

How to Install

Installation Location

The instrument should be installed in indoor locations meeting the following Instrumented panel
This instrument is designed to be mounted in an instrumented panel. Mount the
instrument in a location where its terminals will not inadyertently pe toched instrument in a location where its terminals will not inadvertenty be touche

$$
\begin{aligned}
& \text { - Well ventiliated locations } \\
& \text { Mount the instrument in we }
\end{aligned}
$$

nal temperature from rising. However, make sure that the terminal portions are not exposed to wind. Exposure
to wind may cause the temperature sensor accuracy to deteriorate. To mount mul tiple indicating controllers, see the external dimensions/panel cutout dimensions which follow. If mountings, other instruments adiacenst to the instrument, comply with these panel cutout dimensions to provide sufficient clearance between the instruments.
Install the instrument in a l location subject to little mechanical vibration.
Horizontal location
Moine instrument horizontally and ensure that it is level, with no inclination to
the right of le he right or left.
 fthe instrument is moved from a location with low temperature and low humiditiy
to place with high temperature and high humidity, or if the temperature changes rapialy, condensation will result. Moreover, in the case of thermocouple inputs,
neasurement errors will result. To avoid such a situation, leave the instrument in the new environment under ambient conditions for more than 1 hour prior to using it.
Do not mount the instrument in the following locations:
Outdoors
Locations subject to direct sunlight or close to a heater
Instal the instrument in a a ocation with stable temperatures that remain close to an average temperature of $23^{\circ} \mathrm{C}$. Do not mount it in locations subject to direct sunligh or close to a heater. Doing so adversely affects the instrument.

cocations with The presence of

The presence of oily fumes, steam moisture, dust, or corrosive gese affects the instrum
these substances.
Areas near electromagnetic field generating sources
Do not place magnets or tools that generate magnetism near the instrument. If the
instrument is used in locations close to a strong electrom source, the magnetic field may cuase measurementent erroros.
Locations where the display is difficult to see
Locations where the display is difficult to see
The instrument uses an LCD for the display unit, and this can be difficult to see
from extremely oblique angles. Mount the instrument in a locis. seen as much as possible from the fron.
Areas close to flammable articles

- Areas close to flammable articles
Absolutely do not place the instrument directly on flamAbsolutely do not place the instrument directly on flam--
mable surfaces. If such a circumstance is unavavidable and the instrument must be placed close to a flammable
item, provide a shield for it made of 1.43 mm thick item, provide a shield for it made of 1.43 mm thick plated
steel or 1.6 mm thick unplated steel with a space of a least 150 mm between it and the instrument on the top, bottom, and sides.

Be sure to turn OFF the power supply to the controller before in-
stalling it on the panel to avoid an electric shock.

YOKOGAWA

 he netherlan
 www.yokogawa.com/ns

II Rhis Reserved, Copyright © 2010 Yokogawa Electric Coro

- Mounting the Instrument Main Unit

Provide an instrumented panel steel sheet of 1 to 10 mm thickness.
After opening the mounting hole on the panel, follow the procedures
Atter opening the mounting hole on the panel, follow the procedures below to insta

1) Insert the controller into the opening from the front of the panel so that the 2) terminal board on the rear is at the far side.
figure below, then tighten the screws of the brackets. Take care ans to overtighte figure
them.

Tighten the screws with appropriate tightening torque within 0.25
Nom. Otherwise it may cause the case deformation or the bracke damage.
Make sure
damage.
Make sure that foreign materials do not enter the inside of the
instrument through the case's slit holes.
■ External Dimensions and Panel Cutout Dimensions

4. Hardware Specifications

This instrument is for Measurement Category I (CAT.I). Do not use
This instrument is for Measurement Category 1 (CAT.I). Do not use i
for measurements in locations falling under Measurement Catego for measurements in locations falling under Measurement Catego
ries III, II, and IV. ries II, III, and IV.

- Input Specifications
-Universal Input (Equipped as standard)

The accuracy is that in the standard operating conditions: $2332^{\circ} \mathrm{C}, 55 \pm 10 \% \mathrm{RH}$, and power
freauency at $50 / 60$ Hz.
Note 1: $\pm 0.3^{\circ} \mathrm{C} \pm 1$ digitit ine the range between 0 and $100^{\circ} \mathrm{C}, \pm .5^{\circ} \mathrm{C} \pm 1$ digitit the range
Input samping (control) period: Select from 100 and 200 ms
Burnout detection:
Functions at TC, RTD, and standard signal.
Uscalale, downscale and off can
For standard signal, burnout is deetermined to have occurred if it is 0.1 V or 0.4
mA or less.
mA or less.
Input bias current: 0.05 AA (for TC or RTD)
Measured current (RTD): About 0.16 mA

- Mnut bias current: 0.05 HA for TC or RTD
- Measured current (RTD): About 0.16 mA
- Inout resistance.

Input resistance:
TC or mV input: $1 \mathrm{M} \Omega$ or more
V input: About $1 \mathrm{M} \Omega$
mA input: About 250Ω

- Allowable signal source resistance

Effects of signal source resistance: $0.1 \mu \mathrm{~N} / \Omega$ or les DC voltage input: $2 \mathrm{k} \Omega$ or less
Allowable wiring resistarce resistance: About $0.01 \% / 100$ ᄋ
Alowable wiring resisitance:
RTD input: Max. 150Ω /wire (The conductor resistance between the three wires shall be equal.)
Wiring resistance
Wiring resistance effect: $\pm 0.1^{\circ} \mathrm{C} / 10 \Omega$
Allowable input valtage/current:
TC, , mV m and RTD input: $\pm 10 \mathrm{VDC}$
V input: $\pm 20 \mathrm{VDC}$
mA input: $\pm 40 \mathrm{~mA}$

- Noise rejection ratio:

Normal mode: 40 dB or more (at $50 / 60 \mathrm{~Hz}$)
Common mode: 120 dB or more (at 50 Cz
Common mode: 120 dB or more (at 50160 Hz)
For $100-240 \mathrm{VAC}$, the power frequency can be set manually
For $100-240 \mathrm{VAC}$, , he power frequency can be set manuall
Atumatic detection is assoavaiiabe.
For 24 V AC/DC, the power frequency can be set manually.
For 24 VACDC, the power frequency
Reference iunction compensation error:
Reference
t1. $0^{\circ} \mathrm{C}$ (15 to to $35^{\circ} \mathrm{C}$)
$\pm 1.5^{\circ} \mathrm{C}\left(-1.10\right.$ to $^{\circ} 5^{\circ} \mathrm{C}$ and 35 to $50^{\circ} \mathrm{C}$)

- Auxiliary Analog Input

Use: Remote setpoint setting external compensating input, auxiliary input for com-
Number of inputs: See the table of Model and Suffix Codes.

- Input type, instrument range, and measurement accuracy: See the table below.

C volage
Input sampling (control) period:
Input resistance: About $1 \mathrm{M} \Omega$
Hen
However, $10 \mathrm{M} \Omega$ or more for DC voltage for high edance range Eurnout detection: Functions at standard signal
Burnout is determined to have occurred ifitit is 0.1 V or les.
sal Input (Optional suffix code: /U1)
Number of inpuss: See the table of Model and Suffix Codes.
Input type instrument range, and measurement accuracy: Same as the standard Input type, instrument range, and measurement
equipped universal input except the table below.

Imput type		Instrument Range		Accuracy
4-wie RTD		-200.0t $5000.0{ }^{\circ} \mathrm{C}$	-300.0 to 1000.0\%	instum
	JPtio	${ }_{\text {150.00 to } 150.00^{\circ} \mathrm{C}}$	-200.00 to 300.0. ${ }^{\text {F }}$	$\pm 0.22^{\circ}$ of instrumentrange 11 digit
	P1100	-200.0 to 850.0. ${ }^{\circ} \mathrm{C}$	1560.0\%	(0.1.\% of fistument range 11 digt
		-200.0 to 500.0.0	-300.0 to 1000.0\%	t0. 0.50 of fins
		150.00 to 150.00 ${ }^{\circ} \mathrm{C}$	-200.0 to $300.0{ }^{\text {O }}$	to. 0.20 of instrumentrang 11

Note $1: \pm .5^{\circ} \mathrm{C} \pm 1$ digitit in the range between -200.0 and $500.0^{\circ} \mathrm{C} /-300.0$ and $1000.0^{\circ} \mathrm{F}$.
Input sampling (control) period: Same as the standard-equipped universal inpui.
.
Analog Output Specifications
Number of outputs:
Control output: 1
Cooling-side control output of Heating/cooling type
Current output 4 t to 20 mADC or 0 to 20 mADCl Doad resistance of 600Ω or less The accuracy is that in the standard operating conditions: $23 \pm 2^{\circ} \mathrm{C}, 55 \pm 10 \% \mathrm{RH}$, and power frequency at $50 / 60 \mathrm{~Hz}$
Voltage pulse output:
Use: Time proportional output
On-voltage
On-voltage: 12 V or morelload restance of 600Ω or more
Off-voltage: 0.1 VDC or leas
Off-voltage: 0.1 V DC or less
Time resolution: 10 ms or 0.1% of output, whichever is larger

- Step Response Time Specifications

Within 500 ms (when the control period is 100 ms
Within 1 s (when the control period is 200 ms)
(63% of analog output response time when a step change of 10 to 90% of input span s applied)

- Triac Output Specifications
- Contact type and number of output: zero cross; 1 point
Load voltage: 75 to 250 VAC

Allowable load current: 0.8 A when the ambient temperature is $20^{\circ} \mathrm{C}, 0.3 \mathrm{~A}$ when the ambient temperature is $50^{\circ} \mathrm{C}$.
Minimum load current: 20 mA
: Unusable for a small load of 10 mA or less.
*: If there is a risk of surge current, connect a current-limiting reactor, a current-
limiting fuse or a breaker in series to the load power supply.

Use: Time proportional output, Alarm output
Time resolution of control output: $1 /$ comme
ercial requency (s) or 0.1% of output,

- Relay Contact Output Specification

Contact type and number of outputs:
Contril output: contact point 1ci; 1 point
Cooling-side control
Cooling-side control output of Heating/cooling type: contact point 1 c; 1 point
Contact rating:
Contact point 1 c (control output): $250 \mathrm{VAC}, 3 \mathrm{~A}$ or $30 \mathrm{VDC}, 3 \mathrm{~A}$ (resistance load)
Contact point 1 (event output): $240 \mathrm{VAC}, 1 \mathrm{~A}$ or $30 \mathrm{VDC}, 1 \mathrm{~A}$ (resistance load) Use: Time proportiona
Time resolution of control output: 10 ms or 0.1% of output, whichever is 1 larger

- Position Proportional Output Specifications

Position signal input
Slide resistance: 1
100% side and slide line: with disconnection
100% side and slide line: with disconnection detection
0% side: without disconnection detection
Current input: 4 to 20 mA (with disconnection detection)
Sampling period: 50 ms
Measurement resolution: 0.1% of input span
Postion proportional relay output:
Contact point 12 a; 2 points, $250 \mathrm{VAC},$,3 or $30 \mathrm{VDC}, 3 \mathrm{~A}$ (resistance load)

- Retransmission Output Specifications

supp
Cupply Current output. Retransmission output, 1 , shared with 15 V DC loop power Current output: 4 to 20 mADC or 0 to $20 \mathrm{mADC/}$ load resistance of 600Ω or less
 and power frequency at $50 / 60 \mathrm{~Hz}$.

