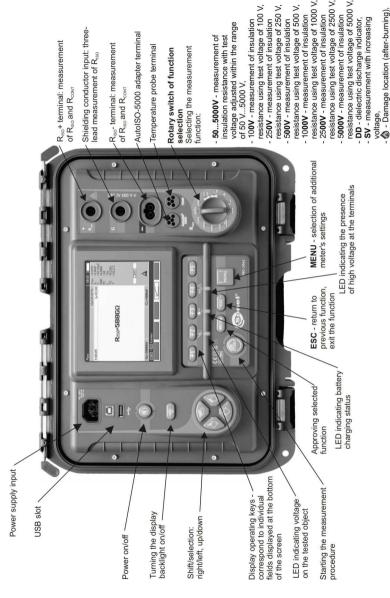


USER MANUAL

INSULATION RESISTANCE METER


MIC-05s1

Digital meters MIC-05s1 is designed for measuring insulation resistance and continuity of protective conductors .

The most important features of MIC-05s1 include:

	Measurement of insulation resistance:
8	test voltages: 100 V, 250 V, 500 V, 1000 V, 2500 V and 5000 V or adjustable within the range of $50V5000V,$
Ø	measurement of insulation resistance up to $20T\Omega,$
8	graph with resistance and voltage values or current as a time function with digital readout every 5 sec.,
0	measurement with increasing voltage SV,
B	measurement of dielectric discharge DD,
8	indicating leakage currents,
0	direct measurement of one or two absor- ption coefficients,
B	automatic discharge of the capacitance of tested object after the insulation resistance measurement is completed,
0	capacitance measurement of the tested object,
0	cable lenght measurement,
0	time constant (TC) measurement.
	Continuity test for the protective conductor with 200mA current for both polarizations of the test current.
	Temperature measurement.
	Other:
0	automatic selection of measuring range,
B	memory of measurement results with the option for data transfer to a PC via Bluetooth or USB,
0	large, readable display with backlight option,
8	monitoring of the battery charge status,
B	AUTO-OFF function,
0	ergonomic operation,
0	option for performing measurements during battery charging.

MIC-05s1

R_{CONT} - measurement of circuit

continuity,

MEM - viewing memory data.

USER MANUAL

INSULATION RESISTANCE METER MIC-05s1

SONEL TEST & MEASUREMENT Santa Clara, Ca 95051 USA

SONEL SA Świdnica, Poland The MIC-05s1 is a high-quality testing instrument, designed for safe and easy operation. Please acquaint yourself with this manual in order to avoid measuring errors and prevent possible problems in operation of the meter.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Responsible for conformity: Sonel Test and Measurement, Inc. 3350 Scott Blvd, Bldg 55, Unit 1 Santa Clara, CA 95054 USA

www.SonelTest.com office@SonelTest.com

tel. +1 408 898 2215

CAUTION:

Equipment changes or modifications not expressly approved by SONEL TEST & MEASUREMENT Inc., the party responsible for FCC compliance, could void the user's authority to operate the equipment, and could create a hazardous condition.

CONTENTS

1	Safet	y	5
2	Menu		6
	2.1 Wi	reless transmission	6
		easurement Settings	
	2.2.1	Mains frequency	<i>7</i>
	2.2.2	Times t1, t2, t3 for calculating absorption coefficients	8
	2.2.3	Type of absorption coefficients	8
	2.2.4	I _{ISO} test current	8
	2.2.5	Setting limit values	9
	2.2.6	Temperature unit	9
	2.2.7	Auto-incrementing of the memory cell number	
	2.2.8	Filter	
	2.2.9	Chart type selection	10
		eter Settings	11
	2.3.1	LCD contrast	12
	2.3.2	Automatic shut-off (Auto-OFF)	
	2.3.3	Date and time	12
	2.3.4	Factory (default) settings	13
	2.3.5	Firmware update	13
	2.3.6	Button Sounds	13
	2.3.7		
	2.4 La	nguage choiceormation about manufacturer	14
3	Meas	urements	16
	3.1 Di	agnostics performed by the meter - limits	16
	2.1 Dic	easurement of insulation resistance	10
		Double-lead measurement	
	3.2.2	Three-lead measurement	
	3.2.3	Measurements with AutoISO-5000	22 25
	3.2.4	Measurements with increasing voltage - SV	28
	3.2.5	Dielectric Discharge Indicator - DD	29
		Damage location (After-burning)	32
		w-voltage measurement of resistance	
	3.3.1	Measurement of resistance of protective conductors and equipotential bonding with	±200
		mA current	34
	3.3.2	Calibration of test leads	35
	3.4 Te	mperature Measurement	
1		ory of measurement results	
4			
	4.1 Str	ructure of the Memory	37
		The appearance of main windows in the measurement recording mode	
		oring the measurement results in the memory	
	4.2.1	Entering the results without extending the memory structure	39
	4.2.2	Extending the memory structure	41
		ewing memory data	
	4.4 De	eleting memory data	47
5	Data	transmissiontransmission	48
	5.1 Se	et of accessories to connect the meter to a PC	48
		ta transmission through USB port	

5.3 Connecting to Bluetooth mini-keyboard	
5.3.2 Automatic connection	51
5.4 Data transmission using Bluetooth module	
6 Power supply of the meter	54
6.1 Monitoring the power supply voltage	54
6.2 Battery power	
6.3 Charging rechargeable battery	
6.4 Power supply from mains	
6.5 General principles for using Li-lon rechargeable batteries	55
7 Cleaning and maintenance	56
8 Storage	56
9 Dismantling and utilisation	56
10 Technical specifications	57
10.1 Basic data	57
10.2 Additional data	
10.2.1 Additional uncertainties according to EN 61557-2 (R _{ISO})	60
10.2.2 Additional uncertainties according to EN 61557-4 (R _{CONT})	60
dd England	60
11 Equipment	
11.1 Standard equipment	60

1 Safety

The MIC-05s1 insulation meter is designed to measure insulation resistance of electrical conductors to check that adequate protection against electric shock exists. The meter is avital tool to determine the safety of electrical installations. To provide the conditions for the correct operation and accuracy of obtained results the following recommendations must be observed:

- Before you proceed to operate the meter acquaint yourself thoroughly with this manual. Observe the safety regulations and specifications provided herein.
- Any application that differs from those specified in this manual may result in a damage to the device and present a source of danger for the user.
- MIC-05s1 meter must be operated by appropriately qualified personnel authorised to perform work
 on electric power systems. Operating the meter by unauthorised personnel may result in damage to
 the device and present a source of danger for the user.
- During measurements of insulation resistance dangerous voltage up to 10 kV are generated by the MIC-05s1 occurring at the ends of the test leads.
- Before any measurement of insulation resistance you be sure that the tested object is not live. It
 must be de-energized and disconnected from the electrical power supply.
- During the measurement of insulation resistance do not disconnect test leads from the tested
- Object before the measurement is completed (see par.3). During the test an electric charge will be
 established on the test object due to the capacitance of the object. This charge must be discharged
 after measurements to avoid to the risk of electric shock. The MIC-05s1 will discharge the electric
 charge at the end of the test, automatically.
- Using this manual does not exclude the need to comply with occupational health and safety regulations, and with other relevant fire and safety regulations required at the place of work. In special environments, e.g. where a potential fire-risk or an explosive environment exists, consult with the person responsible for health and safety.
- It is unacceptable to operate:
 - ⇒ a damaged or malfunctioning meter
 - ⇒ a meter with damaged insulation or test leads
 - ⇒ a meter stored for an excessive period of time in harsh environmental conditions (e.g. excessive cold, heat, humidity). If the meter has been transferred from a cool to a warmer environment with a high level of relative humidity do not start measurements until the meter is warmed up to the ambient temperature (approximately 30 minutes).
- A BAT! message appearing on the display indicates insufficient voltage of power supply and the need to recharge the batteries.
- Before measurement choose a correct measurement function and make sure that test leads are connected to respective measuring terminals.
- Do not power the meter from sources other than those listed in this manual.
- R_{Iso} meter inputs are electronically protected against overloads (e.g. such as by connecting the
 meter to a live circuit) up to 825 V for 60 seconds.
- Repairs may be performed only by an authorised service center.

ATTENTION!

11 kV DC crocodile clips and probes are NOT designed to work on live voltages, only use on de-energized objects without voltage.

