Production supplies that WORK as hard as you do

Product Data Sheet

Product Number: TNP-AL3A-EA

Model: AAA 1.5v

Description: Alkaline Zinc-Manganese Dry Battery

Picture:

Scope:

This specification defines the technical requirements for 1.5 alkaline cells under the brand Techni-Pro. If not otherwise specified, the technical requirements and dimensions for cells should meet or exceed the requirements of GB/T 8897.1-2008, GB 8897.2-2008.

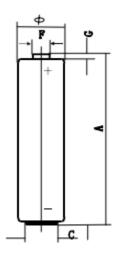
Reference documents:

GB8897.1-2008 (IEC60086-1:2000, IDT) Primary Batteries-Part 1: General GB8897.2-2008 (IEC60086-2:2001, MOD) Primary Batteries-Part 2: Physical and technological specifications GB8897.5-2006 (IEC 60086-5:2005, MOD) Primary Batteries-Part 5: Safety of batteries with aqueous electrolyte

Chemical systems, voltage and designation:

Chemical systems: Alkaline Manganese battery. Zinc-manganese dioxide

■ Nominal voltage: 1.5v


Designation

IEC&GB (China) AL3A

ANSI Number: AAA

Production supplies that WORK as hard as you do

AL3A Battery Dimensions:

Measure No.	Max	Min *
Α	44.5	43.5
С	6.6	4.3
F	3.8	3.0
G	2.2	.8
Ø	10.5	9.8

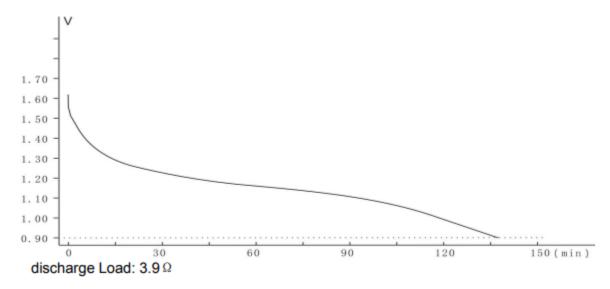
Voltage and Short current:

Item	OCV (V)	CCV (V)	SCC (A)
Initial	1. 56≤0CV≤1. 65	≥1. 45	≥5.0
After 12 months	≥1.56	≥1.4	≥4.0

OCV measurement: the inner resistance of Voltage meter is above 1M Ω .

C.C.V measurement: After 0.2+/- 0.01 sec by R=5.0 Ω

SCC measurement: ±0.5%


Production supplies that WORK as hard as you do

AL3A discharge performance:

Discharge conditions			Averge Minimun Discharge time	
Load	Daily period	E. P. (V)	Initial	Delayed discharge performance after 12 months
5. 1 Ω	4m/h, 8h/d	0. 9V	220min	210min
5. 1 Ω	1h/d	0. 8V	4.0 h	3.8 h
24 Ω	15s/m,8h/d	1. 0V	18. 0h	17. 0h
75 Ω	4h/d	0. 9V	72. 0h	70. 0h
100mA	1h/d	0. 9V	9. 0h	8. 7h
3.9Ω	24h/d	0. 9V	140min	130min

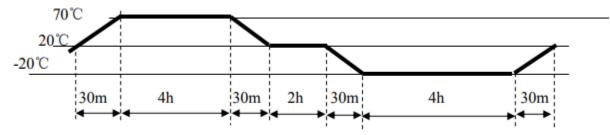
Initial: 60 days after production. Test conditions: 20°C±2°C and 60± 15%RH

Schematic diagram of discharge:

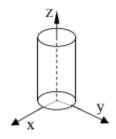
Production supplies that WORK as hard as you do

Leakage Resistance:

ITEM	TEST	SAMPLE SIZE	REQUIREMENTS	ACCEPTANCE
	CONDITIONS			
OVER DISCHARGE	10Ω 24h/d for 48h at 20°C±2°C,	n= 9 PCS	NO LEAKAGE; MAX OF 0.35MM HEIGHT INCREASE	Ac= 0, Re= 1
High Temperature and Humidity Storage	Exposed to a temperature of 60°C± 2°C and RH90±5% for a period of 3 weeks	n= 20 pcs	No leakage	Ac= 0, Re= 1
45°C Dry Storage	Stored for 12 weeks at 45°C	n= 20 pcs	No Leakage	Ac= 0, Re= 1