15 V L Loop Power Supply Specifications

Shared with retransmission output)
Power supply: 14.5 to 18.0 VDC

Maximum supply A (with shor-circuit current limiting circuif)

- Contact Input Specifications

Number of inputs: See the table of Model and Suffix Codes.
Input type: No-voltage contact input or transisto
Input contact rating: 12 V DC, 10 mA or more
Use a contact with a minimum on-current of 1 mA or more.
ON/OFF detection:
No-voltage contact input:
Contact resistance of $1 \mathrm{k} \Omega$ or less is determined as "ON" and contac
resistance of $50 \mathrm{k} \Omega$ or more as "OFF."
ransistor contact input:
Input voltage of 2 V or les
not exceed $100 \mu \mathrm{~A}$ when "OFF"
Minimum status detection hold time. Contron "ON and leakage current mus.
Use: PTNO. switch, operation mode switch, and event input

- Transistor Contact Output Specifications

Number of outputs: See the table of Model and Suffix Codes.
Output type: Open collector (SINK current)
Output type: Open collector (SINK current)
Output contact rating: Max. 24 V DC, 50 mA

- Output time resolution: Min. 100 ms

Heater Break Alarm Specifications

- Number of inputs: ${ }^{2}$

Use: Measurues the heater current using an external current transformer (CT) and generates a heater break alarm when the measured value is less than the break detection value.
Curent transiormer input resistance: About 9.40
pied.)

Recommended CTT CTT fom U.R.R.,., Lto.
CTL-6-S.-H: CT ratio
80
CTL-6-S-H: CT ratio 800, measurable current range: 0.1 to 80.0 Arms
CTL-12L-30: CT ratio 3000, measurable current range: 0.1 to 180.0 Arms

- Heater current measurement period: 200 ms

Heater current measurement accuracy: $\pm 5 \%$ of current transformer input range
span ± 1 1digit (CT error is not included.)
span \pm 1digiti (CT error is not included.)
Break detection On-time: Min. 0.2 second (for time proportional output)

■ 24 V DC Loop Power Supply Specifications
Use: Power is supplied to a 2-wire
Power supply: 21.6 to 28.0 VDC
Rated current: 4 to 20 mADC
Maximum supply current: About 30 mA (with short-circuit current limiting circuit)

- Safety and EMC Standards

Safety: Compliant with IEC/EN61010-1 (CE), approved by CAN/CSA C22.2 Installation category: CAT. II Pollution degree: 2

Measurement category ((CATI)
Rated measurement input voltage: Max. 10 VDC
Rated transient one

- EMC Conformity standards:

E marking
EN661326-T Class A, Table 2 (For use in industrial locations)
EN 55011 Class A, Group
EN 61000-3-2 Class
EN $61000-3-3$
C-tick mark
EN 55011 Class A, Group
The instrument continues to operate at a measurement accuracy of within $\pm 20 \%$ of

- Construction, Installation, and Wiring

Dust-proof and drip-proof: IP56 (for front panel) (Not available for side-by-side lose mounting.)
ycarbonate (Flame retardancy: UL94V-0)
Case color: White (Light gray) or Black (Light charcoal gray)
xternal dimensions (mm): $96(\mathrm{~W}) \times 96(\mathrm{H}) \times 65$ (depth from the panel face) (Depth except the projection on the rear panel)
bwer mounting
 Wiring: M3 screw terminal with square washer (for signal wiring and power wiring)

- Power Supply Specifications and Isolation

Power supply:
Rated voltage
$\begin{aligned} & \text { Raled voltage: } \\ & 100-240 \mathrm{VAC}(+10 \% /-15 \%), 50 / 60 \mathrm{~Hz} \\ & 24 \mathrm{~V} \mathrm{AC} / D \mathrm{DC}(+10 \% /-15 \%)(\text { for } / \mathrm{DC} \text { ootio }\end{aligned}$
$24 \mathrm{VAC/DC}(+110 \% /-15 \%)$ (for /DC option)
Power consumption: 18 VA (DC: 9 VA , AC: 14 VA if $/ \mathrm{DC}$ option is specified) $)$
Data backup: Nonvolatilie memory , AC. 14
Power holdup time: 20 ms (for 100 V AC drive)
Withstanding voltage
Between primary term
Between primary terminals and secondary terminals: 2300 V AC for 1 minute Between primary terminals: 1500 VAC for 1 minute
Between secondary terminals: 500 V AC for 1 minute
(Primary terminals: Power and relay output terminals; Secondary terminals
Analog ||O signal terminals, contact input terminals, communication terminals and functional grounding terminals.)

sulation resista 20 M 2 or more at 500 V DC
Isolation specifications

Curent transiormer input terminals

- Environmental Conditions

Normal Operating Conditions

- Ambient temperature: -10 to $50^{\circ} \mathrm{C}\left(-10\right.$ to $40^{\circ} \mathrm{C}$ for side-by-side close mounting) For the CC-Link option, 0 to $50^{\circ} \mathrm{C}\left(0\right.$ to $40^{\circ} \mathrm{C}$ for side-by-side close mounting)
Ambient humidity 20 , $000 \% \mathrm{RH}$ (0) Magnetic field: $400 \mathrm{~A} / \mathrm{m}$ or less
Continuous vibration at 5 to 9 Hz : Half
minutes each in the three axis directions
Continuous vibration at 9 to $150 \mathrm{~Hz}: 4.9 \mathrm{~m} / \mathrm{s}^{2}$ or less, 1 oct/min for 90 minutes each
in the three axis directions
Short-period vibration: $14.7 \mathrm{~m} / \mathrm{s}^{2}$, 15 seconds or less
Shock: $98 \mathrm{~m} / \mathrm{s}^{2}$ or less, 11 ms
Alitiude: 2000 m or less above sea leve
Warm-up time: 30 minitutes or more after the power is turned on
Startup time: Within 10 seconds

Transportation and Storage Conditions:
Temperature: -25 to $70^{\circ} \mathrm{C}$
- Temperature change rate: $20^{\circ} \mathrm{C} / \mathrm{h}$ or less
Humidity: 5 to $95 \% \mathrm{RH}$ (no condensation allowed)

Effects of Operating Conditions

- Effect of ambient temperature:

Voltage or TC input: $\pm 1 \mathrm{Nv/IOC}$ or $\pm 0.01 \%$ of $\mathrm{FS} .{ }^{\circ} \mathrm{C}$, whichever is larger
Current input: $\pm 0.01 \%$ of $\mathrm{FS} . /{ }^{\circ} \mathrm{C}$ Current input: $\pm 0.01 \%$ of $\mathrm{FS} . \mathrm{IP}^{\circ} \mathrm{C}$
RTD innut: $\pm 0.05^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$ (ambient
RTD input: $\pm 0.05^{\circ}{ }^{\circ} /{ }^{\circ} \mathrm{C}$ (ambient temperature) or less
Effect of power supply voltage fluctuation
Analog output. $\pm 0.05 \%$ of of $\mathrm{F} . \mathrm{So}$ or ross less
(Each within rated voltige range)

How to Connect Wires

- Wiring work must be carried out by a person with basic electrical knowledge and practical experience.
Be sure to turn OFF the power supply to Be sure to turn OFF the power supply to the controller before wiring
to avoid an electric shock. Use a tester or similar device to ensure that no power is being supplied to a cable to be connected.
As a safety measure, always install a circuit breaker As a safety measure, always install a circuit breaker (an IEC
69947-compatible product, $5 \mathrm{~A}, 100 \mathrm{~V}$ or 220 V AC) in an easill 60947 -compatible product, $5 \mathrm{~A}, 100 \mathrm{~V}$ or 220 VAC) in an eesily
accesibile location near the instrument. Moreover, provide indication that the s sitch is a device for turning off the power tot oth instrument.
Install the power cable keeping a distance of more than 1 cm Intal the power cable
from other signal wires.
The power cable is required to meet the IEC standards concerned or the requirements of the area in which the instrument is being installed.
Wiring should be installed to conform to Wiring should be installed to conform to NEC (National Electrica
Code: ANSIINFPA-70) or the wiring construction standards in Code: ANSIINFPA-70) or the wiring construction standards in
countries or regions where wiring will be installed. For control relay output, alarm relay output, and power termina onnections, use heat-resistant cables.
Since the insulation provided to each relay output termina is Functional insulation, provide Reinforced insulation to the

When connecting two or more crimp-on terminal lugs to
single terminal block, bend the crimp-on terminal lugs befor tightening the screw.
Note that the wiring of
Note that the wiring of two or more crimp-on terminal lugs to the
single high-voltage terminal of the power supply and relay, etc. single high-voltage terminal of the power
does not comply with the safety standard.

> Provide electricity from a single-phase power supply. If the Provide electricity from a single-phase power supply. If the $\begin{aligned} & \text { side, and use a line filter on the secondary side. When measures } \\ & \text { against noise are taken, do not install the primary and secondary }\end{aligned}$ power cables close to each other If there is a risk of external lightning surges, use a lightning arrester etc. $\begin{aligned} & \text { or TC input, use shielded compensating lead wires for wiring. } \\ & \text { For RTD input, use shielded wires that have low conductor }\end{aligned}$ esistance and cause no significant differences in resistance between the three wires.
> $\begin{aligned} & \text { Since the control output relay has a life span (resistance load of } \\ & 100,000 \text { times), use the auxiliary relay to }\end{aligned}$ $\begin{aligned} & 100,000 \text { times), use the auxiliary relay to perform ON/OFF control. } \\ & \text { The use of inductance (L) loads such as auxiliary relays, motors }\end{aligned}$ and solenoid valves causes malfunction or relay failure; always $\begin{aligned} & \text { insert a CR filter for use with alternating current or a diode for } \\ & \text { use with direct current, as a spark-removal surge suppression }\end{aligned}$ $\begin{aligned} & \text { use with direct current, as a spark-removal } \\ & \text { circuit, into the line in parallel with the load. }\end{aligned}$
> $\begin{aligned} & \text { After completing the wiring, the terminal cover is recommended } \\ & \text { to use for the instrument. }\end{aligned}$

- Recommended Crimp-on Terminal Lugs
(A) (

Recommended tightening torque: $0.6 \mathrm{~N} \cdot \mathrm{~m}$
Applicable wire size: Power supply wiring $1.25 \mathrm{~mm}^{2}$ or more