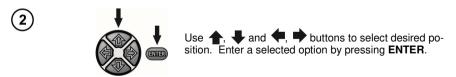
Note:

Due to continuous development of the meter's firmware the appearance of the display of some of the functions may slightly differ from the material presented in this operating manual.

ATTENTION!

To display the correct battery discharge status it is necessary to completely discharge and then fully charge the battery before starting the regular use of the meter.

Note:

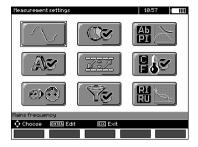

An attempt to install drivers in 64-bit Windows 8 and Windows 10 may result in displaying "Installation failed" message.

Cause: Windows 8 and Windows 10 by default blocks drivers without a digital signature. Solution: Disable the driver signature enforcement in Windows.

Press MENU button. HAINHENU Lineless transmission Choose Colleged Edit ESS Exit

The main menu contains the following items:

- Wireless transmission
- Measurement Settings
- Meter Settings
- Language selection
- Information about manufacturer



2.1 Wireless transmission

See sections 5.3 to 5.5.

2.2 Measurement Settings

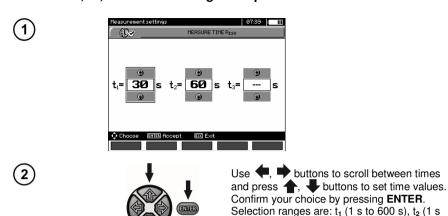
The option of Measurement settings consists of:

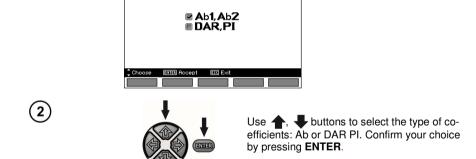
- Mains frequency
- Times t1, t2, t3 for calculating absorption coefficients
- Absorption coefficients Ab1, Ab2 or DAR PI
- I_{ISO} test current
- Setting limit values
- Temperature unit
- Cell autoincrementing
- Filter restricting R_{ISO} display
- Chart type selection

Use ♠, ♣ and ♠, ➡ buttons to select desired position. Enter a selected option by pressing **ENTER**.

2.2.1 Mains frequency

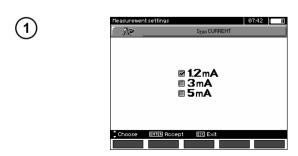
The meter is designed to filter out interference generated by 50 Hz and 60 Hz networks. You must choose the correct frequency settings for optimum performance.





Use ♠, ♣ to select the mains frequency. Confirm your choice by pressing **ENTER**.

2.2.2 Times t1, t2, t3 for calculating absorption coefficients



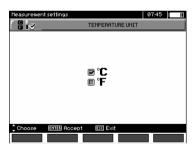
2.2.3 Type of absorption coefficients

to 600 s, but $>t_1$), t_3 (1 s to 600 s, but $>t_2$).

2.2.4 I_{ISO} test current

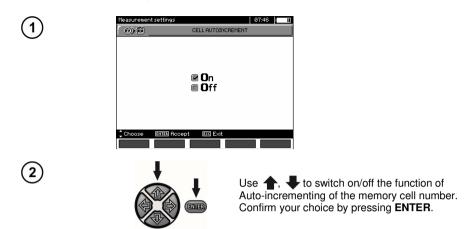
Use **\(\bigcap \)**, **\(\bigcup \)** buttons to select the current value. Confirm your choice by pressing **ENTER**.

2.2.5 Setting limit values

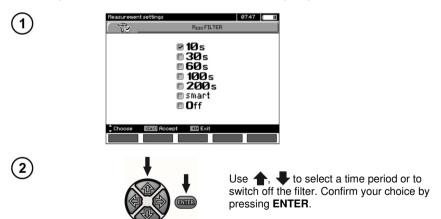

(2)

Use ♠, ♣ buttons to switch on/off limit values. Confirm your choice by pressing ENTER.

2.2.6 Temperature unit



(2


Use ♠, ♣ to select the temperature unit. Confirm your choice by pressing **ENTER**.

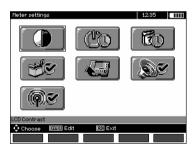
2.2.7 Auto-incrementing of the memory cell number

2.2.8 Filter

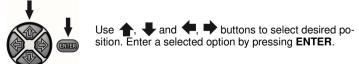
The meter is equipped with an advanced digital filter for accurate results in difficult and unstable measurement conditions. The meter displays a filtered value of measurements for a specified time period, which may be 10 s, 30 s, 60 s. 100 s, 200 s or, after selecting the SMART option, enables the filter which effectively eliminates interference and at the same time quickly determines the result.

2.2.9 Chart type selection

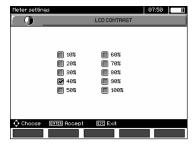
To graphically present the measurement results you may select either: current and resistance (I,R) plots, or voltage and resistance (V,R) plots.


Use \spadesuit , \clubsuit buttons to select the values to be displayed on the chart. Confirm your choice by pressing **ENTER**.

2.3 Meter Settings


The options for Meter Settings consists of:

- LCD contrast
- · Automatic shut-off
- Date and time
- Factory (default) settings
- Firmware update
- Button sounds
- · Wireless communication



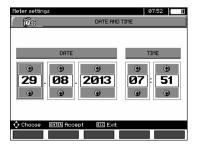
2.3.1 LCD contrast

(2)

Select contrast value using \spadesuit , \clubsuit and \spadesuit , buttons. Confirm choice by pressing ENTER.

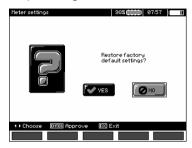
2.3.2 Automatic shut-off (Auto-OFF)

Changing the shut-off time of an idle meter.


(2)

Use ♠, ♣ buttons to set Auto-OFF time. Confirm choice by pressing **ENTER**.

2.3.3 Date and time



Use ◀, ➡ buttons to select the value to be changed (day, month, year, hour, minute). Set a required value using ♠, ➡ buttons. When settings are finished press ENTER.

2.3.4 Factory (default) settings

(2)

In order to reset to factory (default) settings, highlight YES using , buttons and press ENTER.

2.3.5 Firmware update

ATTENTION!

Before updating the meter's firmware first charge the battery. During the update the meter must not be switched off and the communications cable to the PC must not be disconnected.

Before updating the meter's firmware download the latest version of firmware from the Downloads section at either web-site: www.sonel.pl or www.soneltest.com and save the file on your PC. Connect the meter to PC. Select **Firmware upgrade** in the MENU and follow the instructions displayed by the program.

2.3.6 Button Sounds

Use ♠, ♣ buttons to switch on/off button sounds. Confirm your choice by pressing ENTER.

2.3.7 Wireless communication

(2)

Use **\(\bigcap \)**, **\(\bigcup \)** buttons to switch on/off wireless communication. Confirm your choice by pressing **ENTER**.

2.4 Language choice

(1)

(2)

Use **1**, **3** buttons to select desired language and press **ENTER**.

2.5 Information about manufacturer

3 Measurements

Notes:

The results of the last measurement are stored by the meter until the next measurement is started or the measuring function is changed by means of the rotary switch. The result of the latest measurement is displayed on the screen for 20 seconds. It may be recalled by pressing **ENTER**, or after the meter is turned off and turned back on again.

WARNING:

During a measurement do not change the rotary switch because it may damage the meter and pose a threat to the user.

3.1 Diagnostics performed by the meter - limits

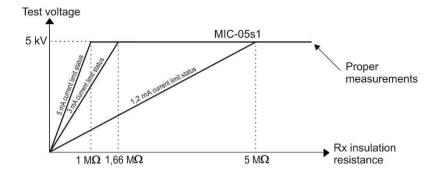
The meter is able to assess whether the measurement result is within acceptable limits. The user may set limits, i.e. maximum or minimum values, which should not be exceeded. For measurements of insulation resistance the set limit is the minimum value, whereas for measurements of continuity of protective conductors and equipotential bonding it is the maximum value.

The limits are programmed in the main menu (Section 2.1.5). When setting of limits is activated the display will show in the lower left corner the following symbols:

- : the result is correct; i.e. within the set limits
- X : the result is incorrect; i.e. is outside the set limits

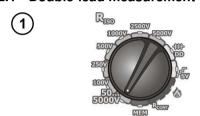
The method for setting limits is described in the chapters XXX describing the measurement data. In DD, SV functions and in after-burning - it is not possible to set limits.