Safety Requirement:

Item	Test Conditions	Sample Size	Requirements of IEC60086-5:2005& GB8897.5-2006	Acceptance *
Partial Use	Stored at 45°C±2°C for 30days after undischarged batteries were test discharged 3.9Ω 24h/d, EPV=1.0V	n = 5 pcs	No leakage, no explosion	Ac= 0, Re= 1
Thermal Shock	See the following note 1, total 10 cycles	n = 5 pcs	No explosion	Ac= 0, Re= 1
Incorrect Installation (3 + 1 anti- charge test)	Place three undischarged and unconditioned batteries in a series with one test sample battery reversed, Complete the circuit until vent activation or until the temperature of the reversed battery returns to ambient.	n = 5 pcs	No explosion	Ac= 0, Re= 1
Free Fall	Drop each undischarged battery Two times, oriented in each of three mutually perpendicular face (six total) from a	n = 5 pcs	No explosion	Ac= 0, Re= 1


Production supplies that WORK as hard as you do

	1		1	I
	height 1 meter,			
	onto a concrete			
	surface, see the			
	following note 2			
Over Discharge	Discharge one test	n = 5 pcs	No explosion	Ac= 0, Re= 1
	sample battery(C1)			
	with 43Ω resistance			
	load until EPV is 0.6V,			
	connect three			
	undischarged			
	batteries and the			
	sample battery in			
	series with a 7.5Ω			
	resistance load(R1) as			
	shown in note 3,			
	Maintain the circuit			
	until the CCV of the			
	series string reaches			
	1.2V			

Note 1: Thermal shock *

Note 2: Free Fall

Inspection Rules:

Deliver inspection: Depending on GB2828

Production supplies that WORK as hard as you do

Number	Test	Item	IL	AQL
1	Dimensions	5	S-2	0. 4
2	Appearance		II	1. 0
3	Discharge capacity	7		
4	Open-circuit voltage	4. 5	II	1. 0

Inspection for service output:

- 9 samples shall be tested for service output.
- If the average value is equal to or more than the value of Table 1, and if the number of batteries showing a value less than 80% of the value in Table 1 is 1 or less. The batteries are considered to conform to the requirement.
- If the average value is less than the value of Table 1, or if the number of batteries showing a value less than 80% is 2 or more, the test shall be repeated with a different 9 pieces. At the second test, if the average value is equal to or more than the value of Table 1, and if the number of the batteries showing a value less than 80% of the value of Table 1 is 1 or less, these batteries are considered to conform to the requirement.
- At above second test, if the average value is less than the value of Table 1, or if the number of batteries showing a value less than 80% of the value of Table 1 is 2 or more, the batteries are considered not to conform to the requirement—Third test shall not be performed.

Instructions for use:

- Always select correct size and grade of battery most suitable for intended use.
- Replace all batteries of a set at the same time.
- Clean the battery contacts and those of the equipment prior to battery installation.
- Ensure that batteries are installed correctly regarding polarity (+ and -).
- Remove batteries from equipment which is not in use for an extended period.
- Remove exhausted batteries promptly.

Display and Storage:

- Batteries shall be stored in well ventilated, dry and cool conditions.
- Battery cartons should not be piled up in several layers or should not exceed a specified height.
- Batteries should not be exposed to direct sunlight
- Batteries should not be exposed in areas where they get wet.
- Do not mix unpacked batteries so to avoid mechanical damage and/or short circuit

Production supplies that WORK as hard as you do

Storage Life:

■ Storage life of batteries are ten years long at 20°C± 2°C and RH 60±15%.

Marks:

Designation.

Polarity of terminals.

Nominal voltage.

Mercury content

Name or trademark, manufacturer, or supplier.

Cautionary advice

Important Notice:

- 1. This data sheet contains typical information specific to products manufactured at the time of its publication.
- 2. Contents herein do not constitute a warranty and are for reference only.

.... End of Document