- Cable Specifications and Recommended Cables

Purpose	Name and Manutacturer
Power supply, relay contact outputs	600 V Grade heat-resistant PVC insulated wires, JIS C
Thermocouple	Shiedted compensating lead wires, IIS 161610
RTD	Shielded wires (threeffour conductors), UL2482 (Hilisach Catiole
Ohere signas (other than conlact inoutuotut)	Shielded wies
Other signals conlact inputuotput)	Ussieldeded wires
RS 485 communicaion	Shieded w wies
Ethemet commuricaion	100 BASE-TX (CAT-5/10 BASE-T
PROFFIUS-DP P communicaion	Dedicaled cale for PROFIBUS-DP (Shielded two-wies
Devicenet communication	Dedicated cable for Devicenet (Shielded fivewies)
unicaion	Ealed cable for C-C.Link SShielded three

PROFIBUS-DP/CC-Link Connector (wiring side) (Part number: A1987JT) DeviceNet Connector (wiring side) (Part number: L4502BW)

DC Relay Wiring
AC Relay Wiring

- UP55A (Continued from page 3)

[Operations
The errors shown below may occur in the faut diagnosis when the power is turned on. (For details of Se

$\begin{aligned} & \text { PV display } \\ & \text { (Operation } \\ & \text { Display) } \end{aligned}$	Setpoint display (Operation Display)	Status indicator (Operation Display)	Parameter that displays error details	Emror descripion	Cause and diagnosis	Remedy
Indic	Ind	-	-	Fauly MCU RAM / MCU ROM	MCU RAM / MCU ROM are falied.	
ERR	SYS --	-	-	System data error	System data is corupied.	${ }_{\substack{\text { Fealty } \\ \text { Contact us for repair }}}$
	PAR 0004 for user defuut value error		Setup parameer (PA.ER)	User (parameter) default value erro	User parameter is corrupted. Initialized to factory default value	
	PAR 0010 (forsemp earatereroro only)			Setup parameter error	Setup parameter data is corrupted Initialized to user default value	
	PAR 02020 anerer			Operation parameere error	Operation parameter data is corrupted er default value	
	PAR 0040 pattern error only)			Program patem error	Program pattern data is corrupted. All program patterns are deleted.	
			Setup parameer (OP.ER)	Nonresponding hardware of extended function terminal areas)	Inconsistence of system data and Nonresponding communication between hardware of extended function (E1 to E4 terminal areas). Initialized to cal	${ }^{\text {Fautly }}$ Contact s for repair
Normal	Normal indication	$\begin{array}{\|l} \hline \text { Rightmost decimal point } \\ \text { on PV display blinks. } \\ \hline \text { Rightmost decimal point } \\ \text { on Symbol display blinks. } \end{array}$	Setup parameter (PA.ER)	Calibration value error	Initialized to calibrated default value because default value	${ }_{\substack{\text { Fauty, } \\ \text { contact s for repair }}}$
				Fauly FRAM	Data witing storing) to fram is in impossile.	
Normal indicatio	Normal indication	LADDER lamp links	Setup parameter (LA.ER)	Corrupied ladeer program	Ladder program is corrupted	Download the ladder program again.
$\begin{array}{\|l\|l\|} \substack{\text { Normaliat } \\ \text { indictao }} \end{array}$		-	Setup parameter (OP.ER)	User profile eror	User profilie is corupled.	Download the user profile again.

[Operations 13. Troubleshooting] ■ Errors during Operation
The errors shown below may occur during operation. (For inputoutput action when each error occurs, see User's Manual.

	Setpoint display (Operation Display)	Status indicator Operation Display)	Parameter that displays error details	Error description	Cause and diagnosis	Remedy
AD.ERR	Norma indication (Note)	-	Setup parameter (AD1.E)		Analog inut terminal AD value erra	Faulty contact us for repair
	al indiciation (Note)	-	Setup parameter (AD1.E)		al input teminal RJC	Faulty. Set the parameter RJC to OFF to erase error indication
B.OUT	Norma indication (Note)	-	Setup parameter (AD1.E)		Analog input terminal sensor burna	Check wiring and sensor Error indication is erased in normal operation. .
			Setup parameter (PV1.E/ PV2.E)	PV input burnout error (Loop 1,	Burnout of analog input connected to PV	Check wiring and sensor of connected analog input terminals Error indication is erased in normal operation.
OVER -OVER	Normal indication	-	Setup paramete (PV1.E/ PV2.E)		PV input is out of -5 to 105%. Also occurs when the data out of range which is the when the data out of range which ladder calculation result is input.	Check analog input value or ladder program.
	Nomal indication	-	Setup parameter (PV1.E)	RSP inut bumout error (Loop 1)	Burnut of analog input connected to RSP	
Normal indication	RSP B.OUT	-	Setup parameeter (PV1.E)	Burnout error when RSP input is used for control (Loop 1)	Burnout of analog input connected to RSP when RSP is used for control computation	Check wiring and sensor. Erro operation
Normal indication indicatio	OUT --.--	-	Setup parameter (AD2.E)	$\begin{aligned} & \text { Feedback input resistor/current } \\ & \text { burnout } \end{aligned}$	Feedback input burnut	Check wiring of feedback input resistor/ current. Error indication is erased in normal operation.
$\begin{aligned} & \text { Normal } \\ & \text { indication } \end{aligned}$	Normal indication	LADDER Ramp blinks	arameter (LA.ER)	Ladder calculation overflow	${ }^{\substack{\text { Foating point computation for lader } \\ \text { calculion is infine }}}$	Check the lader program.
				Load factor verer 100%	end within the 100% or more, and the computation doe not end within the control period.)	Change the control period or reduce the number program
				Load factor over 200\%	Computation does not end within the control period (load factor is 200% or more)	Change the control period or reduce the number of steps for the ladder program.
				Ladder program eror	Ladder program is corrupted.	Download the ladder program again. I the error indication is still not erased, there is a fault. Contact us for repair
	0.0000000 the Symbol display blinks)	-	Setup prameter (OP.ER)	Peer-t-peeer communication error	er-topeer communicai	Check that the target devices are connected correctly. Recovery at normal receipt.
AT.E	Normal indication	-	Selup parameter (PV1.EPV2.E)	Auto-tuning time-out (Loop 1, Loop 2)	Auto-tuning does not end even when 24 hours have elapsed after the start of tuning	Check the process. Hold down any key to erase the error indication
VAT.E	Normal indication	-	Setup parameter (AD2.E)	Valve position automatic adjustment error adjustment error	Fully-closed valve position is equal to or larger than the fully-open valve position after automatic valve position adjustment is performed.	Check wiring and valve. Hold down any key to erase the error indication.
$\begin{aligned} & \text { Normal } \\ & \text { indication } \end{aligned}$	0.00000000 (Decimal point on the left of the Symbol display blinks)	-	Setup parameter (OP.ER)	Communication error (RS-485 communication)	Framing parity erro Buffer overflow Checksum checksum) CRC check error (Modbus/RTU) LRC check error (Modbus/ASCII)	Check the communication parameters Rocel normal receipt. Hold down any key to stop blinking.
$\begin{aligned} & \text { Normal } \\ & \text { indication } \end{aligned}$		-	Setup parameter (OP.ER)	User r pofile eror	User profili is corupted.	Download the user profile agin.
(Normal indication	Remen	Setup parameter (PA.ER)	Fauly fram	Writing (storing) data to FRAM is inpossible.	Fauty. Conlact us for repair.
Undefined	Undefined	-	-	Faulty MCU / DCU (ROM / RAM error, corrupted)	MCU I DCU is corupled.	Fault. Contact us for repair

Operation Guide	UP55A Program Controller Operation Guide for Single-loop Initial Settings	UTVAdvancen Control

YOKOGAWA

This operation guide describes basic settings and operations of the UP55A.
For details of each function, see User's Manual.

Contents

1. Names and Functions of Display Parts
2. Setup Procedure
3. Quick Settin Function (Setting of Input and Output)
4. Adjusting Vavave Position Automatically (for a Position Proportional Type Controller Only
5. Setting Alarm Tye
6. Setting Alarm Setpoint
7. Names and Functions of Display Parts

(2) + (3) + (4) : Seppoint display				
No. in figure	Name	Description		
(1)	PV dispay	Displays PV. Displays an error code if an error occurs. Displays the scrolling guide in the Menu Display and Parameter etting Display when		
(2)	$\begin{aligned} & \text { Group display (pattern } \\ & \text { number) } \\ & \text { (green) } \end{aligned}$	1 to 30 represent pattern numbers in the Operation Display. in the Parameter Setting Display.		
(3)	Symbol lisplay (orange)	Displays a parameter symbol.		
(4)	Data display ((orange)	Displays a parameter setpoint and menu symbe		
(5)	Bar-graph display (event, alarm) (orange)	Displays the event status and the segment position in the Displays control output value (OUT) and measured input value (PV) The data to be displayed can be set by the parameter		
(6)	Event indicato (orange)	Lit when the PV events occur. Event displays can be set by the parameter		
(7)	Key navigation indicator (green)	Lit or blinks when the Up/Down or Left/Right arrow key operationis possible.		
${ }^{8)}$	Parameter display level indicator (green)	Displays the setting conditions of the parameter display level func tion.		
		Parameter display level	EASY	PRO
				Unlit
		Standard setitigg mode	Unit	Unit
		Profossional seting mode	Unit	U
(9)	Program monitor(green)			
(10)	Status indicator (green and red)	Displays the operating conditions and contol status.		
		Lit when in hold mode (HLD).		
		CAS Lit when in casca	Lit when in cascade mode (CAS).	
			eration mod	
			eo progra	
		RST Lit wher in resel	Lit when i reset mode (RST).	
		Lit when in manual mode (MAN).		
(11)	Security indicator (red)	Litifa passwordi set. The setup parameter setings are locke.		
(12)	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Ladder operation } \\ \text { indicator (green) } \end{array} \\ \hline \end{array}$			
(12)	Loop 2 indicator (LP2 lamp) (green)	Lit when the control mode is Cascade control In the Operation Display, the LP2 lamp is lit while the Loop-2 data is displayed on Setpoint display. lamp is lit while the Loop-2 menu symbol or parameter symbol displayed.		
(13)				

2. Setup Procedure

3. Quick Setting Function (Setting of Input and Output)

 The Qler.
Turn
Que Quick seifng finction is a function to easly set he basic function of the control ler.
Turn on the controller to start the Quick setting function This function allows you to easily set the control type, input, and output, and quickly start the control action.
The items (parameters) to be set by Quick setting function are as follows.
(1) Control type (PID control, Heating/cooling control etc.) (1) Control type (PID control, Heating/cooling control, etc.).
(2) Input function (PV input type, range, scale (at voltage inp (2) Input function (PV input type, range, scale (at voltage input), etc.)
(unction (contro output type and cycle time)

After turning on the controller, first decide whether or not to use the Quick setting func-
tion.
The Quick setting function can be used only when the control mode is Single-loop control. For other control modes, set the functions without using the Quick setting
then function
Operation in Initial Display

- Press the SET/ENTER key while YES is displayed to start the Quick setting function. If you change YES to NO and press the SET/ENTER key, Operation Display wil

Operation for Setting

To select the parameter setting displayed as the initial value, press the Down arrow key to move to the next parameter.
To change and set the parameter s
setpoint blinking. The blinking state alliows press the SET/ENTER key to start the Use the Up/Down/Left/Right arrow keys to change the setpoint. Press the SET/EN

- Making Settings Using Quick Setting Function

Example; Setting to PID control, thermocouple type K (range of 0.0 to ${ }^{500} 0^{\circ} \mathrm{C}$) and current control output $\left.500.0^{\circ} \mathrm{C}\right)$, and current control output
For the detailed procedure and switching of displays, see "Flow of Quick Setting

(1) Press the SET/INTER key while YES for OSM (Quick setting mode) is displayed
(2) Set the control type parameter (CNT) to (3) Set the PV input type parameter (IN) to K1 (-270.0 to 1370.0 (4) Set the PV input unit parameter (UNIT) to C (Degree Celsius). (5) Set the maximum value of PV input range parameter (RH) to 500. 6) Set the minimum value of PV input range parameter (RL) to 0.0 .
7) Set the output type selection parameter (OT) to OUT terminals (curre
(8) Finally, EXIT is displayed. Change NO to YES and press the SET/ENTER key to
complete the setup. Operation Display appears.