3.2 Measurement of insulation resistance

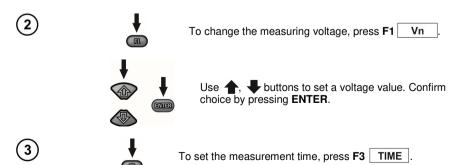

WARNING:

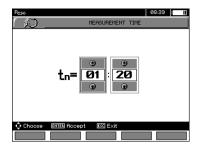
The tested object must not be live.

Note:

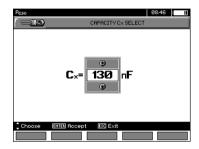

During measurement, especially of high resistances, make sure that test leads or probe crocodile clips do not touch each other. Such a contact may cause the flow of surface currents resulting in additional error in measurement results.

The meter's current generation output is limited at 1.2 mA, 3 mA or 5 mA level. Exceeding the current limit is indicated by a continuous beep. The test result will still be correct. Note that the test voltage at the test terminals is lower than the test voltage the user selected before commencing the measurement. The current limitation occurs in the first phase of the measurement due to charging the capacity of the tested object.


Actual test voltage as a function of the measured insulation resistance R_X (for maximum rated voltage)

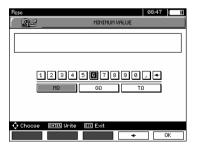

3.2.1 Double-lead measurement

Set the rotary function selection switch at the position of a chosen \mathbf{R}_{ISO} measuring voltage. The voltage is adjusted as follows: 50 V to1 kV in 10V steps, 1 kV to 5 kV in 25V steps. The meter measures the interference voltage $\mathbf{V_N}$ of the tested object.

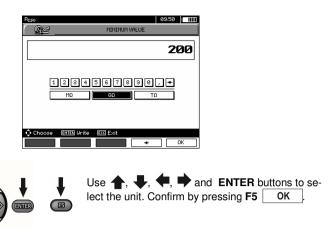


(4)

To set the capacity of the tested object [nF/km] press F2 Cx .

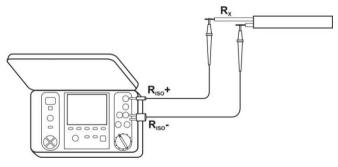


Use ♠, ♣ buttons to set capacity value. Confirm choice by pressing ENTER. The range may be set from 10 nF to 990 nF. When setting to --- (below 10 nF or above 990 nF) the function to calculate the length is switched off.



In order to set the limit (minimum resistance), press F4

Use \spadesuit , \Rightarrow and **ENTER** buttons to enter the resistance value.


For R_{ISO} the limit is the minimum value. The range of setting the limit value is from: 1 k Ω to 40 $T\Omega.$

The meter is ready for measurement.

Value of interference voltage can be read on the display.

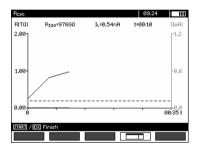
(7) Connect test leads according to the following diagram:

8

Press and hold START button.

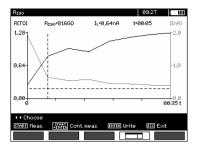
The measurement is performed continuously until the START button is released or the pre-set time is reached.

Instead of continually pressing **START** and to maintain the measurement press **ENTER** while pressing the **START** button, then release the buttons. To interrupt the measurement in this mode press **START** again or press **ESC**.



View of the screen during measurement.

Press **F4** to display a chart of the measured resistance and current as a function of time.


Pressing **F4** while in chart view will return to a tabular view of the results.

When the measurement is completed the result is displayed.

Result presented as a chart. Dashed horizontal line shows the value of set limit.

Use
to move the vertical dashed cursor line to display measurements at a selected time. The display will show data for the cursor point showing the Riso, li

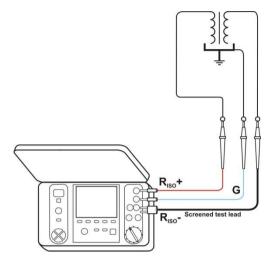
Note:

and time.

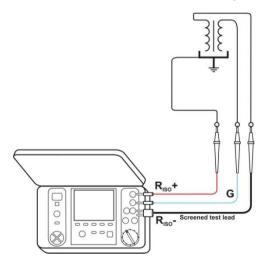
During measurements of insulation resistance dangerous voltages up to 10 kV occur at the ends of the test leads of the meter.

Do not disconnect test leads before the measurement is completed. Failure to obey will lead to high voltage electric shocks and make it impossible to discharge the tested object.

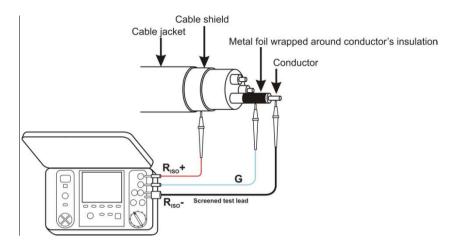
- Disabling t2 will also disable t3.
- Measuring time t_n is independent of the t_1 , t_2 , t_3 times set in MENU and overwrites these values. When $t_n < t_3$ then the measurement time will be equal to t_n .
- Timer measuring the measurement time is started when V_{ISO} voltage is stabilized.
- **LIMIT I** message means operation with limited power output. If this condition persists for 20 seconds the measurement is interrupted.
- If any of the measured values of partial resistance is out of range the value of the absorption coefficient is not displayed the display shows dashes.
- During the measurement the yellow **HV** LED is shining.
- After completion of a measurement the charge due to the capacitance of the object tested is discharged by shorting $\mathbf{R}_{\text{Iso+}}$ and $\mathbf{R}_{\text{Iso-}}$ terminals with a resistance of 200 k Ω , simultaneously displaying the voltage of the tested object.
- For power cables measure the insulation resistance between each conductor and other conductors shorted and grounded (figure below).
- The length of the cable is calculated from the value of capacity in [km] entered in the menu before the measurement.


Additional information displayed by the meter

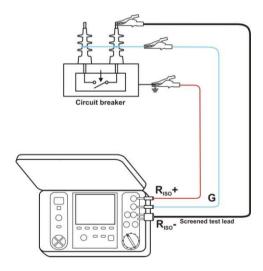
	Test voltage is present on terminals of the meter.
NOISE!	Interference voltage lower than 50 V DC or 1500 V AC is present on the tested object. Measurement is possible but may be burdened with additional uncertainty.
V>50V (V>1500V for AC) + two-tone beep	The tested object is live. The measurement is blocked.
LIMIT I	Current limit exceeded. The symbol displayed is accompanied by a continuous beep.
HILE!	Leakage current too high (breakdown of insulation during the measurement.)


3.2.2 Three-lead measurement

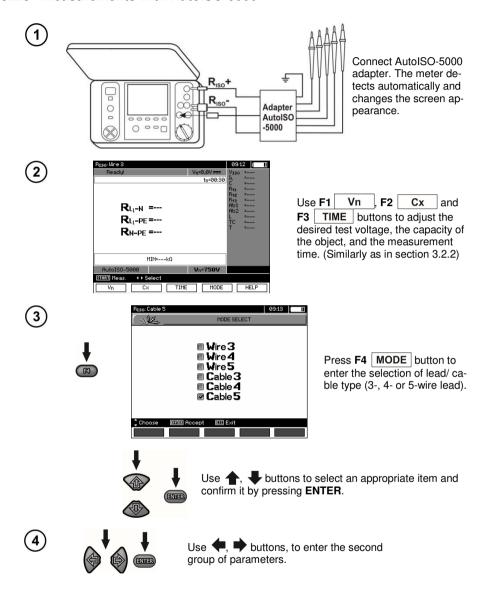
In order to eliminate the influence of surface resistance in transformers, cables, etc. the three-lead measurement is used, but do not connect the current measuring test lead $\mathbf{R}_{\mathsf{ISO}^{\bullet}}$ to large ground conductors. For example:

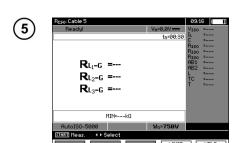

 For the measurement of inter-winding resistance of a transformer, the G socket of the meter should be connected to the transformer enclosure as follows:

• When measuring the insulation resistance between one of the windings and the transformer's enclosure, connect the G socket of the meter to the second winding as follows:

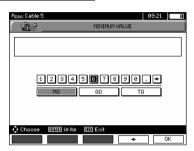


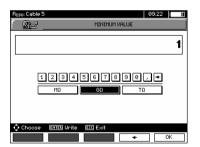
- When measuring insulation resistance between one of the cable conductors and the cable
- jacket the effect of surface resistances is eliminated by connecting a piece of metal foil insulating
 the tested conductor with G socket of the meter as follows: (Especially important in humid or wet
 weather conditions.)




