

The LabVIEW library (PicoScope4000.llb) can be placed in the user.lib sub-

directory to make the VIs available on the ‘User Libraries’ palette. You must also copy
ps4000.dll and ps4000wrap.dll to the folder containing your LabView project.

The library contains the following VIs:

PicoErrorHandler.vi - takes an error cluster and, if an error has occurred,

displays a message box indicating the source of the error and the status code
returned by the driver

PicoScope4000AdvancedTriggerSettings.vi - an interface for the advanced

trigger features of the oscilloscope

This VI is not required for setting up simple triggers, which are configured using
PicoScope4000Settings.vi.

For further information on these trigger settings, see descriptions of the trigger
functions:

ps4000SetTriggerChannelConditions
ps4000SetTriggerChannelDirections
ps4000SetTriggerChannelProperties
ps4000SetPulseWidthQualifier
ps4000SetTriggerDelay

PicoScope4000AWG.vi - controls the arbitrary waveform generator

Standard waveforms or an arbitrary waveform can be selected under ‘Wave Type’.
There are three settings clusters: general settings that apply to both arbitrary and
standard waveforms, settings that apply only to standard waveforms and settings
that apply only to arbitrary waveforms. It is not necessary to connect all of these
clusters if only using arbitrary waveforms or only using standard waveforms.

When selecting an arbitrary waveform, it is necessary to specify a text file
containing the waveform. This text file should have a single value on each line in
the range -1 to 1. For further information on the settings, see descriptions of
ps4000SetSigGenBuiltIn and ps4000SetSigGenArbitrary.

PicoScope4000Close.vi - closes the oscilloscope

Should be called before exiting an application.

PicoScope4000GetBlock.vi - collects a block of data from the oscilloscope

This can be called in a loop in order to continually collect blocks of data. The
oscilloscope should first be set up by using PicoScope4000Settings.vi. The VI

outputs data arrays in two clusters (max and min). If not using aggregation, ‘Min
Buffers’ is not used.

PicoScope 4000 Series Programmer's Guide 101

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

PicoScope4000GetRapidBlock.vi - collects a set of data blocks or captures

from the oscilloscope in rapid block mode

This VI is similar to PicoScope4000GetBlock.vi. It outputs two-dimensional

arrays for each channel that contain data from all the requested number of
captures.

PicoScope4000GetStreamingValues.vi - used in streaming mode to get the

latest values from the driver

This VI should be called in a loop after the oscilloscope has been set up using
PicoScope4000Settings.vi and streaming has been started by calling

PicoScope4000StartStreaming.vi. The VI outputs the number of samples

available and the start index of these samples in the array output by
PicoScope4000StartStreaming.vi.

PicoScope4000Open.vi - opens a PicoScope 4000 and returns a handle to the

device

PicoScope4000Settings.vi - sets up the oscilloscope

The inputs are clusters for setting up channels and simple triggers. Advanced
triggers can be set up using PicoScope4000AdvancedTriggerSettings.vi.

PicoScope4000StartStreaming.vi - starts the oscilloscope streaming

It outputs arrays that will contain samples once
PicoScope4000GetStreamingValues.vi has returned.

PicoStatus.vi - checks the status value returned by calls to the driver

If the driver returns an error, the status member of the error cluster is set to ‘true’
and the error code and source are set.

Glossary102

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

4 Glossary
AC/DC switch. To switch from AC coupling to DC coupling, or vice versa, select AC or
DC from the control on the PicoScope toolbar. The AC setting filters out very low-
frequency components of the input signal, including DC, and is suitable for viewing
small AC signals superimposed on a DC or slowly changing offset. In this mode you
can measure the peak-to-peak amplitude of an AC signal but not its absolute value.
Use the DC setting for measuring the absolute value of a signal.

ADC. Analog-to-digital converter. The electronic component in a PC oscilloscope that
converts analog signals from the inputs into digital data suitable for transmission to
the PC.

Aggregation. The PicoScope 4000 driver can use this method to reduce the amount
of data your application needs to process. This means that for every block of
consecutive samples, it stores only the minimum and maximum values. You can set
the number of samples in each block, called the aggregation parameter, when you call
PS4000RunStreaming for real-time capture, and when you call
ps4000GetStreamingLatestValues to obtain post-processed data.

Block mode. A sampling mode in which the computer prompts the oscilloscope to
collect a block of data into its internal memory before stopping the oscilloscope and
transferring the whole block into computer memory. Choose this mode of operation
when the input signal being sampled contains high frequencies. Note: To avoid
sampling errors, the maximum input frequency must be less than half the sampling
rate.