- Flow of Quick Setting Function

$\forall \nabla$ Press the Down arrow key.

3. PIf IMA $\begin{gathered}\text { The PV input type } \\ \text { parameter (IN) is } \\ \text { dismay.ed } \\ \text { Intial value: OFF }\end{gathered}$

- Press the SET/ENTER key. (1)

4. PI' IMA $\begin{gathered}\text { OFF blinks. } \\ \text { Blikning }\end{gathered}$ OFF blinks.
Binking alows you to
change the setting.

- \triangle Press the Up arrow key.

Select No to return to
the operation Display
- Press the SETENTER key.

6.

K1 has been registered.

- ∇ Press the Down arrow key

The last digit of the upper limit value blinks.
$\stackrel{\Delta \nabla}{\Delta \triangleright}$ Change the setpoint using the Up/Dow
value and the eetetitigh and ardecreasese keys to
10. MRF TM

The parameter RH (maximum
value of PV. inut tange) has been
changed

11. MH:Tin

The setpoint for the parameter
RH has been registered.
표를
(3)

12

 Ooperation Displuap afpears.
The Quick setting tunction The Quick setting tunctions continues in the $N \mathrm{NO}$ state 룰 (ㄷ)
\qquad

- Parameters to be set

Note: Some setpoints may not be displayed depending on the model and suffix codes
Input Function

Output Function

Parameter Symbol	Name of Parameter	Setting Range	
от			
ст		0.500 1000.0 s	
$\mathrm{CT}_{\text {c }}$	Cooling-side control output cycle time		

Adjusting Valve Position Automatically

(for a Position Proportional Type Controller Only The following operating procedure describes how to input feedback signals from the
control valve and adiust the fully-open and fully-closed positions of the control valve automatically. The fully-open and fully-closed od ocsition on of the evalve tan bentrol valusted
automatiodly by inultin feedack sigals from the valve. To adjust the valve posi-
tion, vou need to carty
 and for the manual mode, see "5. Switching between AUTO and MAN" in "Opera
tions." The automatic adiustment can be done in program pattern operation, loca
ioperater

he last digit of the setpoint blinks.
$\Delta \nabla$ Change the setpoint using the Up/Down arrow keys片 $\begin{aligned} & \text { to increase and decrease the value and the } \\ & \text { eftright arrow keys to move between digits. }\end{aligned}$

Press the SET/ENTER key. Bill
The alarm-1 type setpoint 02 (PV low limit) is
registered. registered.
After the setup After the setup is completed, press the DISPLA
key once to return to the Operation Display. Stand-by action
EnergizadDDe-energized
Latch action Latch action

- To change th
5-digit value.

5-digit value.

- Stand-by action - Stand-by action and excitation are turned on or off by
selecting 1 or 0 . (See "Setting selecting 1 or 0. (See "Setting Display of A
- For the latch action, see User's Manual.

Alarm Type (Alarm Setpoint)	Alarm Action (Energized)	Alarm Action (De-energized)
No alam (0)		
PV high limit (01) Analog inpur PV high limit (19) Analog input AIN2 high limit (23) Analog input AIN4 high limit (25)		
PV Iow linit (02) Analog inut P V I Analog input ANN 2 Iow init 224 Analog input ANAN I low linit 220		
SP low limit (04) Target SP low limit (10)		
Deviation high limit (05) Target SP deviation high Target SP limit (11)		
Deviation low limit (06) Target SP deviation low		
Deviation high and low Target SP deviaition high and low initis (13)		
Peviaion witin ligh and low initiso Tasces sp devivition within high 		
Control output high limit (15) high limit (17) igh limit (17)		
Control output low limit (16) ntrol output low limit (18)		
Feedback input high limit (27)	Fault diagnosis alarm (30) \qquad analog input. ADC failure, RJC error.	
Feedback inut tow linit 28)	For hhe facory deidut the contact outurt Sumed ONin nomal operaion	
PV velocity (29)		

Noie $2: ~ \oplus$ Positive setponint, Θ Negative sentoint
\triangleright Press the Right arrow key until ALRM menu appears. ebB
(Iil
Press the SET/ENTER key
display the Press the Up/Down arrow keys to
parameter needs to be changed.
76月
The parameter AL1 (alarm-1 type)
Press the SET/ENTER key.
(Iit)

Note that the SP in rese-mode is SSP (Starting target setpoint).

0. Setting Alarm Setpoint

The following operating procedure shows an example of setting the alarm-1 setpoint 10 180.0. (These alarms work irrespective of the operation mode.) Before setting the alarm setpoint, check the alarm type,
To change the alarm type, see "5 5 Setting Alarm Type.

1. Show the Operation Display
2. Display MODE menu with the same procedure as described in Setting Alarm Type.
\triangleright Press the Right arrow key

3. $\frac{7 \text { ED }}{15 \text { IUI }}$

The parameter A1 is displayed.
A1 to A8 represent the alarm-1 to A1 to A8
setpoints.

Each parameter can be changed in the
Parameter Setting Displays of alarms using $\Delta \nabla \begin{aligned} & \text { arrow keys. } \\ & \text { Up/Down arro }\end{aligned}$

Display the parameter
changed.
Press the SET/ENTER key. ©

Blinks during the change
\triangle Change the setpoint using the Up/Down $\stackrel{\Delta \nabla}{\Delta \nabla}$ arrow keys to increase and decrease the move between digits.

- Press the SET/ENTER key.
 The setpoint has been registered.
After the setup is completed, press
the DISPLAY key once to return to the DISPLAY key once to return to
the Operation Display.

Operation	UP55A	U/IT/Advancedl
Guide	Program Controller Operation Guide for Single-loop Control Programming	

YOKOGAWA Yokogawa Electric Corporation
This operation guide describes basic program settings of the UP55A.
Oor detailis of each function see

Contents

1. Overview of Program Patterns
2. Creating Program Patterns
3. Creating Program Patterns
4. Program Pattern Setup Charts

1. Overview of Program Patterns

The programming example given here demonstrates how to do the tasks outtined

1) Program the controller to start program operation at $50.0^{\circ} \mathrm{C}$ and raise the temperature up to $100.0^{\circ} \mathrm{C}$ in 50 minutes.
2) Raise the temperature up to $200.0^{\circ} \mathrm{C}$ in 60 minutes.
3) When the temperature reaches $200.0^{\circ} \mathrm{C}$, keep it at
4) Lower the temperature to $50.0^{\circ} \mathrm{C}$ in 50 minutes.

PV input ranges are following.
Maximum value of PV input ran
Maximum value of PV innut range: $250.0^{\circ} \mathrm{C}$
Minimum value of PV input range: $0.0^{\circ} \mathrm{C}$
PV input unit: C
Zone PID selection (ZON): Segment PID selection (0)
Segment setting method (SEG.T): Segmeltection (0) (0) (TIME)
Program time unit (TMU): hour.minute (HH.MM)

See User's Manual for the Wait and Repeat actions, Zone PID, Start of program operation (Start code), Changing opee.
code), Local mode, and Remote mode.

2. Creating Program Patterns

The following "operating procedure describes an example of creating the progran
discussed in ". Overview of Program Patterns"

3. Program Pattern Setup Charts

You can register max. 99 program segments with the UP55A controller. Create as
many copies of the chart as necessary.

System name	
Progam No.	
Program name	
Model	
Serial No.	

The following parameters are necessary to be set before programmings.
Note that the program is deleted if TMU or SEG.T is changed after creating pro
grams.
For the setting range, see "Parameters."
< Setup Parameters >

The following parameters are common parameters for the program pattern specified.
< Program Pattern Data (common parameter) >

Parameer symbol	Parameter name	User settings
Ssp	Staring target selpoint	
ssp	Starting target selpoint for program patem-2 retrasmisision)	
stc	Start oode	
wT.SW1	Wait tunction ONOFF 1	
wz.UP1	Upper-side wait one 1	
wz.Lo1	Lowerside wait one 1	
wt.tM1	Wait time 1	
T.sw2	Wait tunction ONOFF 2	
Wz.UP2	Upper-side wait zone 2	
wz.Lo2	Lowerside wait one 2	
wt.tM2	Wait time 2	
WT.SW3	Wait tunction ONOFF 3	
Wz.UP3	Upper-side wait one 3	
wz.Lo3	Lowerside wait one 3	
wt.tm	Wait time 3	
WT.SW4	Wait tunction ONOFFF 4	
Wz.UP4	Uppers-side wait zone 4	
wz.Lo4	Lowersidid wait one 4	
wt.tM4	Wait time 4	
WT.SW5	Wait tunction ONOFF 5	
Wz.UP5	Uppers.side wait zone 5	
wz.Los	Lower-side wait one 5	
wt.tm	Wait time 5	
R.CYCL	Number of repeat ycles	
R.strt	Repeat cycle start segment uumber	
R.END	Repeat cycle end segment number	

R.END	Repeat cycle end segment number
	Error Indication at Program Pattern Creation and Editing

 see User's Manual.
< Program Pattern Data (parameters for segments) >
Unit $($
A program patter can be draun in the ight table.

4. Switching between RUN and RESET

RUN and RESET switching can be performed using any
Contact input, (3) Parameter, and (4) Communication.
The following shows an example of switching using the key
For details of other switching methods and the display appearing when the opertion is started, see User's Manual.

The figure below is displayed while the right arrow key is held down.

OIDZ, 5 5010

- The number of se \qquad
program pattern.
The segment number for which operation is in progres

5. Switching between AUTO and MAN

AUTO and MAN switching can be performed using any of the following: (1) MODE key, (2) Contact input, (3) Contact input, and (4) Communication.
The following shows an example of switching using the MODE key. The following shows an example of ssitching using the MODE key.
When AUTO and MAN switching function is assigned to the contact input, and the contact input is ON , the switching by key operation cannot be performed.
For details, see User's Manual.