The same method applies when measuring the resistance between two conductors of the cable; attaching the foil to the **G** terminal to ignore other conductors that do not take part in the measurement.

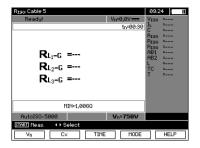
• For the measurement of insulation resistance of a high voltage circuit breaker, the **G** socket of the meter should be connected to the insulators of the breaker:


3.2.3 Measurements with AutoISO-5000

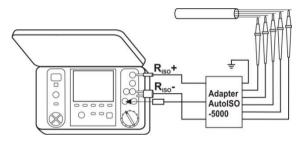

Press **F4** LIMIT to set the minimum resistance. It is the same for all conductor pairs of a cable.

(6)

Use , and ENTER buttons to enter the resistance value.

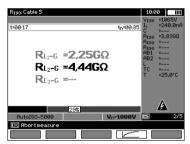

(7)

Use ♠, ♠, ♠ and ENTER buttons to select the unit. Confirm by pressing F5 OK.

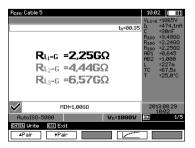


The meter is ready for measurement. Value of interference voltage can be read on the display.

Measurement


9 Connect the AutoISO-5000 adapter to the tested cable.

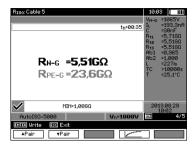
(10)



Press **START** to start measurement. Firstly, the checking of voltages on particular pairs of wires is performed. If any of the voltages exceeds allowable voltage, the symbol "!" is displayed (e.g. V_{N-PE}!), and the measurement ceases.

View of the screen during measurement.

(11)



After the measurement is completed the results are displayed.

Use F1 ▲ Pair and F2 ▼ Pair buttons to change the group of displayed results.

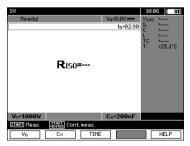
Note:

- Remarks and messages are the same as in 3.2.3.

3.2.4 Measurements with increasing voltage - SV

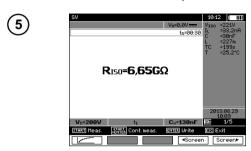
In this mode the meter performs a series of 5 measurements with increasing voltage in steps. The voltage step-change depends on the set maximum voltage as follows:

- 1 kV: 200 V, 400 V, 600 V, 800 V and 1000 V,
- 2.5 kV: 500 V, 1 kV, 1.5 kV, 2 kV and 2.5 kV,
- 5 kV: 1 kV, 2 kV, 3 kV, 4 kV and 5 kV,


The results for each of the 5 measurements is saved and is signalled by a beep and an icon.

Set the rotary switch of function selection in the **SV** position. The meter is in the voltage measurement mode.

Use F1 Vn , F2 Cx and F3 TIME buttons to adjust desired test voltage, capacity of the object and measurement time, similarly as in section 3.2.2

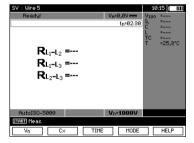


Press and hold **START** button. The measurement is performed continuously as long as the button is held or till the end of the measurement.

Instead of continually pressing **START** and to maintain the measurement press **ENTER** while pressing the **START** button, then release the buttons. To interrupt the measurement in this mode press **START** again or press **ESC**.

After the measurement is completed the result is displayed.

Use **F4** ◀Screen, **F5** Screen buttons to switch between consecutive measurements for a given sequence from 1 to 5.



Press **F1** to display a chart of the measured resistance and current as a function of time.

Note:

- Other comments and displayed symbols are the same as for standard R_{ISO} measurement.
- In the increasing voltage measurement mode it is also possible to perform the measurement with the AutoISO-5000 adapter. The display results are similar to the measurement of $R_{\rm ISO}$ with AutoISO-5000. The screen will show the following:

3.2.5 Dielectric Discharge Indicator - DD

In the dielectric discharge test the discharge current is measured after 60 seconds from the end of measurement when charging of the insulation is complete. The DD is a value characterising the insulation quality independent from the test voltage.

The measurement operates in the following way: first the insulation is charged for a set period. If the resulting charged voltage is not equal to the set voltage after 20 seconds the object is considered as not fully charged and the meter abandons the measurement procedure. After the charging and polarisation is complete the only current flowing through the insulation is the leakage current. Then the insulation is discharged and the total dielectric discharge current starts to flow through the insulation. Initially this current is the sum of the capacitance discharge current - which fades quickly - and the absorption current. The leakage current is negligible because there is no test voltage.

1 minute after closing the circuit the current is measured. The DD value is calculated using the formula:

$$DD = \frac{I_{1\min}}{V_{pr} \cdot C}$$

where:

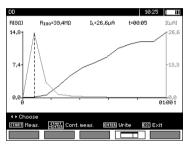
 I_{1min} – current measured 1 minute after closing the circuit [nA], V_{pr} – test voltage [V],

C – capacitance [μ F].

Set the rotary function selection switch at **DD**. The meter is in the voltage measurement mode.

Use F1 Un , F2 Cx and F3 TIME buttons to adjust desired test voltage, capacitance of the object and measurement time (1 min to 60 min), similarly as in section 3.2.2

Start the measurement similarly as in section 3.2.4.



After the measurement is completed the result is displayed.

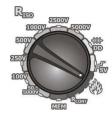
Press **F4** to display a chart of the measured resistance and current as a function of time.



Use , to move the vertical dashed cursor line to display measurements at a selected time. The display will show data for measured values at the point where the cursor is positioned. The measurement result indicates the status of the insulation. Refer to the following table:

DD value	Insulation condition
>7	Bad
4-7	Weak
2-4	Not the best
<2	OK

Note:


- In environments with strong interference the measurement may be affected by additional uncertainty.
- In the Dielectric Discharge mode test it is also possible to perform the measurement with AutolSO-5000 adapter. The display of results is similar to the measurement of $R_{\rm ISO}$ with AutolSO-5000. The dsipaly will show the following:

3.2.6 Damage location (After-burning)

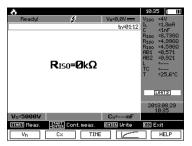
The meter carries out the measurement as for $R_{\rm ISO}$, except that it is not interrupted in the event of insulation breakdown. In the case of a breakdown the measurement continues, and the damage may be located as indicated by breakdown sound.

Set the rotary switch of function selection at

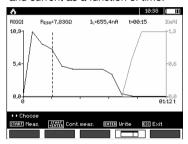
. The meter is in the voltage measurement mode.

Use F1 Un , F2 Cx and F3 TIME buttons to adjust desired test voltage, capacitance of the object and measurement time, similarly as in section 3.2.2

Start the measurement **by pressing ENTER**.


Either during, or after the measurement the user can switch between the text display of the results and the chart by pressing F4

When insulation breakdown occurs the meter does not interrupt the measurement (as in other functions). The \$\mathcal{E}\$ symbol is shown at the top of the display.



After the measurement with insulation breakdown selected is completed the result is shown on the display screen.

Press **F4** to display a chart of the measured resistance and current as a function of time.

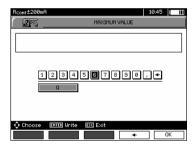
3.3 Low-voltage measurement of resistance

Note:

Low-voltage measurement of resistance (R_{CONT}) is supported only in meters with specific serial number prefixes. Details in the table below.

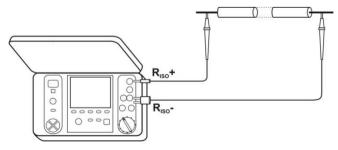
Meter name	R _{CONT} supported	R _{CONT} not supported
	Serial nun	nber prefix
MIC-05s1	CA	ET, DR

3.3.1 Measurement of resistance of protective conductors and equipotential bonding with ±200 mA current



Set the rotary switch at the \mathbf{R}_{CONT} position.

