Production supplies that WORK as hard as you do

Product Data Sheet

Product Number: TNP-AL2A-4P

Model: AA 1.5v

Description: Alkaline Zinc-Manganese Dry Battery

Picture:

Scope:

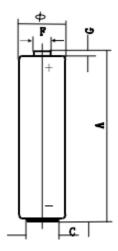
This specification defines the technical requirements for 1.5 alkaline cells under the brand Techni-Pro. If not otherwise specified, the technical requirements and dimensions for cells should meet or exceed the requirements of GB/T 8897.1-2008, GB 8897.2-2008.

Reference documents:

GB8897.1-2008 (IEC60086-1:2000, IDT) Primary Batteries-Part 1: General GB8897.2-2008 (IEC60086-2:2001, MOD) Primary Batteries-Part 2: Physical and technological specifications GB8897.5-2006 (IEC 60086-5:2005, MOD) Primary Batteries-Part 5: Safety of batteries with aqueous electrolyte

Chemical systems, voltage and designation:

Chemical systems: Alkaline Manganese battery, Zinc-manganese dioxide


■ Nominal voltage: 1.5v

Designation: IEC&GB (China) AL2A

ANSI Number: AA

Production supplies that WORK as hard as you do

AL2A Battery Dimensions:

Measure No.	Max	Min *
Α	50.5	49.2
С	9.5	8.0
F	5.5	3.0
G	2.5	1.0
Ø	14.5	13.5

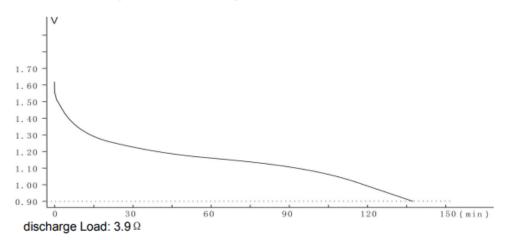
Voltage and Short current

Item	OCV (V)	CCV (V)	SCC (A)
Initial	1. 56≤0CV≤1. 65	≥1.45	≥6.0
After 12 months	≥1.56	≥1.4	≥5.0

OCV measurement: the inner resistance of Voltage meter is above 1M Ω .

C.C.V measurement: After 0.2+/- 0.01 sec by R=5.0 Ω

SCC measurement: ±0.5%


Production supplies that WORK as hard as you do

AL2A discharge performance:

Discharge conditions			Averge Minimun Discharge time	
Load	Daily period	E. P. (V)	Initial	Delayed discharge performance after 12 months
3. 9Ω	1h/d	0. 8V	7. 2h	6. 8h
3. 3 Ω	4min/h, 8h/d	0. 9V	330min	300min
24Ω	15s/m, 8h/d	1. 0V	42. 0h	41. 0h
43Ω	4h/d	0. 9V	82. 0h	81. 0h
1000mA	10s/m, 1h/d	0. 9V	400time	350time
250mA	1h/d	0. 9V	7.5h	7. 0h
100mA	1h/d	0. 9V	22. 0h	21. 0h
1500mW/2s 650mW/28	10T/h	1. 05V	65time	60time
3.9Ω	24h	0. 9V	360min	340min

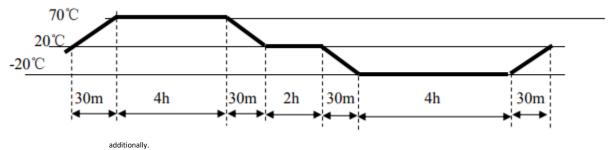
Initial: 60 days after production. Test conditions: 20°C±2°C and 60± 15%RH

Schematic diagram of discharge:

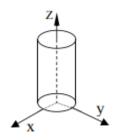
Production supplies that WORK as hard as you do

Leakage Resistance:

ITEM	TEST	SAMPLE SIZE	REQUIREMENTS	ACCEPTANCE
	CONDITIONS			
OVER DISCHARGE	10Ω 24h/d for 48h at 20°C±2°C,	n= 9 PCS	NO LEAKAGE; MAX OF 0.35MM HEIGHT INCREASE	Ac= 0, Re= 1
High Temperature and Humidity Storage	Exposed to a temperature of 60°C± 2°C and RH90±5% for a period of 3 weeks	n= 20 pcs	No leakage	Ac= 0, Re= 1
45°C Dry Storage	Stored for 12 weeks at 45°C	n= 20 pcs	No Leakage	Ac= 0, Re= 1