1. Show the Operation Display.
2.
3.

3.
 Displays "MODE MAN" in AUTO mode.
Displays "MODE AUTO" in MAN mode.

- $1{ }^{\circ}$

When AUTO is switched into MAN, the control output value in AUTO mode is held. The controller can be operated manually from the hold value.
If the manual preset output is set (MPON parameter \neq OFF)
If the manual preset output is set (MPON parameter \neq OFF), the controller can be
operated manually from the arbitrary output value (MPO1 to MPO5 parameters)

12. Switching to Remote-mode (REM) Operation Switching to remote-mode can be performed using any of the following:
(1) MODE Key (user function key), (2) Parameter, (3) Contact input, and (4) Communication.
The following shows an example of switching using the MODE Key

1. Show the Operation Display.
2.

3.

4.

R.SP" is displayed when

13. Troubleshooting

- Troubleshooting Flow

If the Operation Display does not appear after turning on the controller's power, check the procedures in the following flowchart.
If a problem appears to be complicated, contact our sales representatives.

Remedies if Power Failure Occurs - Remedies if Power
during Operations

A power failure is \mathbf{n} nure within 20 ms . A power failure is not
operation continues.
Power failure for less than about 5 seconds, Power falure for less than about 5 seconds,
or for about 5 seconds or more. Affects the "settings" and "operation status."
For details, see User's Manual.

NOTE
Write down the settings of parameters for a
repair request.

- For the Errors at Power On and the Errors during Operation, see "Installation" in this manual.

YOKOGAWA
This operation guide describes the functions of parameters briefly. The parameter

Operation Parameters / Program Parameters

Hold down the PARAMETRR key for 3 seconds to move from the Operation Display to
the Operation Parameter Setting Display. Press the DISPLAY key once to return to the

Operation for Setting
To select the parameter setting displayed as the initial value, press the Down arrow
key to move to the next parameter.
key to move to the next parameter.
To change and set the parameter
 Up/Down/Left/Right arrow keys to change the setpoint. Press the SET/ENTER key to
register the setting. register the setting.
Note that there are so
and suffix codes, control mode (CTLM), control type (CNT), etc. The parameters for pro-
essional setting mode (LEVL: PRO) are not described in this manual. See User's Manual.

\square Operation Mode

Paramete symbol	Name of Parameter	Setting Range	\| nitital	${ }_{\text {User }}^{\text {Seting }}$	$\underbrace{\substack{\text { evel }}}_{\text {Display }}$
$\underset{(H O L O}{(H O L)}$	Pause/cancel release of program operation	Display during program operation. ON: Pause OFF: Cancel release (Program operation restart)	OfF		
$\begin{aligned} \text { (ADV) } \\ \text { AD } \end{aligned}$	Advance of segment	Display during program operation. Set as "ADV = ON" to advance from the current segment to the next segment	OFF		
MOdE (MODE)	Operation		RESET		
RM	AUTOMAN sw	AUTO: Automatic mode MAN: Manual mode	man		
$\begin{aligned} & \text { PEND } \\ & (\text { PNNO. } \end{aligned}$	Program pattern number selection	0: Not select program pattern 1 to 30	0		
(sst)	Start-of-program seg- ment number ment number	chenges REM	1		EASY
$\begin{gathered} \text { PFWd } \\ \text { (P.FWD) } \end{gathered}$	Fast-forwarding of program operation		1		
$\begin{aligned} & \text { (At) } \\ & \text { (AT) } \end{aligned}$	AUTO-tuning switch		OFF		
	PID number	The PID group number being selected is displayed. 1 to $8, \mathrm{R}$: PID group for reference deviation	${ }^{1}$		

\square SELECT Parameter

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \\ & \hline \end{aligned}$	Name of Parameter			Setting Range					$\begin{array}{\|c} \hline \text { User } \\ \text { seting } \\ \hline \end{array}$	${ }_{\text {Display }}^{\text {level }}$
Registered pa- rameter symbo	SELECT parameter10 to 19			Setting range of a registered parameter. For details, see User's Manual				-	$\begin{array}{\|c} \substack{\text { Thabe } \\ \text { below }} \end{array}$	EASY
Parameter	$n=10$	n=11	$\mathrm{n}=12$	$\mathrm{n}=13$	$\mathrm{n}=14$	$\mathrm{n}=15$	n=16	n=17	$n=18$	n=19
CSn										

Program Setting Parameter

Parameter symbol	$\begin{gathered} \text { Name of } \\ \text { Parameter } \end{gathered}$	Setting Range	$\begin{array}{\|l\|l} \hline \text { nitial al } \\ \text { value } \end{array}$	$\left.\begin{aligned} & \text { User } \\ & \text { seting } \end{aligned} \right\rvert\,$	${ }_{\text {display }}^{\substack{\text { Display } \\ \text { Ievel }}}$
$\underset{\text { SSSP }}{5(S 5)}$	Starting targe setpoint	0.0 to 100.0% of PV input range (EU) (Setting range: P.RL to P.RH) Setting range. P.RL to P.RH)	P.RL		
$\operatorname{sistc})_{(T L T}$	Start code		ssp		EASY
$\begin{gathered} \text { WT.5W I to } \\ \text { (WTSTLIS } \\ \text { (WTSWW TowT.SW5) } \end{gathered}$	Wait function	OfF: Disable ON: Enable	OFF		sto
	Upper-side wait zone 1 to 5	0.0 to 10.0\% of fV input range (EU)			
	Lower-side wai zone 1 to 5				
$\begin{gathered} \text { WTTM I to } \\ \text { (WTTM5 } \\ \text { (w.TM tow.TM5) } \end{gathered}$	Wait time 1 to 5		off		
RLUCL R.čVL	Number of	0 to 999, CONT (limitless number of times)	0		
$\underset{\text { (R.STRT) }}{\substack{\text { RTPRT }}}$	Repeat cycle number	1 to 99$1 \leq$ R.STRT \leq R.END ≤ 99	1		
	Repeat cycle number		1		

- Program Setting Parameter

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \end{aligned}$	Name of Parameter	Setting Range	$\begin{aligned} & \text { nititalal } \\ & \text { value } \end{aligned}$	$\begin{aligned} & \text { seser } \\ & \text { setting } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Display } \\ & \text { level } \end{aligned}\right.$
	$\begin{aligned} & \text { PV event-1 to -8 } \\ & \text { type } \end{aligned}$		OFF		std
	PV event-1 $10-8$		0		
$\begin{aligned} & \text { TME I to o } \\ & \text { TME } 16 \\ & \text { TMN10 } \\ & \text { TMEE160 } \end{aligned}$	Start condition of time event 1 to 16	ON: Start ON state OFF: Start OFF state	off		
	On time of time event 1 to 16	-: Unregistered 0.01 to 999.59 ("hour.minute" or "minute second") * Available only within the segment time			
	Off time of time event 1 to 16	* OFF when the operation mode is changed to the mode except the program operation. * Use the parameter TMU to set the time unit. (Common in the instrument.)	-		

Local Setting Parameter
Menu symbol: LOC (LOC)

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \end{aligned}$	Name of	Setting Ra	$\begin{array}{\|l\|} \hline \text { Initial } \\ \text { value } \end{array}$	$\begin{array}{\|c} \text { User } \\ \text { setting } \end{array}$	$\begin{array}{\|c\|} \hline \text { Display } \\ \text { level } \end{array}$
$\begin{aligned} & (\text { LSP) } \end{aligned}$	$\begin{aligned} & \text { Local target } \\ & \text { setpoint }\end{aligned}$	0.0 to 100.0% of PV input range (EU) (Setting range: P.RL to P.RH)	P.RL		
${\underset{c}{\text { LLPID }}}_{\text {LPA1 }}$	PID number se- lection for local- mode operation	Available only for the L.PID when ZON $=0$ or 5 If set to "Local PID selection," local PID is se lected irrespective of the operation modes	1		EASY
	$\begin{aligned} & \text { Local event-1 to } \\ & -8 \text { type } \end{aligned}$		OFF		sto
	${ }_{\text {Lecal event- } 10}$	range.) Decil	0		

- Alarm Setpoint Setting Parameter

■ SP-related Setting Parameter

Parameter symbol	Name of Parameter	Setting Range	Initial value	${ }_{\text {User }}^{\substack{\text { Seting }}}$	${ }_{\text {display }}^{\substack{\text { devel } \\ \text { leal }}}$
$\begin{aligned} & \text { RM5 } \\ & (\text { RUS } \end{aligned}$	Remote input method	RSP: Via remote (auxiliary analog) inpu COM: Via communication	RSP		
$\underset{(R F L)}{p_{R F L}}$	Remote input filte	OFF, 110 120 s	OFF		
$\underset{(R T)}{(R)}$	Remote inputratio	$\begin{aligned} & \mathrm{SP}=\text { Remote input } \times \mathrm{RT}+\mathrm{Re}- \\ & \text { mote input bias } \\ & 0.001 \text { to } 9.999 \end{aligned}$	1.000		
${ }_{(R \mathrm{R} 5)}$	Remote input bis	$\begin{aligned} & -\begin{array}{l} -100.0 \text { to to } 100.0 \% \text { of PV input } \\ \text { range span (EUS) } \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} 0.0 \% \text { of PV } \\ \text { input range } \\ \text { span } \end{gathered}$		
$\begin{aligned} & \text { SPFT } \\ & \text { SPT) } \end{aligned}$	SP tracking selection		off		STD
$\begin{aligned} & 5 L M(M) \\ & (S . T M) \end{aligned}$	Starting time of program operation		0.00		
$\begin{gathered} \text { PNC } \\ (1, N C) \end{gathered}$	Program pattern number clearance		OFF		

■ Alarm Function Setting Parameter

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \end{aligned}$	Name of Parame	Range	$\begin{aligned} & \text { Initial } \\ & \text { value } \end{aligned}$	$\begin{gathered} \text { User } \\ \text { setting } \end{gathered}$	$\underbrace{}_{\substack{\text { Dispay } \\ \text { level }}}$
$\begin{gathered} E H H / \text { to } \\ E H Y G \\ E H Y 10 \\ E H Y) \end{gathered}$	Event-1 10.8 hysteres		0.5		STD
				Table	EASY
	PV velocity alarm time setpoint 1 to 8	0.01 to 99.59 (minute.second)	1.00		
	Alam-1 10.8 hysteresis	Set a display value of setpoint of hysteresis. the input range.) Decimal point position depends on the tion for the input type is set to " 1 ", the initial value of the hysteresis is "1.0".	10		
$\begin{aligned} & \text { dUN / to } \\ & \text { dUNH } \\ & \text { diN } \end{aligned}$	Alarm-1 to -8 On-delay timer	An alarm output is ON when the delay timer expires after the alarm setpoint is reached. 0.00 to 99.59 (minute. second)	0.00		
(AMD)	Alar	0: Always active 1: Not active in RESET mode 2: Not active in RESET or MAN mode	0		