The meter is ready for measurement. Press F4 LIMIT to set the maximum resistance value.



The value may be set in the range from 0.01 Ω to 999 Ω .

Connect the meter to the tested object. Begin the measurement by pressing **START**.

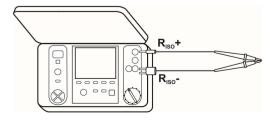
After the measurement completes the result is shown on the display screen.

Additional information displayed by the meter

NOISE!	Interference voltage occurring on the tested object. The measurement may be affected with additional uncertainty that is specified in the technical data.
Voltage on object U _n >10 V + two- tone, continuous beep + and LED lit in red	Interference voltage exceeds the allowable value, the measurement ceases.

3.3.2 Calibration of test leads

In order to eliminate the resistance of the test leads from the measurement results perform the Autozero function to compensate for test lead resistance as follows:

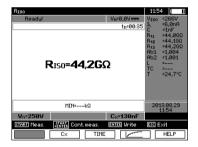


Press **F1** AUTOZERO

(2) Follow the instructions displayed on the screen.

Press START.

An AUTOZERO message appears Confirming that calibration of the test leads has been performed. The meter then enters the measurement mode. The AUTOZERO message is displayed during measurements.


The compensation values are retained even after the meter is switched off and on again.

(5)

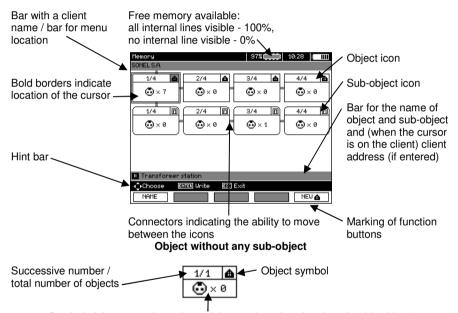
In order to remove the calibration values made above (return to default calibration) perform the above step with test leads not connected together.

3.4 Temperature Measurement

To include temperature measurements for each test function simply connect the temperature probe. The display indicates the measured temperature along with the measurement results. If the temperature probe is not connected the display shows "T =---". Values are refreshed every second.

To ensure user safety, it is not allowed to mount ST-1 temperature probe on objects with voltage higher than 50 V to earth. It is advisable to ground the examined object before mounting the probe.

4 Memory of measurement results

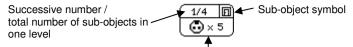

4.1 Structure of the Memory

The memory for test results has a tree-like structure (see figure below). The user has the ability to record data for ten clients. A maximum of 999 objects can be created for each client, which may store up to three levels of sub-objects, 999 sub-objects for each level. Each object, and sub-object may store up to 999 measurements.

The memory allows for simultaneous recording of 10 full descriptions of customers, and a minimum of: measurement sets for 10000 measuring points and 10000 names of these points, 999 names for objects, 999 descriptions of sub-objects and remember the layout created for these objects. Additionally the memory has a space for the list of names (selection lists) extended up to 99 entries.

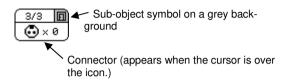
4.1.1 The appearance of main windows in the measurement recording mode

The main folder window



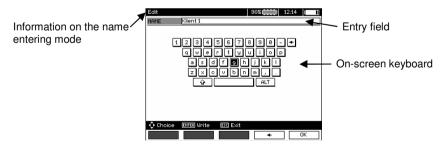
Symbol of the measuring point and the number of such points (for this object)

An object containing at least one sub-object

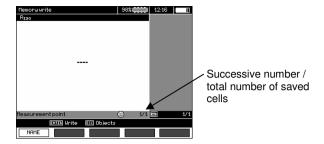


Sub-object without further sub-objects

Symbol of the measuring point and the number of such points (for this sub-object)


Sub-object containing more sub-objects

Client edit window



Window for entering a name

To obtain larger fonts set the cursor on **Shift** and press **ENTER**. To obtain special (Polish) fonts set the cursor on **ALT** and press **ENTER**.

Window for entering the measurement result

Note:

- Results of measurements performed for all measuring functions can be stored in one memory location.
- Only the results of the measurements started by pressing **START** button can be stored in the memory (except autozeroing in low-voltage measurement of resistance).
- Complete set of results (main result and supplementary results) for a given measuring function, preset measurement settings, date and time of the measurement are stored in the memory.
- Cells unsaved are not available.
- It is recommended to delete the memory after reading the data or before performing a new series of measurements that may be stored into the same memory cells as the previous ones.
- A single cell may contain either a R_{ISO} 2(3)p measurement result, a R_{ISO} SV, or DD.
- After entering the measurement result, the ID number of the cell is automatically increased.

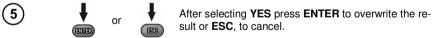
4.2 Storing the measurement results in the memory

Press **ENTER** after finishing the measurement.

4.2.1 Entering the results without extending the memory structure

Press ENTER again.

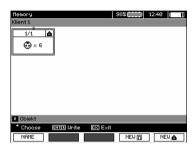
The cell is free for a given type of measurement.



The cell is occupied for a given type of measurement.

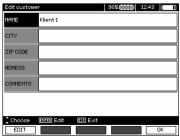
- In order to select a measurement point (cell), use \spadesuit , \clubsuit .
- Or Press **ENTER**, to save the result in the memory or **ESC**, to return to displaying the memory structure.
- If you try to store data in an occupied memory cell, the following warning message will appear:

Note:


- Complete set of results (main result and supplementary results) for a given measuring function and preset measurement settings are stored in the memory.

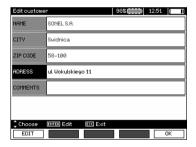
4.2.2 Extending the memory structure

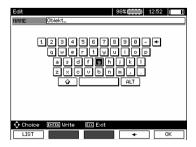
1


Press **ESC** to start creating the objects.

2 Press • button to set the cursor on Client 1.

- 3 Use ←, → buttons to select other clients (1 10).
- (4) Press F1 EDIT to edit client data.

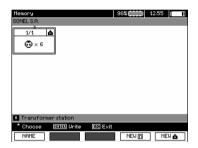

Use ♠, ♣ buttons to set the cursor on each item and press **ENTER** to start the editing.


- Use ←, → and ♠, → buttons to select a character to be typed, and press ENTER to enter it.

 Press F4 ← to delete typed letters.

 Press F5 OK to confirm data and return to the screen of step ④.
- (7) In this way, you may enter all client data.

- 8 Press F5 OK to confirm data and return to the screen of step ①.
- 9 Use \$\Pi\$ button to set the cursor on the object icon. Press F1 NAME to start editing the object name.

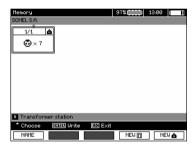

10

Enter the name of the object in the same way as for the customer data. You may use the list of proposed names that is available after pressing **F1** LIST. First the list should be created.

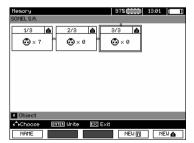
After pressing **F1** NEW you may add further names to the list (up to 99 items), and pressing **F2** DELETE deletes the items.

Press F5 OK to approve the name that appears on the screen.

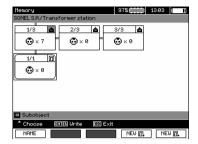
(12) Press ENTER, go to the measurement point.

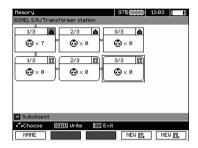


Press F1 NAME to enter the editing of the measuring point name.



- Enter the name of the measuring point in the same way as the object name.
- (15) Press ENTER, to save the measurement result.

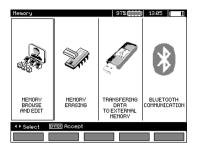

After entering the memory, the user may extend its structure by adding new objects and sub-objects as needed.


To add a new object, press F5 NEW a.

To add a new sub-object, set the cursor on the chosen object and press F4 NEW ...

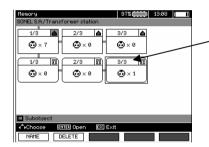
(3) Using **F4** and **F5** you may add new objects and sub-objects (up to 5 levels).