Safety Requirement:

Item	Test Conditions	Sample Size	Requirements of IEC60086-5:2005& GB8897.5-2006	Acceptance *
Partial Use	Stored at 45°C±2°C for 30days after undischarged batteries were test discharged 3.9Ω 24h/d, EPV=1.0V	n = 5 pcs	No leakage, no explosion	Ac= 0, Re= 1
Thermal Shock	See the following note 1, total 10 cycles	n = 5 pcs	No explosion	Ac= 0, Re= 1
Incorrect Installation (3 + 1 anti- charge test)	Place three undischarged and unconditioned batteries in a series with one test sample battery reversed, Complete the circuit until vent activation or until the temperature of the reversed battery returns to ambient.	n = 5 pcs	No explosion	Ac= 0, Re= 1
Free Fall	Drop each undischarged battery Two times, oriented in each of three mutually perpendicular face (six total) from a	n = 5 pcs	No explosion	Ac= 0, Re= 1


Production supplies that WORK as hard as you do

	height 1 meter, onto a concrete surface, see the following note 2			
Over Discharge	Discharge one test sample battery(C1) with 43Ω resistance load until EPV is 0.6V, connect three undischarged batteries and the sample battery in series with a 7.5Ω resistance load(R1) as shown in note 3, Maintain the circuit until the CCV of the series string reaches 1.2V	n = 5 pcs	No explosion	Ac= 0, Re= 1

Note 1: Thermal shock *

Note 2: Free Fall

Production supplies that WORK as hard as you do

Inspection Rules:

Deliver inspection: Depending on GB2828

Number	Test	Item	IL	AQL
1	Dimensions	5	S-2	0. 4
2	Appearance		II	1.0
3	Discharge capacity	7		
4	Open-circuit voltage	4. 5	II	1.0

Routine Inspection: Depending on GB2829 and QB/T2389.

<u>Inspection for service output:</u>

- Samples shall be tested for service output.
- If the average value is equal to or more than the value of Table 1, and if the number of batteries showing a value less than 80% of the value in Table 1 is 1 or less. The batteries are considered to conform to the requirement.
- If the average value is less than the value of Table 1, or if the number of batteries
- Showing a value less than 80% is 2 or more, the test shall be repeated with a different 9 pieces. At the second test, if the average value is equal to or more than the value of Table 1, and if the number of the batteries showing a value less than 80% of the value of Table 1 is 1 or less, these batteries are considered to conform to the requirement. *If the manufacturer wants to modify the product technology specification, we won't inform you additionally.
- At above second test, if the average value is less than the value of Table 1, or if the number of batteries showing a value less than 80% of the value of Table 1 is 2 or more, the batteries are considered not to conform to the requirement. —Third test shall not be performed.

Instructions for use:

- Always select correct size and grade of battery most suitable for intended use.
- Replace all batteries of a set at the same time.
- Clean the battery contacts and those of the equipment prior to battery installation.
- Ensure that batteries are installed correctly regarding polarity (+ and -).
- Remove batteries from equipment which is not in use for an extended period.
- Remove exhausted batteries promptly.

Display and Storage:

Production supplies that WORK as hard as you do

- Batteries shall be stored in well ventilated, dry and cool conditions.
- Battery cartons should not be piled in several layers
- Batteries should not be exposed to direct sunlight for a long period of time
- Batteries should not be placed in areas where they get wet.
- Do not mix unpacked batteries so to avoid mechanical damage and/or short circuit

Storage Life:

Storage life of batteries are ten years at 20°C± 2°C and RH 60±15%.

Marks:

- Designation.
- Polarity of terminals.
- Nominal voltage; *
- Mercury content.
- Name or trademark, manufacturer, or supplier.
- Cautionary advice

Important Notice:

- 1. This data sheet contains typical information specific to products manufactured at the time of its publication.
- 2. Contents herein do not constitute a warranty and are for reference only.

.... End of Document