- PV-related Setting Parameter

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \end{aligned}$	Name of Parameter	Setting Range	Initial value	$\begin{gathered} \text { User } \\ \text { setting } \end{gathered}$	$\begin{array}{\|c\|c\|c\|c\|l\|c\|} \hline \text { Level } \end{array}$
${ }_{\text {(85) }} 6$	PV input tias	-100.0 to 100.0% of PV input range span (EUS)			EASY
$\underset{(F L)}{\underset{(F)}{ })}$	PV input filer	OFF, 1 to 120 s	off		

■ PID Setting Parameter

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \end{aligned}$	Name of Parameter	Setting Range	\pm	$\left\|\begin{array}{\|c\|c\|c\|} \hline \text { sesting } \end{array}\right\|$	$\underbrace{}_{\substack{\text { Display } \\ \text { level }}}$
$\underset{(P)}{\rho}$	Proportional band Heating-side proportioning control)	0.0 to 999.9% When 0.0% is set, it operates as 0.1\% Heating-side ON/OFF control applies when 0.0% in Heating/cooling contro	5.0\%		Easy
$\begin{aligned} & 1 \\ & (1) \end{aligned}$	Integral time Heating-side integral time (in Heating/cooling contro	OFF: Disable 1 to 6000 s	240 s		
$\begin{aligned} & d \\ & (0) \end{aligned}$	Heating-side derivative time (in Heating/cooling control)	OFF: Disable 1 to 6000 s	60 s		
$\begin{aligned} & \mathrm{OH} \\ & (\mathrm{OH}) \end{aligned}$	Control output high limit Heating-side control output high limit (in Heating/cooling contro	-4.9 to 105.0%, ($\mathrm{OL}<\mathrm{OH}$) In Heating/cooling control: 0.1 to 105.0% ($\mathrm{OL}<\mathrm{OH}$)	100.0\%		
$\begin{aligned} & 0 L \\ & \text { (OL) } \end{aligned}$	Control output low limit Heating-side control output low limit (in Hing/cooling control)	-5.0 to $104.9 \%,(\mathrm{OL}<\mathrm{OH}), \mathrm{SD}$: Tight shut In Heating/cooling control: 0.0 to 104.9% ($\mathrm{OL}<\mathrm{OH}$)	0.0\%		
$\begin{aligned} & M R \\ & (M R) \end{aligned}$	Manual reset		50.0\%		
${ }_{(H 45}^{(H y s)}$		In ONOFF contro: : 0. To 100.0\% or PV input range span (EUS) In Heating/cooling control or Position proportional control: 0.0 to 100.0%			
$\underset{\text { HYYUP) }}{\text { HUP }}$	Upper-side hysteresis (in ON/OFF control)	0.0 to 100.0% of PV input range span (EUS)	$\begin{array}{\|l\|l} 0.5 \% \\ \text { oiput } \\ \text { oiput } \\ \text { inpge } \\ \text { spane } \end{array}$		
$\underset{H}{H y L L D}$	Lower-side hysteresis (in ON/OFF control)		$\begin{array}{\|l\|l} \hline 0.5 \% \\ \text { oipvo } \\ \text { input } \\ \text { ange } \\ \text { sppan } \end{array}$		
$d_{(0 R)}^{\substack{(0 R)}}$	Direct/reverse action switc	RVS: Reverse action DIR: Direct action	RVS		Sto
$\underset{(\mathrm{Pec})}{P_{\mathrm{c}}}$	Cooling-side propor- tional band	piles when control)	5.0\%		EASY
$\bar{l}_{(16)}$	Cooling-side integral time		240 s		
dc	Cooling-side derivative time	OFF: Disable 1 to 6000 s	${ }^{\text {sos }}$		
$\begin{aligned} & \text { OHC} \\ & \text { (OHC) } \end{aligned}$	Cooling-side control output high limit	0.1 1 to 105.0\%, (OLCくOHC)	100.0\%		
OLC	Cooling-side control output low limit	0.0 to 104.9\%, (OLCos. ${ }^{\text {che }}$	0.0\%		
$\begin{aligned} & H 45 c \\ & H H Y S c \\ & \hline \end{aligned}$	Cooling-side ON/OFF control hysteresis	0.0 to 00.0\%	0.5\%		
$\begin{gathered} \mathrm{d} \\ (\mathrm{OB}) \end{gathered}$	Output dead band (in Heating/cooling control control)	In Heating/cooling control: -100.0 to 50.0% In Position proportional control: 1.0 to 10.0%	3.0\%		
$\underset{(P 0)}{(P 0)}$	Preset output Heating-side preset ing control)	In RESET mode, fixed control output can be generated. In Position propor- tional control, Valve opening can be set; -5.0 to 105.0\%	0.0\%		

- Tuning Parameter

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \end{aligned}$	Name of Parameter	Setting Range	Initial value	$\begin{array}{\|c\|} \hline \text { User } \\ \text { setting } \\ \hline \end{array}$	${ }_{\text {display }}^{\substack{\text { display } \\ \text { level }}}$
$\underset{(\mathrm{sc})}{5[}$	Super function		OFF		EASY
REtY	Auto.tl	$\begin{aligned} & 0 \text { : Nomalal } \\ & i: \text { stabily } \end{aligned}$	0		StD
$\begin{aligned} & \text { (AR) } \\ & (A R) \end{aligned}$	$\begin{aligned} & \text { Anti-reset windup } \\ & \text { (excess integration } \\ & \text { prevention) } \\ & \hline \end{aligned}$	AUTO, 50.0.0 200.0\%	auto		
$\begin{aligned} & \text { pop } \\ & \text { (PPR) } \end{aligned}$	Output velocity lim	OFF: Disable 0.1 to $100.0 \% / \mathrm{s}$	off		
$\begin{gathered} \text { MPON } \\ \text { MPDON } \end{gathered}$	Manual preset output number selection	Select the output used in MAN mode when switched from AUTO to MAN mode. OFF: Hold the control output in AUTO \quad mode (bumpless) 1: Use manual preset output 1 (output bump) 2: Use manual preset output 2 (output bump) 3: Use manual preset output 3 (output bump) 4: Use manual preset output 4 (output bump) 5: Use manual preset output 5 (output bump)	OfF		sto
$\begin{array}{\|l\|l\|} \hline \text { MPD I to } \\ \text { MPOS } \\ \text { MPO towpos } \end{array}$	Manual preset output to 5	$\begin{aligned} & -5.0 \text { to } 105.0 \% \\ & \text { However, output is limited to the } \\ & \text { output high limit and low limit. } \end{aligned}$	0.0\%	$\left\lvert\, \begin{gathered} \text { Taple } \\ \text { below } \end{gathered}\right.$	

Use the following table to record the manual presest output seting value.

Parameter	$\quad \mathrm{n}=1$	$\mathrm{n}=2$	$\mathrm{n}=3$	$\mathrm{n}=4$	$\mathrm{n}=5$
MPOn					

Zone Control Parameter

Nen symbol: ZOMNE (ZONE)

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \end{aligned}$	Name of Parameter	Setting Range	$\begin{array}{\|l\|l\|} \hline \text { nititial } \\ \text { value } \end{array}$	$\begin{array}{\|c\|} \hline \text { User } \\ \text { setting } \end{array}$	$\left.\right\|^{\text {Display }}$ level
$\left\|\begin{array}{c\|c\|} \hline R P / \text { to } \\ \text { (RPP to } \\ \text { RPP7) } \end{array}\right\|$	Reference point 107	Set reference points at which switch ing is carried out between groups of temperature zone (RP1 $\leq R P 2 \leq R P 3 \leq R P 4 \leq R P 5 \leq$ RP6 $\leq R P 7$)	$\left\lvert\, \begin{array}{\|l\|l\|} 100.0 \% \\ \text { of pov } \\ \text { invot } \\ \text { range } \end{array}\right.$	Table below	std
$(\mathrm{RHH}$	Zone PID switching hysteresis	Hysteresis can be set for switching at a reference point. 0.0 to 10.0% of PV input range span (EUS)	$\begin{array}{\|l\|l\|} \hline 0.5 \% \text { o. } \\ \text { input } \\ \text { input } \\ \text { fagen } \\ \text { span } \end{array}$		std

$\mathrm{R}_{\left(\mathrm{d}, \mathrm{mb}^{\prime}\right.}$	Reference deviaition					OFF	STD
For Zone control, set the setup parameter ZON (zone PID selection) to Zone PID selection Use the following table to record the reference point setting value.							
Parameter	$\mathrm{n}=1$	$\mathrm{n}=2$	n=3	${ }^{n=4}$	$\mathrm{n}=5$	$n=6$	n=7
RPn							

■ P Parameter (for Ladder Program)

Parameter symbol	Name of Parameter			Setting Range				nitial value	User	$\underbrace{\substack{\text { leved }}}_{\text {Disple }}$
$\begin{aligned} & P Q \text { ito } \\ & P \text { (to } \\ & \text { Pol to } 0 \text { O } \end{aligned}$	P01 to P10 parameter			-19999 to 30000 (Set a decimal point position usingting Software.)				0	$\begin{aligned} & \text { Table } \\ & \text { below } \end{aligned}$	STD
${ }_{\text {Parameter }}$	$n=01$	$\mathrm{n}=02$	$n=03$	$\mathrm{n}=04$	$n=05$	n=06	$\mathrm{n}=07$	n=08	$\mathrm{n}=09$	n=10

■ 10-segment Linearizer-1, -2 Setting Parameter

Parameter symbol	Name of Parameter	Setting Range	${ }_{\substack{\text { litital } \\ \text { value }}}^{\substack{\text { a }}}$	User	$\underbrace{\substack{\text { level }}}_{\text {Display }}$
(PYS)	10-segment linearizer selectio	PV: PV analog input RSP: RSP analog input AIN2: AIN2 analog input AIN4: AIN4 analog input PVIN: PV input OUT2: OUT2 analog output			STD
A1	10-segment linearizer input 1 input 1	-66.7 to 105.0% of input range (EU) Output linearizer: -5.0 to 105.0%	0.0\%		
$\begin{aligned} & \text { b1 } \\ & \text { (81) } \end{aligned}$	10-segment linearizer output 1		0.0\%		
	$\begin{aligned} & \text { 10-segment linearizer } \\ & \text { input } 2 \text { to } 11 \\ & \text { 10-segment linearizer } \\ & \text { output } 2 \text { to } 11 \end{aligned}$	Same as A1 and B1	$\begin{array}{\|c\|c\|c\|c\|} \substack{\text { same } \\ \text { and } \\ \text { and } \\ \text { Bi }} \end{array}$		
$\underset{\substack{\text { PM M } \\ \text { (PMD }}}{\text { (}}$	$\begin{aligned} & \text { 10-segment linearizer } \\ & \text { mode } \end{aligned}$	0: 10 -segment linearizer bias 1: 10 -segment linearizer approxima- tion	0		

Setup Parameters

Hold down the PARAMETER key and Left arrow key simultaneously for 3 seconds to Hold down the PARAMETER key and Leff arrow key simultaneously for 3 seconds to
move from the Operation Display or Operation Parameter Setting Display to the Setup
Parameter Setting Display. Parameter Seting Display.
Press the DIIPLAY key once to return to the Operation Display.
Operation Dsipaly

Operation for Setting

To select the parameter seting displayed as the initial value, press the Down arrow
key to move to the next parameter.
To change and set the parameter setting, press the SET/ENTER key to start the set-
point blinking. The blinking state allows you to make changes (setting mode). Use th Up/Downn/Lettrkight
register the setting.
Note that there are some parameters which are not displayed depending on the Model
and Suffic codes. control mode (CTLM) control type (CNT) etc. . The parameters tor and Suffix codes, control mode (CTLM), control type (CNT), etc. The parameters for professional setting mode (LEVL: PRO) are not described in this manual. See User's
Manual.