Note:


- New objects (sub-objects in a level) are added on the right side of the object marked with the cursor (sub-object).
- The screen displays only sub-objects belonging to the object (sub-object) indicated by the cursor.
- Deleting objects and sub-objects is possible only in memory browse mode.
- The name of an object, sub-object or measurement is possible in memory browse mode or after entering entry into the memory after a measurement.

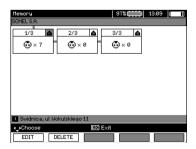
4.3 Viewing memory data

Set the rotary switch of function selection at **MEM** position.



Use , buttons to select "MEMORY BROWSE AND EDIT".

Press ENTER button.

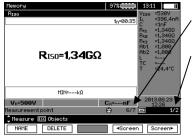


Last saved measurement in sub-object 3, Level 1

(4)

Use ♠, ▶ and ♠, ♣ buttons to move between objects and sub-objects using the existing connectors.

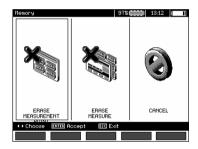
Press **F1** NAME to enter the option for editing the name of object (sub-object) and change it. Press **F2** DELETE to delete a chosen object (sub-object) with all its results.



When the cursor is set on "Client", use •, buttons to move to next clients.

After selecting desired object (sub-object) press **ENTER**.

The number of measuring point / number of all measuring points.

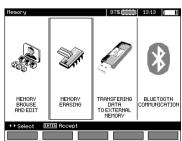

The number of measurement type / number of all measurements types at that point.

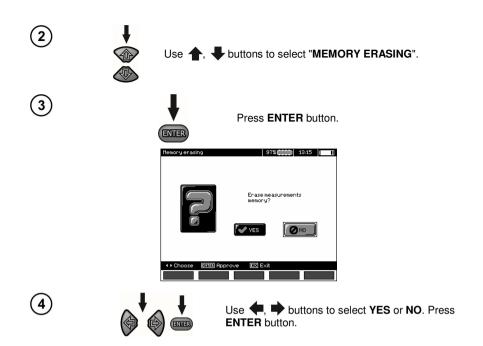
Use ♠, ♣ buttons to change the measurement point.

Press F1 NAME to enter the editing of the measuring point name and to change it.

Press F4 ◀Screen or F5 Screen to display all individual types of results for a given point.

Press F2 DELETE to delete a chosen measurement or measuring point with


4.4 Deleting memory data

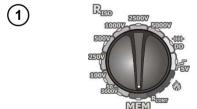

all its results:

Set the rotary switch of function selection at $\boldsymbol{\mathsf{MEM}}$ position.

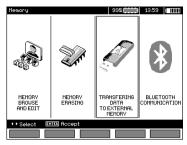
5 Data transmission

Note:

- Data transmission is not possible while charging the battery.


5.1 Set of accessories to connect the meter to a PC

To communicate from the meter to a PC a USB cable is required, or Bluetooth adapter, and the software supplied with the meter.

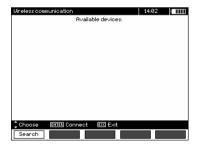

The software may be used for many devices manufactured by SONEL S.A. that are equipped with the USB interface.

Detailed information is available from the manufacturer and distributors.

5.2 Data transmission through USB port

Set the rotary switch of function selection at **MEM** position.

Use _____, ___ buttons to select "TRANSFERING DATA TO EXTERNAL MEMORY".

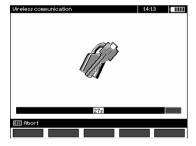

Press ENTER button.

- - ENTER
- Connect the meter with PC or a USB memory stick or flash drive using USB cable.
- (5) Start the Sonel software application program on the PC.

5.3 Connecting to Bluetooth mini-keyboard.

5.3.1 Manual connection

To connect to a Bluetooth keyboard go to MENU \rightarrow Wireless transmission \rightarrow Wireless transmission.


Turn the keyboard on and set it in pairing mode (via a special button on the keyboard - please refer to the manual of the keyboard). Select "F1 - Search" on the meter. The meter will search for available Bluetooth devices; the time to find Bluetooth devices depends on the number of available devices within range.

After completing the search process the meter will display a list of available keyboards (other devices: phones, computers, etc. are not shown).

From the list of available devices select a keyboard and press "ENTER -Connect" - the meter will display the progress bar, and a counts of 30 seconds. During this time use the keyboard to enter a PIN code and confirm it by pressing "ENTER".

Note: The PIN code may be read or changed in MENU → Wireless transmission → Change PIN code.

The pairing operation may end in one of three following ways:

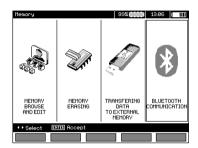
- Wireless connection enabled - pairing was successful, the keyboard pairing has been saved in the memory and will not require re-entering the PIN, even if you change the PIN of the meter. Connection is indicated by symbol, displayed near the clock, and it may be seen on the list of available devices*. From this moment automatic connection is available.

- Wireless connection error Wrong PIN number entered - connection failure. The PIN code entered does match with the one set in the meter.

- Wireless connection error Device not found - the keyboard is not available for connection.

The meter may store up to 16 keyboards in its memory. Each of them requires the full path of manual connection.

* Note: The active keyboard is displayed on the list of available devices as the first device, and it is additionally marked with a "V" symbol. There is an additional option available: "F2 - Disconnect". Disconnection removes the pairing with a given device and the automatic connection with that device is no longer available.

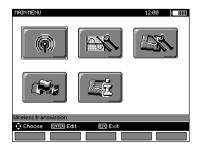

5.3.2 Automatic connection

If the meter is paired with at least one keyboard it will always attempt to establish a connection to this keyboard when the keyboard is enabled in "connect" mode. This process is automatic regardless of the measurement function except the case of an active connection to a PC via Bluetooth and charger. Automatic connection is indicated by symbol located near the clock. When more than one keyboard

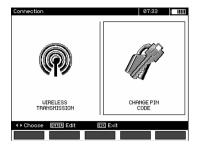
is paired with the device and if more than one keyboard is available the connection will be made with the keyboard that first responds when the meter searches for devices.

5.4 Data transmission using Bluetooth module

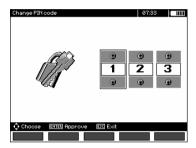
- 1. Activate Bluetooth on your PC. If using an external adapter it must be connected to the computer and follow the instructions for the adapter.
- 2. Turn on the meter and set the function switch in MEM.


- 3. Use . buttons to select "BLUETOOTH COMMUNICATION", press ENTER button.
- 3. On the PC enter Bluetooth connectivity mode, select MIC-05s1 device and establish the connection.
- 4. If the connection is successful the meter will display the following screen:

5. Start the software to read/save data (e.g., Sonel Reader, Sonel PE) and proceed in accordance with its instructions.


5.5 Read-out and change of PIN code for Bluetooth connections

Select Wireless transmission in the main MENU of the meter.



press ENTER.

Select CHANGE PIN CODE position,

press ENTER. Read the current PIN and change it. Confirming the change by pressing ENTER.

Note:

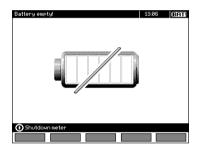
Standard PIN code for Bluetooth transmission is "123".

6 Power supply of the meter

6.1 Monitoring the power supply voltage

ATTENTION!

To display the correct battery discharge status first completely discharge and then fully charge the battery before starting the regular use of the meter.


The charge level of the rechargeable battery is indicated by the symbol in the right upper corner of the display on a current basis:

Battery charged.

Battery discharged.

Battery completely discharged.

Battery completely discharged. Measurements cannot proceed until battery is recharged.

6.2 Battery power

The MIC-05s1 meter is powered with a lithium-ion which may be replaced only at a designated Sonel servicing center.

The charger is installed inside the meter and works only with the manufacturer's rechargeable battery pack. The charger is powered from the 230 V mains.

ATTENTION!

Do not power the meter from sources other than those listed in this manual.

6.3 Charging rechargeable battery

Charging commences as soon as the power supply is connected to the meter. The meter can be on or off. Charging is indicated by the battery symbol filling and a flashing green LED. The rechargeable battery quick-charges to full charge in about 7 hours. The completion of the charging cycle is indicated by a full battery symbol and a steady green LED. To stop charging unplug the power charger.