Buffer size. The size of the oscilloscope buffer memory, measured in samples. The
buffer allows the oscilloscope to sample data faster than it can transfer it to the
computer.

Callback. A mechanism that the PicoScope 4000 driver uses to communicate
asynchronously with your application. At design time, you add a function (a callback
function) to your application to deal with captured data. At run time, when you request
captured data from the driver, you also pass it a pointer to your function. The driver
then returns control to your application, allowing it to perform other tasks until the
data is ready. When this happens, the driver calls your function in a new thread to
signal that the data is ready. It is then up to your function to communicate this fact to
the rest of your application.

Device Manager. Device Manager is a Windows program that displays the current
hardware configuration of your computer. On Windows XP, Vista or 7, right-click My
Computer, choose Properties, then click the Hardware tab and the Device
Manager button. In Windows 8 it is directly accessible from the Start menu.

Driver. A program that controls a piece of hardware. The driver for the PicoScope
4000 Series PC Oscilloscopes is supplied in the form of a 32-bit Windows DLL,
ps4000.dll. This is used by the PicoScope software, and by user-designed

applications, to control the oscilloscopes.

ETS. Equivalent-time sampling. A technique for increasing the effective sampling rate
of an oscilloscope beyond the maximum sampling rate of its ADC. The scope triggers
on successive cycles of a repetitive waveform and collects one sample from each cycle.
Each sample is delayed relative to the trigger by a time that increases with each cycle,
so that after a number of cycles a complete period of the waveform has been sampled.
The waveform must be stable and repetitive for this method to work.

GS/s. Gigasample (billion samples) per second.

PicoScope 4000 Series Programmer's Guide 103

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

IEPE. Integrated Electronics Piezoelectric. A standard for accelerometers and other
piezoelectric sensors that require an external power supply. Special IEPE-enabled
PicoScope 4000 Series scopes have a phantom-powered input that supports these
sensors.

Maximum sampling rate. A figure indicating the maximum number of samples the
oscilloscope can acquire per second. The higher the sampling rate of the oscilloscope,
the more accurate the representation of the high-frequency details in a fast signal.

MS/s. Megasample (million samples) per second.

Oversampling. Oversampling is taking measurements more frequently than the
requested sample rate, and then combining them to produce the required number of
samples. If, as is usually the case, the signal contains a small amount of noise, this
technique can increase the effective vertical resolution of the oscilloscope.

PC Oscilloscope. A virtual instrument formed by connecting a PicoScope 4000 Series
scope unit to a computer running the PicoScope software.

PicoScope 4000 Series. A range of high-resolution PC Oscilloscopes from Pico
Technology. The range includes two-channel and four-channel models, with or without
a built-in function generator and arbitrary waveform generator.

PicoScope software. A software product that accompanies all Pico PC Oscilloscopes.
It turns your PC into an oscilloscope, spectrum analyser, and meter display.

Streaming mode. A sampling mode in which the oscilloscope samples data and
returns it to the computer in an unbroken stream. This mode allows the capture of
data sets whose size is not limited by the size of the scope's memory buffer, at
sampling rates up to 6.6 million samples per second.

Timebase. The timebase controls the time interval that each horizontal division of a
scope view represents. There are ten divisions across the scope view, so the total time
across the view is ten times the timebase per division.

Trigger bandwidth. The external trigger input is less sensitive to very high-frequency
input signals than to low-frequency signals. The trigger bandwidth is the frequency at
which a trigger signal will be attenuated by 3 decibels.

USB 1.1. Universal Serial Bus (Full Speed). This is a standard port used to connect
external devices to PCs. A typical USB 1.1 port supports a data transfer rate of 12
megabits per second, so is much faster than an RS232 COM port.

USB 2.0. Universal Serial Bus (High Speed). This is a standard port used to connect
external devices to PCs. A typical USB 2.0 port supports a data transfer rate 40 times
faster than USB 1.1 when used with a USB 2.0 device, but can also be used with USB
1.1 devices.

Vertical resolution. A value, in bits, indicating the precision with which the
oscilloscope converts input voltages to digital values. Oversampling (see above) can
improve the effective vertical resolution.

Voltage range. The range of input voltages that the oscilloscope can measure. For
example, a voltage range of ±100 mV means that the oscilloscope can measure
voltages between –100 mV and +100 mV. Input voltages outside this range will not
damage the instrument as long as they remain within the protection limits of ±200 V.