- Control Function Setting Parameter

$\begin{gathered} \text { Parameter } \\ \text { symbol } \end{gathered}$	Name of Parameter	Setting Range	$\begin{aligned} & \text { Initial } \\ & \text { value } \end{aligned}$	$\begin{gathered} \text { User } \\ \text { setting } \end{gathered}$	$\underbrace{\text { Dispay }}$ level
$\frac{\text { CELM }}{(\text { CTLM }}$	Control mode	When using the controls other than Single-lo Manual. SGL: Single-loop control CAS1: Cascade primary-loop control CAS: Cascade control PVSEL: Loop control with PV switching selector	sGL		STD
$\begin{gathered} \text { CNU } \\ \text { (CNT) } \end{gathered}$	Controt tye				EASY
(IZN	Zone Plis	0: Segment PID selection 1. Zone PID selection (selection by PV) 2: Zone PID selection (selection by target SP) : Local PID selection (selection by SP) If set to "Segment PID selection," allows PID constants to be selected for each segments. * If set to "Zone PID selection, automatically selects PID constants Reference poin PID is selected irrespection," loca peration modes.	1		sto
	Segment setting method	rate setting Note: A change of setting deletes program pattern.	TIME		EASY
GMU	Program tir	HH.MM: hour.minute MM.SS: minute.second	нн.мм		
	Program pattern-2 retransmission	ON: used. * The controller can serve as a program pattern generator. O1RS, or O2RS) need to be sT, SP2.	OFF		sto
$\begin{aligned} & 5 M P \\ & \text { (SMP) } \end{aligned}$	Input sampling period (control period)	100: 100 ms , 200: 200 ms	200		

- PV Input Setting Parameter

Parameter	Name of Parameter	Setting Range	Initial	$\begin{array}{\|c\|} \hline \text { User } \\ \text { setting } \end{array}$	${ }^{\text {Dispray }}$ ieve
${ }_{(1 N)}$	PVinut type		OFF		EASY
$\underset{\text { Lifint }}{\substack{\text { UNNIT }}}$	PVV input	$\begin{aligned} & \text {-: No unit, C: Degree Celsius, } \\ & - \text { No unit, --: No unit, ----: No unit, } \\ & \text { F: Degree Fahrenheit } \end{aligned}$	c		
$\underset{(R H)}{R_{(R H)}}$	Maximum value of PV input range		$\begin{aligned} & \text { Depends } \\ & \text { on the } \\ & \text { input type } \end{aligned}$		
$\underset{(R L)}{R_{R}}$	Minimum value of PV input range		$\begin{aligned} & \text { Depends } \\ & \text { on the } \\ & \text { input type } \end{aligned}$		
Sdop	PV input scale decima point position		$\begin{aligned} & \text { Depends } \\ & \text { on the } \\ & \text { input type } \end{aligned}$		

Setup Parameters (Continued from page 12)

\square PV Input Setting Parameter (Continued)

- RSP Input Setting Parameter (E1-terminal Area)

■ AIN2/AIN4 Aux. Analog Input Setting Parameter
(E2/E4-terminal Area)

Paramete symbol	Name of Parameter	Setting Range	$\left.\right\|_{\text {litital }} ^{\text {vilue }}$	User	${ }_{\text {displeay }}^{\substack{\text { Dispay } \\ \text { level }}}$
1 $(1 N)$ (1)	AIN2/AIN4 aux. analog input type		$1-5 \mathrm{~V}$		EASY
	AIN2/AIN4 aux. analog input unit		c		
$\underset{(R H)}{(R H)}$	Maximum value of AIN2/ AIN4 range	Depends on the input type. Set the range of a voltage signal that is applied. The scale is across which the voltage	$\begin{aligned} & \text { Depends } \\ & \text { on the } \\ & \text { input type } \end{aligned}$		
$\underset{(R)}{(R)}$	Minimum value of AIN2 AIN4 range		$\begin{aligned} & \text { Depends } \\ & \text { on the } \\ & \text { input type } \end{aligned}$		
$\begin{gathered} \text { (SDPP) } \end{gathered}$	AIN2/AIN4 aux. analog position		$\begin{aligned} & \text { Depends } \\ & \text { on the } \\ & \text { input type } \end{aligned}$		
(SH)	Maximum value of AIN2/ AIN4 aux. analog input scale	-19999 to 30000, (SLLSHH),\mid SH-SL $\mid \leq 30000$	$\begin{array}{\|c\|} \hline \text { Depends } \\ \text { on the } \\ \text { input type } \end{array}$		
$\underset{(\mathrm{SL})}{5 L}$	Minimum value of AIN2/ AIN4 aux. analog input scale		$\begin{array}{\|l\|} \hline \text { Depends } \\ \text { on the } \\ \text { input type } \end{array}$		
(BSLL)	$\begin{aligned} & \text { AIN2/AIN4 aux. analog } \\ & \text { input burnout action } \end{aligned}$		$\begin{aligned} & \text { Depends } \\ & \text { on the } \\ & \text { input type } \end{aligned}$		sto

- Input Range, SP Limiter Setting Parameter

$\begin{gathered} \text { Parameter } \\ \text { symbol } \end{gathered}$	Name of Parameter	Setting Ram	${ }_{\text {l }}^{\text {nitial }}$ value	User	$\underbrace{}_{\substack{\text { Display } \\ \text { level }}}$
Puninn	Contol PV input unit		$\begin{array}{\|l\|l\|} \substack{\text { same } \\ \text { and } \\ \text { nout } \\ \text { nunit }} \end{array}$		
$p_{(P D P}(p)$	Control PV input decimal point position		1		
$\begin{aligned} & \text { PRH } \\ & \text { PRH } \end{aligned}$	Maximum value of control PV input range	19999 to 30000 , (P.RLLR	$\begin{array}{\|l} \hline \text { Depends } \\ \text { on the } \\ \text { input type } \end{array}$		
$\begin{gathered} \substack{P R R L \\ (P R L)} \end{gathered}$	Minimum value of control PV input range	${ }^{\text {\|P.RH-P.RLI }}$ S 30000	$\begin{aligned} & \text { Depends } \\ & \text { on the } \\ & \text { innut tuno } \end{aligned}$		sto
¢ (SPH)	SP high linit	$0.0 .01000 .0 \%$ of PV inputrange (EUU). or the local setpoints when the con-			
${ }_{\text {(SPL) }}$	SP low linit				

- Output Setting Parameter

$\begin{gathered} \text { Parameter } \\ \hline \end{gathered}$	Name of Parameter	Setting Range	Initial value	$\begin{array}{\|c} \hline \text { User } \\ \text { setting } \end{array}$	$\underbrace{\text { Dispay }}$ ievel
$\begin{aligned} & \text { Ot } \\ & \text { (OT) } \end{aligned}$	Output type selectionDE IIIIIIOpper two T T digits Lower two digits		Standard type: 00.03 Heating/ cooling type: 06.03		
$\frac{[t}{(\mathrm{cT})}$	Control output cycle time Heating-side control output cycle time (in Heating/cooling control)	.5to 1000.0 s	30.0 s		EASY
	Cooling-side control output cycle time		30.0 s		
$l \text { 阬 }$	Automatic valve position adjustment	OFF: Stop automatic adjustment	off		
$\begin{aligned} & 1 / \mathrm{R} 5 \\ & (\mathrm{R}, \mathrm{~S}) \end{aligned}$	Valve position setting reset	Setting V.RS to ON resets the valve adjustment settings and causes the indication "V.RS" to blink.	OFF		
$l_{(V \cdot L)}^{\prime \prime}$	Fully-closed valve posi- tion setting	Pressing the SETENTER key with vave position set to the fully-closed position by Down arrow key causes the adjusted value to be stored. When V.L adjus ps blinking.	.		
${ }_{(N \cdot H)}^{\prime \prime}$	Fully-opened valve posi- tion setting	Pressing the SET/ENTER key with valve position set to the fully-opened position by Up arrow key causes the adjusted value to be stored. When V.H blinking	.		
	Vave taveling time	510300 s	60s		
$\begin{aligned} & \text { UMDO } \\ & \text { (v.MOO } \end{aligned}$	Vave ajissing mode		0		sto
$\begin{gathered} \text { Res } \\ (\mathrm{RTS}) \end{gathered}$	Retransmission output type of RET		PV1		EAsY

- Heater Break Alarm Setting Parameter

■ RS-485 Communication Setting Parameter (E1/E3/E4-terminal Area)

$\begin{gathered} \text { Parameter } \\ \text { symbol } \end{gathered}$	Name of Parameter	Setting Range	linnitital value	User seting	$\underbrace{\substack{\text { leel }}}_{\text {Display }}$
$\underset{(\mathrm{PSLL}}{(\mathrm{PSL}}$	Protocol selection		MBRTU		
${ }_{\text {(PPS }}^{6}$	Baud rate		19200		EASY
$\begin{gathered} \text { PRRI } \\ (P R 1) \end{gathered}$	Parity	NONE: None, EVEN: Even, ODD: Odd	Even		
$\underbrace{51}_{\text {StP) }}$	Stop bit	1:1 bit, 2: $\mathrm{b}_{\text {bis }}$	1		
$\begin{aligned} & \text { (LDN } \\ & \text { (DLN) } \end{aligned}$	Data lengh	7:77 bits, $8: 8 \mathrm{8}$ bis	8		
	Address	11099	1		

- Ethernet Communication Setting Parameter (E3-terminal Area)

Menu symbol ELHP (ETHR)