Note:

- Due to interferences in the mains, the process of battery charging may finish prematurely. When charging time is too short, turn off the meter and start charging again.

Additional information displayed by the meter

Signalling	Condition
Green LED flashing once per second, display shows the battery symbol being filled.	Charging in progress.
Green LED is lit continuously, display shows the full battery symbol.	Charging finished.
Green LED flashing twice per second	Charging error.
Green LED and battery symbol flashing twice per second. Of is displayed.	Battery temperature is too high. Measurements cannot proceed until battery cools.

6.4 Power supply from mains

It is possible to carry out measurements during the charging process. Press **ESC** - the meter enters the measurement mode while remaining in charging mode. Similarly, when AC power supply is connected to the meter.

When the meter is turned off by button or by Auto-OFF the charging process will continue.

Additional information displayed by the meter

Signalling	Condition
All segments of the battery are flashing once per second.	Charging finished.
Green LED is flashing along with the battery symbol (twice per second), simultaneously and bitt are displayed.	Battery temperature is too high.

6.5 General principles for using Li-Ion rechargeable batteries

- If you do not use the device for a prolonged period of time, then it is recommended to remove the rechargeable batteries and store them separately.
- Store the half-charged battery pack in a plastic container placed in a dry, cool and well ventilated place and protect them from direct sunlight. The battery pack may be damaged if stored when fully discharged. The ambient temperature for prolonged storage should be maintained within the range of 5°C...25°C.
- Charge the batteries in a cool, well-ventilated place at a temperature of 10°C ... 28°C. Modern fast chargers detect both too low and too high temperature of rechargeable batteries and react to the situation adequately. Too low temperature should prevent starting the process of charging, which might irreparably damage rechargeable batteries. The increase in temperature of the battery pack may cause electrolyte leakage and even its ignition or explosion.
- Do not exceed the charging current, as it may result in ignition or "swelling" of the battery pack. "Swollen" battery pack must not be used.
- Do not charge or use the batteries in extreme temperatures. Extreme temperatures reduce the lifetime of rechargeable batteries. Always observe the rated operating temperature. Do not dispose the battery pack into fire.
- Li-Ion cells are sensitive to mechanical damage. This kind of damage may cause its permanent damage and thus ignition or explosion. Any interference in the structure of Li-ion battery pack may cause its damage. This may result in the ignition or explosion. A short-circuit of the battery poles "+" and "-" may permanently damage the battery pack or even cause its fire or explosion.
- Do not immerse Li-lon battery in liquids and do not store in humid conditions.

- If the electrolyte contained in the Lithium-Ion battery pack, contacts eyes or skin, immediately rinse the affected place with plenty of water and consult a doctor. Protect the battery against unauthorised persons and children.
- When you notice any changes in the Lithium-lon battery pack (e.g. changes in colour, swelling, excessive temperature), stop using the battery pack. Li-lon batteries that are mechanically damaged, overcharged or excessively discharged are not suitable for use.
- Any misuse of the battery may cause its permanent damage. This may result in the ignition. The seller and the manufacturer shall not be liable for any damages resulting from improper handling Li-Ion battery pack.

7 Cleaning and maintenance

ATTENTION!

Use only the maintenance methods specified by the manufacturer in this manual.

The casing of the meter may be cleaned with a soft, damp cloth using all-purpose detergents. Do not use any solvents or abrasives which might scratch the casing.

Clean the probe with water and dry thoroughly. Before the probe is stored for a prolonged time it is recommended to grease it with any machine lubricant.

The reels and test leads should be cleaned with water and detergents and dried.

The electronic system of the meter does not require maintenance.

8 Storage

When storing the meter the following recommendations must be observed:

- · Disconnect all the test leads from the meter.
- Clean the meter and all its accessories thoroughly.
- Wind the long test leads onto the reels.
- If meter is to be stored for a prolonged time remove the batteries from the meter.
- In order to prevent a total discharge of the batteries during storage charge them periodically.

9 Dismantling and utilisation

Scrap, disused and spent electric / electronic equipment should be disposed of responsibly, i.e. it must not be placed with other types of waste.

Scrap, disused and spent electric / electronic equipment should be sent to a collection point desinated for the disposal of waste electrical and electronic equipment.

Before waste equipment is sent to a collection point do not dismantle or disassemble.

Observe local regulations concerning the disposal of waste electronics, batteries, and related components.

10 Technical specifications

10.1 Basic data

⇒ The abbreviation "m.v." used in the specification of basic uncertainty denotes a standard measured value

AC/DC voltage measurement

Display range	Resolution	Basic uncertainty
0.0 V to 29.9 V	0.1 V	±(2 % m.v. + 20 digits)
30.0 V to 299.9 V	0.1 V	±(2 % m.v. + 6 digits)
300 V to 750 V	1 V	±(2 % m.v. + 2 digits)

• Frequency range: 45 to 65Hz

Measurement of insulation resistance

Test voltage accuracy ($R_{\text{obc}}\left[\Omega\right] \geq 1000^*V_N\left[V\right]$): -0+10% of the set value Measurement range acc. to IEC 61557-2 for MIC-05s1 V_N = 5000V: 5.00M Ω to 20.0T Ω ,

Measurement with DC and increasing voltage (SV) for U_{ISO} = 5 kV

Display range	Resolution	Basic uncertainty
000 kΩ to 999 kΩ	1 kΩ	
1.00 M Ω to 9.99 M Ω	0.01 MΩ	
10.0 MΩ to 99.9 MΩ	0.1 MΩ	1 (2 9/ m) 10 digita)
100 MΩ to 999 MΩ	1 MΩ	± (3 % m.v. + 10 digits)
1.00 GΩ to 9.99 GΩ	0.01 GΩ	
10.0 GΩ to 99.9 GΩ	0.1 GΩ	
100 GΩ to 999 GΩ	1 GΩ	± (3.5 % m.v. + 10 digits)
1.00 T Ω to 9.99 T Ω	0.01 ΤΩ	± (7.5 % m.v. + 10 digits)
10.0 TΩ to 20.0 TΩ	0.1 ΤΩ	± (12.5 % m.v. + 10 digits)

For other voltages the measurement uncertainty can be calculated from the following formula:

$$\delta_{R}$$
= ±(3 %+(V_{ISO}/(V_{ISO}-R_{zm}·21·10⁻¹²)-1) ·100 %) ± 10 digits

where:

V_{ISO} - voltage at which the measurement is conducted [V]

 R_{zm} – measured resistance $[\Omega]$

Approximate maximum values of the measured resistance, depending on the test voltage, are presented in the table below.

Voltage	Test range	Measuring range for AutoISO-5000
50 V	200 GΩ	20.0 GΩ
100 V	400 GΩ	40.0 GΩ
250 V	1.00 TΩ	100 GΩ
500 V	2.00 ΤΩ	200 GΩ
1000 V	4.00 TΩ	400 GΩ
2500 V	10.0 TΩ	400 GΩ
5000 V	20.0 ΤΩ	400 GΩ

⇒ Note: For insulation resistance below R_{ISOmin} there is no accuracy specified because the meter works with the adjustable current limit in accordance with the following formula:

$$R_{ISO \min} = \frac{V_{ISO nom}}{I_{ISO nom}}$$

where:

R_{ISOmin} - minimum insulation resistance measured without limiting the converter current

V_{ISOnom} - nominal test voltage

I_{ISOnom} – nominal converter current (1.2 mA, 3 mA or 5 mA)

- Additional uncertainty in the three-lead measurement (impact of G terminal): 0.05% with reduced current leakage incurred by 250 kΩ resistance during 100 MΩ measurement with 50 V measurement voltage.
- Max. short-circuit current: 6 mA ±15 %
- Measuring/charging current in the remaining load range shall be selected from the following values: 1.2 mA, 3 mA, 5 mA.

Measurement with AutoISO-5000

Display range	Resolution	Basic uncertainty
000 kΩ to 999 kΩ	1 kΩ	
1.00 M Ω to 9.99 M Ω	0.01 MΩ	1 (0 0) many 10 all alta) af
10.0 M Ω to 99.9 M Ω	0.1 ΜΩ	±(3 % m.v. + 10 digits) of the meter ± 1 % additional
100 MΩ to 999 MΩ	1 MΩ	uncertainty of AutoISO-5000
1.00 G Ω to 9.99 G Ω	0.01 GΩ	uncertainty of AutoiSO-3000
10.0 GΩ to 99.9 GΩ	0.1 GΩ	
100 G and above to the value at which the additional uncertainty of AutolSO-5000 is 5%	1 GΩ	±(3 % m.v. + 10 digits) of the meter ± 5 % additional uncertainty of AutoISO-5000

Measurement of leakage current

Display range	Resolution	Basic uncertainty
0 to 1.2 mA		
0 to 3 mA	*	**
0 to 5mA		

^{* -} resolution and units result from the measurement range of individual insulation resistance.