PicoScope 4000 Series Programmer's Guide 105

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

Index

A
AC/DC coupling 6

setting 60

Aggregation 15

getting ratio 26

API function calls 19

Arbitrary waveform generator 74

index modes 77

AWG 74

AWG index modes 77

B
Bandwidth-limiting filter 59

Block mode 6, 7, 8, 9, 20

polling status 44

starting 53

Buffers

overrun 6

C
C programming 99

Callback function

block mode 20

streaming mode 22, 89

Channel information, reading 25

Channel selection 6

settings 60

Closing a scope device 21

Company information 2

CONDITION_ constants 73, 82

Constants 90

Contact details 2

D
Data acquisition 15

Data buffers, setting 62, 64, 65, 66

Disk space 3

Driver 5

error codes 96

E
Enumerated types 90

Enumerating oscilloscopes 23

Error codes 96

ETS

overview (API) 14

setting time buffers 68, 69

setting up 67

using (API) 14

Excel 99

F
Filter, bandwidth-limiting 59

Function calls 19

Functions

ps4000BlockReady 20

ps4000CloseUnit 21

ps4000DataReady 22

ps4000EnumerateUnits 23

ps4000FlashLed 24

ps4000GetChannelInformation 25

ps4000GetMaxDownSampleRatio 26

ps4000GetStreamingLatestValues 27

ps4000GetTimebase 28

ps4000GetTimebase2 29

ps4000GetTriggerChannelTimeOffset 30

ps4000GetTriggerChannelTimeOffset64 31

ps4000GetTriggerTimeOffset 32

ps4000GetTriggerTimeOffset64 33

ps4000GetUnitInfo 34

ps4000GetValues 35

ps4000GetValuesAsync 36

ps4000GetValuesBulk 37

ps4000GetValuesTriggerChannelTimeOffsetBulk
 38

ps4000GetValuesTriggerTimeOffsetBulk 40

ps4000GetValuesTriggerTimeOffsetBulk64
 39, 41

ps4000HoldOff 42

ps4000IsLedFlashing 43

ps4000IsReady 44

ps4000IsTriggerOrPulseWidthQualifierEnabled
 45

ps4000MemorySegments 46

ps4000NoOfStreamingValues 47

ps4000OpenUnit 48

ps4000OpenUnitAsync 49

ps4000OpenUnitAsyncEx 50

ps4000OpenUnitEx 51

ps4000OpenUnitProgress 52

ps4000RunBlock 53

ps4000RunStreaming 55

ps4000RunStreamingEx 57

ps4000SetBwFilter 59

ps4000SetChannel 60

ps4000SetDataBuffer 62

ps4000SetDataBufferBulk 63

Index106

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.ps4000pg.en r8

Functions

ps4000SetDataBuffers 64

ps4000SetDataBuffersWithMode 65

ps4000SetDataBufferWithMode 66

ps4000SetEts 67

ps4000SetEtsTimeBuffer 68

ps4000SetEtsTimeBuffers 69

ps4000SetExtTriggerRange 70

ps4000SetNoOfCaptures 71

ps4000SetPulseWidthQualifier 72

ps4000SetSigGenArbitrary 74

ps4000SetSigGenBuiltIn 78

ps4000SetSimpleTrigger 80

ps4000SetTriggerChannelConditions 81

ps4000SetTriggerChannelDirections 83

ps4000SetTriggerChannelProperties 84

ps4000SetTriggerDelay 86

ps4000SigGenSoftwareControl 87

ps4000Stop 88

ps4000StreamingReady 89

H
Hold-off 42

Hysteresis 85

I
IEPE mode 60

Installation 4

L
LabVIEW 100

LED

programming 24, 43

LEVEL constant 85

M
Memory in scope 8

Memory segments 46

Multi-unit operation 18

O
One-shot signals 14

Opening a unit 48, 49, 50, 51, 52

Operating system 3

Oversampling 16

P
Pico Technical Support 2

PICO_STATUS enum type 96

picopp.inf 5

picopp.sys 5

PicoScope 4000 Series 1

PicoScope software 4, 5, 96

Processor 3

Programming

C 99

Excel 99

LabVIEW 100

PS4000_CHANNEL_A 60

PS4000_CHANNEL_B 60

PS4000_LOST_DATA 6

PS4000_MAX_VALUE 6

PS4000_MIN_VALUE 6

PS4262_MAX_VALUE 6

PS4262_MIN_VALUE 6

Pulse width trigger 72

PWQ_CONDITIONS structure 73

R
Rapid block mode 10

Resolution, vertical 16

Retrieving data 35, 36

stored (API) 16

streaming mode 27

S
Sampling rate

maximum 8

Scaling 6

Serial numbers 23

Signal generator 9

arbitrary waveforms 74

built-in waveforms 78