${ }_{\text {Parameter }}^{\substack{\text { symbol }}}$	Name of Parameter	Setting Range	\pm	User	$\underbrace{\substack{\text { Level }}}_{\text {Dispoy }}$
$\underset{\substack{4 \\(5 R R)}}{ }$	High-speed response mode	OFF, 1 to 8	1		
${ }_{\text {(pP5) }}^{6 \text { b }}$	Baud rate	9600: $9600 \mathrm{bps}, 19200$: 19.2 k bps, $38400: 38.4 \mathrm{kps}$ 38400: 38.4 k bps	38400		
PRI)	Parity	NONE: None, EVEN: Even, ODD: Odd	even		
$\|P\| \mathrm{to} \mid P 4$	\|Paddress 1	$\begin{aligned} & 0 \text { to } 255 \\ & \text { Initial value: (IP1).(IP2).(IP3).(IP4) }= \\ & (192) .(168) .(1) \cdot(1) \end{aligned}$	See eft	$\underbrace{\substack{\text { able } \\ \text { below }}}_{\text {cole }}$	
SMI to 5M4 (SM1 to SM4)	Subnet mask 1 to 4	0 to 255 Initial value: (SM1).(SM2).(SM3). $\quad(\mathrm{SM} 4)=(255) \cdot(255) .(255) .(0)$	See left	$\underbrace{\substack{\text { and }}}_{\substack{\text { cale } \\ \text { below }}}$	
	Defaut gateway 1 to 4		See elft	${ }_{\substack{\text { che } \\ \text { belowe }}}^{\text {ata }}$	EASY
$\begin{aligned} & \text { PRE } \\ & \hline \text { RRT } \end{aligned}$	Portumber	502, 1024066535	502		
${ }_{(1 P A R)}$	iction	OFF: Disable, on: Enable	OFF		
	Permitted IP address $1-1$ to $1-4$ Permitted IP address $2-1$ to $2-4$		See left	$\underbrace{\text { a }}_{\substack{\text { Table } \\ \text { below }}}$	
ESSW	Enemet seting switc		off		

- PROFIBUS-DP Communication Setting Parameter (E3-terminal Area)

Menu symbol: PROF (PROF)

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \end{aligned}$	Name of Parameter	Setting Range	$\begin{array}{\|l\|} \hline \text { Initial } \\ \text { value } \\ \hline \end{array}$	$\begin{array}{\|c} \text { User } \\ \text { setting } \end{array}$	$\underbrace{\text { Display }}$ (evel
$\left(\begin{array}{l} (B R) \\ \hline(R) \end{array}\right.$	Baud rate		AUTO		EASY
AdR	ress	Oto 125	${ }^{3}$		
${ }_{(6 P 5)}^{6 P 5}$	Baud rate	$\begin{aligned} & \text { 9600: } 9600 \mathrm{bps} \\ & \text { 19200: } 19.2 \mathrm{k} \mathrm{bps} \\ & 38400: 38.4 \mathrm{k} \mathrm{bps} \end{aligned}$	38400		
$\overline{F I L E E}$	Profile number	0, 11 to 15	0		

- DeviceNet Communication Setting Parameter (E3-terminal Area)

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \end{aligned}$	Name of Parameter	Setting Range	$\begin{aligned} & \text { Initial } \\ & \text { value } \end{aligned}$	$\underset{\text { User }}{\substack{\text { Seting }}}$	$\underbrace{\text { a }}_{\substack{\text { Display } \\ \text { level }}}$
$\underset{(B R)}{6 R}$	Baud rate	125K: 125 k bps 250K: 250 k bps $500 \mathrm{~K}: 500 \mathrm{k}$ bps	125K		
$\begin{aligned} & \left.R_{A} d_{1}\right) \end{aligned}$	Address	01063	${ }^{63}$		
${ }_{(\mathrm{BPS})}$	Bad rate	9600: 9600 bps 19200: 19.2 k bps 38400: 38.4 k bps	38400		
$\underset{\text { (FILE) }}{\text { cile }}$	Profile	0, 11 to 15	0		

- CC-Link Communication Setting Parameter (E3-terminal Area)

Menu symbol $[[-L$ (CC-L)

$\begin{gathered} \text { Parameter } \\ \text { symbol } \end{gathered}$	Name of Parameter	Setting Range		${ }_{\text {User }}^{\substack{\text { Seting }}}$	$\underbrace{\text { Display }}$ ievel
$(B R)$	Baud rate		10M		EASY
$\begin{aligned} & R_{\Delta} d R(R) \end{aligned}$	Address	11064	1		
${ }_{(\mathrm{BPS})}^{6 P 5}$	Bad rate	9600: 9600 bps 19200: 19.2 k bps 38400: 38.4 k bps	38400		
FILLE	Profilie number	0, 11 to 15 (0, 11: Ver.1.10) (12 to 15: Ver.2.00)	0		

- Display Function Setting Parameter

$\begin{gathered} \text { Parameter } \\ \text { symbol } \end{gathered}$	Name of Parameter	Setting Range	$\underset{\substack{\text { Intital } \\ \text { value }}}{\text { a }}$	$\begin{array}{\|c} \text { User } \\ \text { setting } \end{array}$	${ }_{\text {Display }}^{\substack{\text { bevel }}}$
$\underset{\text { PCMMD }}{ }$	Active color PV display Switch switch		-		EASY
$\begin{aligned} & \text { P(PCH) } \end{aligned}$	$\begin{aligned} & \text { PV color change high } \\ & \text { limit } \end{aligned}$	Set a display value when in PV limit or SP deviation. -19999 to 30000 (Set a value within	0		
$\underset{(\mathrm{PCLL}, \mathrm{~L}}{ }$	PV color change low linit	Decimal point the input type.	0		
$\underset{\substack{\text { PETSLL } \\ \text { (ETSL }}}{ }$	Program display pattern selection	PTN: Pattern display SK.RP: Ramp and soak display	PTN		
GRR1	Upper bar-graph display registration		${ }^{23}$		STD
$\underset{(B A R 2)}{6}$	Lower bar-graph display registration		0		
boll (BDV)	Bar-graph deviation display band	0.0 to 100.0% of $P V$ input range span (EUS)	$\begin{aligned} & \text { co.o } \\ & \text { of } \end{aligned}$		
Gilld	Guide display ONOFF	OFF: Nondisplay, ON: Display	оn		std
${ }_{\text {(ECO) }}^{\text {E }}$	Economy mode		OFF		
${ }_{6}^{6} 8$	Bightness	(Dark) 105 (Bright)	3		EASY
$\underset{\text { MLI 5d }}{ }$	Least significant digital mask of PV display	OFF: With least significant digit ON: Without least significant digit	off		sto

- SELECT Display Setting Parameter

- Key Lock Setting Parameter

- DI Function Registration Parameter

DI Function Numbering Parameter

$\begin{gathered} \text { Paramete } \\ \text { symbol } \end{gathered}$	Name of Parameter	ng Ran	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|} \substack{\text { value }} \end{array}$	$\begin{gathered} \text { User } \\ \text { setting } \end{gathered}$	${ }^{\text {Dispray }}$ ievel
	Bit-0 of program pattern number	See next talle.	5089		EASY
	Bit-1 of program pattern number		5090		
	Bit-2 of program pattern number		5091		
	Bit-3 of program pattern number		5092		
	Bit-4 of program pattern number		5093		

AL1-AL3 Function Registration Parameter

Menu symbol RLM (ALM)

Parameter symbol	me of	nge	Initial value	$\begin{array}{\|l\|l} \hline \text { seser } \\ \text { seting } \end{array}$	$\underbrace{\substack{\text { level }}}_{\text {Display }}$
$\underset{(A L 1.5)}{ }$	AL1 function selection	Set an I relay number. For the items User Manual to use the alarm 1	4801		
$\begin{gathered} \text { RLL.2.5 } \\ (\mathrm{ALL2.5}) \end{gathered}$	AL2 function selection	Setting range: 4001 to 6304 No function: OFF PV event 1: 4801, PV event 2: 4802	4802		
	AL3 function se	PV event 7: 4809, PV event 8: 4810, Time event 1: 4817, Time event 2: 4818, Time event 3: 4819, Time event 4: 4821,	4803		
$\begin{aligned} & \text { ORS } \\ & \text { (RRS) } \end{aligned}$	OUT relay function selection	Time event 9: 4833, Time event 10: 4834, Time event 11: 4835, Time event 12: 4837, Time event 13: 4838, Time event 14: 4839 ,	OFF		
$\begin{aligned} & \text { OR2.5 } \\ & \text { (OR2.5) } \end{aligned}$	OUT2 relay function selection		off		Sto

- DO Setting Parameter (E1/E2/E3/E4-terminal Area)

- System Setting Parameter

$\underset{(\text { EPOO }}{ }$	Input error preset output		0	std
$\underset{\text { FRREQ }}{\text { FRES }}$	Power fequency	AUTO, $60: 60 \mathrm{~Hz}, 50: 50 \mathrm{~Hz}$	auto	
O5M (QSM)	seting mode	OFF: Disable ON: Enable	on	
$\underset{\text { (LANG) }}{\text { LANE }}$	Guide display language		Depends on the model and suffix codes	EASY
P955	Password seting	0 (No password) to 65535	0	

- Error and Version Confirmation Parameter (for display only) Menu symbol: V ' $E R$ (vER)

$\begin{gathered} \text { Parameter } \\ \text { symbol } \end{gathered}$	Name of Parameter	Status record	$\left.\right\|_{\substack{\text { ispolay } \\ \text { level }}}$
PRER	Parameter eroro staus		
$\begin{aligned} & \hline \text { OPER } \\ & (O P R R \end{aligned}$	Opition error staus		
Ad IE	AD converere eroro staus 1		
$\underset{\substack{(A D C E E}}{(A D C E)}$	AD converetereroro staus 2		
	Loop-1 1 PV input eror staus		
	Loop-2 PV input eroro status		
$\underset{\text { LAER }}{\text { LAER }}$	Ladder eroro status		
$\begin{aligned} & M(L U) \\ & (M C U) \end{aligned}$	mCU version		
$d \mathbb{d C u}$	DCu version		
${ }_{\text {E ECU1) }}$	ECU-1 version (E1-Eeminal area)		
E[UL	ECU-2 version (E2-terminal rea)		Easr
${ }_{\text {E[ECU3 }}$	ECU-3 version (E3-terminal area)		
${ }_{\text {E ECU4 }}$	ECU-4 version (E4-terminal rea)		
$\underset{(P A R A)}{\text { PRAR }}$	Parameter version		
	Product vesion		
$\underset{\substack{\text { SERR1) }}}{ }$	Serial number 1		
$\underset{\substack{\text { SERR2) } \\ \text { (SER2) }}}{ }$	Serial number 2		
MACI	MAC adress 1 (E3-ererninal rea)		
MRC2	MAC address 2 (E3-ereminala rea)		
	MAC adresss 3 (E3-ererminal rea)		

- Parameter Display Level Paramete

For Proiessional seting mode, see User's Manual:

\section*{| Trademarks |
:---
-

- Our product names or brand names mentioned in this manual are

- Adobe, Acrobat, and Postscript are either registered trademarks or trademarks
of dodobe System Incorpoted.
- Ethernet is a registererd trademark of XEROX Corporation in the United States.
- Modbus is a registered trademark of Schneider Electric.
- DeviceNet is a registered trademark of Oen DeviceNet Vendor Asgancotion.
- DeviceNet is a registered trademark of Open DeviceNet Vendor Ass
-CC-Link is a reistered trademark of CCL -Link Partner Association.
- We do not use the TM or Θ mark to indicate these trademarks or
registered trademarks in this manual.
All other product names mentioned in this manual are trademarks
or registered trademarks of their respective companies.
im 05P02C41-15EN page 14/14