Measurement of capacitance

Display range	Resolution	Basic uncertainty
0 nF to 999 nF	1 nF	L (E0/ may . E digita)
1.00 μF to 49.99 μF	0.01 μF	± (5% m.v. + 5 digits)

- Measurement of capacitance is available only during R_{ISO} measurement (when discharging the object).
- Base uncertainty of measurement is met for the tested capacitance connected in parallel with a resistance greater than 10 $M\Omega$.
- For measurement voltages below 100 V the measurement error is not specified.
- The cable lenght L is calculated as C/Cx, measurement uncertainty depends on measurement range.
- Time Constant TC is calculated as Riso x C, measurement uncertainty depends on measurement range.

^{** -} calculated basing on resistance measurements

Measurement of continuity of protective conductors and equipotential bonding with ± 200 mA current

Measuring range according to IEC 61557-4: 0.12 Ω ...999 Ω

Display range	Resolution	Basic uncertainty
$0.00~\Omega$ to $19.99~\Omega$	0.01 Ω	±(2 % m.v. + 3 digits)
20.0 Ω to 199.9 Ω	0.1 Ω	±(2 % III.v. + 3 digits)
200 Ω to 999 Ω	1 Ω	±(4 % m.v. + 3 digits)

- Voltage at open terminals: 4 V to 24 V
- Output current at R<15 Ω: min. 200 mA (I_{SC}: 200 mA to 250 mA)
- Current flowing bi-directionally, average resistance is displayed on the screen,
- Compensation of test leads resistance, autozeroing.

Temperature Measurement

Display range	Resolution	Basic uncertainty
-40.0 to 99.9 °C	0.1 °C	±(3% m.v. + 8 digits)
-40.0 to 211.8°F	0.1 °F	±(3% m.v. + 16 digits)

Other technical data

a)	insulation
b)	measurement category
c)	degree of housing protection acc. to EN 60529IP40 (IP67 for closed enclosure)
d)	power supply of the meter14.8 V 5.3 Ah Li-Ion battery, 90 V - 260 V 50 Hz/60 Hz
e)	dimensions
f)	meter weightapprox. 12.3 lbs / 5.6 kg
g)	storage temperature12°F to 158 °F / -25 °C to $+70$ °C
h)	working temperature —————-4°F to 122°F / -20°C to +50°C
i)	humidity
j)	altitude (above sea level)≤3000 m
k)	reference temperature
l)	reference humidity
m)	displayTFT LCD
n)	number of Riso measurements, acc. to EN 61557-2 with battery power supplymin. 1000
o)	design, construction and manufacturing are ISO 9001, ISO 14001, PN-N-18001 compliant
p)	the device meets the requirements of the EN 61010-1 and IEC 61557 standards
q)	the product meets EMC requirements (immunity for industrial environment) according to the
	following standards

ATTENTION!

MIC-05s1 meter is classified in terms of Electromagnetic Compatibility (EMC) as instruments of Class A (for use in industrial environments - according to EN 50011). Interference may affect the operation of other devices used in other environments (e.g. domestic).

10.2 Additional data

Data on additional uncertainties are useful mainly when the meter is used in non-standard conditions and for metrological laboratories for the purpose of calibration.

10.2.1 Additional uncertainties according to EN 61557-2 (R_{ISO})

Significant parameter	Designation	Additional uncertainty
Position	E ₁	0 %
Supply voltage	E ₂	1 % (BAT is not lit)
Temperature 32°F to 95°F / 0°C to 35°C	E ₃	6 %

10.2.2 Additional uncertainties according to EN 61557-4 (R_{CONT})

Significant parameter	Designation	Additional uncertainty
Position	E₁	0 %
Supply voltage	E ₂	0.2% (BAT is not lit)
Temperature 32°F to 95°F 0°C to 35°C	E ₃	1 %

11 Equipment

11.1 Standard equipment

The standard set of equipment and accessories supplied includes:

- MIC-05s1 meter
- set of test leads:
 - 10 kV cable, 3 m, (cat. IV 1000 V), terminated with banana plugs, red
 - 10 kV cable, 3 m, shielded, (cat. IV 1000 V), terminated with banana plugs, black
 - "E" cable 10 kV, 3 m, (cat. IV 1000 V), terminated with banana plugs, blue
- crocodile clip 11 kV DC (cat. IV 1000 V) 3 pcs. (black, red and blue)
- pin probe 11 kV DC with banana socket 2 pcs. (red and black)
- temperature probe ST-1
- USB cable
- power supply 230V cable
- case L-4 for accessories
- user manual
- calibration certificate

ATTENTION!

11 kV DC crocodile clips and probes are NOT designed to work only on live or energized objects.

11.2 Optional accessories

The following items can be purchased from the manufacturer or the local distributor:

 5 m shielded cable, 10 kV, black, (cat. IV 1000V)

• 5 m cable, red 10 kV, (cat. IV 1000V), with banana plugs

• 5 m cable, blue, 10 kV, (cat. IV 1000V), terminated with banana plugs

• 10 m shielded cable, black, 10 kV, cat. (IV 1000V)

 10 m cable, 10 kV, red, (cat. IV 1000V), with banana plugs

20 m shielded cable 10 kV, black, (cat. IV 1000V)

 20 m cable, 10 kV, red, (cat. IV 1000V) with banana plugs

 20 m cable, blue, 10 kV, (cat. IV 1000V), terminated with banana plugs

- SONEL Electrical Measurements software for generating measurement reports
- calibration certificate

• 10 m cable, blue, 10 kV, (cat. IV 1000V), terminated with banana plugs

Carrying case L-7

AutoISO-5000 adapter

12 Manufacturer

The manufacturer of the device and provider of warranty and post-warranty service:

SONEL Test & Measurement, Inc.

Santa Clara, Ca 95054 USA tel. +1 (408) 898 2215 fax +1 (408) 988 4869 E-mail: testsupport@soneltest.com

naii: <u>testsupport@soneitest.con</u> Web: www.soneltest.com

SONEL S.A. Świdnica

Poland tel. +48 74 858 38 60 fax +48 74 858 38 09

E-mail: export@sonel.pl
Web page: www.sonel.pl

NOTES

NOTES

WARNINGS AND GENERAL INFORMATION DISPLAYED BY THE METER

ATTENTION!

Connecting voltage higher then 1500 V, between any of the test terminals may damage the meter and cause a hazard to the user.

	Test voltage is present on terminals of the meter.
	You must consult the manual.
Ready!	The meter is ready for measurement.
NOISE!	This message displayed during or after the measurement indicates major noise in the system during the measurement. The measurement result may be affected by additional uncertainty.
Voltage on object Vn>50V (for DC voltage) or Vn~>1500V (for AC voltage) + continuous two-tone beep + red LED flashing	During the measurement, a voltage appeared or the object cannot be discharged for 30 seconds. After 5 seconds the meter returns to its default state - voltmeter.
LIMIT I!	Activation of current limit. The symbol displayed is accompanied by a continuous beep.
HILE!	Breakdown of the tested object insulation, the measurement is interrupted. The message appears after displaying LIMIT !! for 20 s during the measurement, when voltage previously reached the nominal value.
AUTOZERO	Resistance compensation completed for test leads.
Calibration coefficients error	Contact manufacturer's authorised service point to re-calibrate device.
BAT +	Battery Status: Fully charged Battery discharged Battery discharged Charge battery.

SONEL Test & Measurement, Inc. Santa Clara, Ca 95054 USA tel. +1 (408) 898 2215 fax +1 (408) 988 4869

E-mail: testsupport@soneltest.com Web: www.soneltest.com

SONEL S. A.
58-100 Świdnica
Poland
tel. +48 74 858 38 60
fax +48 74 858 38 09
E-mail: export@sonel.pl
Web page: www.sonel.pl