software trigger 87

Skew, timing 30, 31, 38, 39

Software licence conditions 1

Stopping sampling 88

Streaming mode 7, 15

getting number of values 47

retrieving data 27

starting 55, 57

using (API) 15

Synchronising units 18

System memory 3

System requirements 3

T
Technical support 2

PicoScope 4000 Series Programmer's Guide 107

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

Threshold voltage 6

Time buffers

setting for ETS 68, 69

Timebase 17

setting 28, 29

Trademarks 2

Trigger 6

conditions 81, 82

delay 86

directions 83

pulse width qualifier 45, 72

pulse width qualifier conditions 73

setting up 80

time offset 30, 31, 32, 33

TRIGGER_CHANNEL_PROPERTIES structure 85

TRIGGER_CONDITIONS structure 82

U
USB 3, 5

changing ports 4

hub 18

V
Vertical resolution 16

Voltage ranges 6

W
WINDOW constant 85

Windows, Microsoft 3

PicoScope 4000 Series Programmer's Guide 109

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved. ps4000pg.en r8

Pico Technology
James House

Colmworth Business Park
ST. NEOTS

Cambridgeshire
PE19 8YP

United Kingdom
Tel: +44 (0) 1480 396 395
Fax: +44 (0) 1480 396 296

www.picotech.com

Copyright © 2008-2014 Pico Technology Ltd. All rights reserved.
ps4000pg.en r8 2014-05-13

	Introduction
	Welcome
	Software licence conditions
	Trademarks
	Company details

	Product information
	System requirements
	Installation instructions

	Programming with the PicoScope 4000 Series
	Driver
	System requirements
	Voltage ranges
	Channel selection
	Triggering
	Sampling modes
	Block mode
	Using block mode

	Rapid block mode
	Using rapid block mode
	Rapid block mode example 1: no aggregation
	Rapid block mode example 2: using aggregation

	ETS (Equivalent Time Sampling)
	Using ETS mode

	Streaming mode
	Using streaming mode

	Retrieving stored data

	Oversampling
	Timebases
	Combining several oscilloscopes
	API functions
	ps4000BlockReady
	ps4000CloseUnit
	ps4000DataReady
	ps4000EnumerateUnits
	ps4000FlashLed
	ps4000GetChannelInformation
	ps4000GetMaxDownSampleRatio
	ps4000GetStreamingLatestValues
	ps4000GetTimebase
	ps4000GetTimebase2
	ps4000GetTriggerChannelTimeOffset
	ps4000GetTriggerChannelTimeOffset64
	ps4000GetTriggerTimeOffset
	ps4000GetTriggerTimeOffset64
	ps4000GetUnitInfo
	ps4000GetValues
	ps4000GetValuesAsync
	ps4000GetValuesBulk
	ps4000GetValuesTriggerChannelTimeOffsetBulk
	ps4000GetValuesTriggerChannelTimeOffsetBulk64
	ps4000GetValuesTriggerTimeOffsetBulk
	ps4000GetValuesTriggerTimeOffsetBulk64
	ps4000HoldOff
	ps4000IsLedFlashing
	ps4000IsReady
	ps4000IsTriggerOrPulseWidthQualifierEnabled
	ps4000MemorySegments
	ps4000NoOfStreamingValues
	ps4000OpenUnit
	ps4000OpenUnitAsync
	ps4000OpenUnitAsyncEx
	ps4000OpenUnitEx
	ps4000OpenUnitProgress
	ps4000RunBlock
	ps4000RunStreaming
	ps4000RunStreamingEx
	ps4000SetBwFilter
	ps4000SetChannel
	ps4000SetDataBuffer
	ps4000SetDataBufferBulk
	ps4000SetDataBuffers
	ps4000SetDataBuffersWithMode
	ps4000SetDataBufferWithMode
	ps4000SetEts
	ps4000SetEtsTimeBuffer
	ps4000SetEtsTimeBuffers
	ps4000SetExtTriggerRange
	ps4000SetNoOfCaptures
	ps4000SetPulseWidthQualifier
	PWQ_CONDITIONS structure

	ps4000SetSigGenArbitrary
	AWG index modes

	ps4000SetSigGenBuiltIn
	ps4000SetSimpleTrigger
	ps4000SetTriggerChannelConditions
	TRIGGER_CONDITIONS structure

	ps4000SetTriggerChannelDirections
	ps4000SetTriggerChannelProperties
	TRIGGER_CHANNEL_PROPERTIES structure

	ps4000SetTriggerDelay
	ps4000SigGenSoftwareControl
	ps4000Stop
	ps4000StreamingReady

	Enumerated types and constants
	Driver error codes
	Programming examples
	C
	Excel
	LabVIEW

	Glossary

