Operation UT55A/UT52A \quad UTFAdvanced
 Guide $\quad \begin{aligned} & \text { Digital Indicating Controllers } \\ & \text { Operation Guide for Single-loop Control }\end{aligned}$
 IM 05P01C31-15EN Installation and Wiring
 YOKOGAWA \backslash
 This operation guide describes installation, wiring, and other tasks required to make the controller ready for operation.
 Contents

2. Safety Precautions
3. How to Install
4. Hardware Specifications
5. How to Connect Wires
6. Terminal Wiring Diagrams

Introduction

 Thank you for purchasing the UTT55AUT52A Digital Indicating Controller.This operation guide describes the basic operations related to the single-loop control
function of the UTT55A/UT52A. The guide should be provided to the end user of this product.
Be sure to read this operation guide before using the product in order to ensure correct operation.
For details of each function, refer to User's manual.
Before using the product, refer to the table of Model and Suffix Codes to make sure
that the delivered product is consistent with the model and suffix codes you ordered. that the delivered product is consistent with the model and suffix cod
Also make sure that the following items are included in the package.

- Target Readers

Unis guide is intended for the following personnel;
Engineers responsible for installation, wiring, and maintenance of the equipment

- Engineers responsible for installation, wiring, and maintenance of the

1. Safety Precautions

The following symbol is used on the instrument. It indicates the possibility of injury to the user or damage to the instrument, and signifies that the user must refer to manual on pages that the user needs to refer to, together with the term "WARNNG" manual on pages
or "CAUTION."
!
Calls a attention to actions or conditions that could cause serious
or fatal injury to the user, and indicates precautions that should be or fatal injury to the user, and indic a
taken to prevent such occurrences.

4
Calls attention to actions or conditions that could cause injury to
the user or damage to the instrument or property and indicates pro the e ser or damage to the instrument or property and india
cautions that should be taken to prevent such occurrences.
\sim AC
\sim AC/DC
回
The equipment wholly protected by double insulation or reinforced insulation.
Functional grounding terminals
(Do not use this terminal as a protective grounding terminal)
Note
Identifies important information required to operate the instrument.

- Warning and Disclaimer

(1) YOKOGAWA makes no warranties regarding the product except those stated in the WARRANTY that is provided seperatately.
The product is provided on an "as is" basis. YOKOGAWA assumes no liability to
any person or entity for any loss or damage, direct or indirect, arising from the any person or entity for any loss or damage, direct or indirect, a
use of the product or from any unpredictable defect of the product.
(1) In order to protect the system controlled by this product and the product itself
and to ensure safe operation observe the safety precautions described in the user's manual. Use of the instrument in a manner not prescribed herein may compromise the product's functions and the protection features inherent in the device. We assume no liability for safety, or responsibility for the product's quality performance or functional: operating the product.
protector; protective equiv andor safety circuits with respect to a lightning product itself: foolproof or or fail-safe design of a poncocess or line using the system controlled by the product or the product itself; and/or the design and installation
of other protective and safety circuits are to be appropriately implemented as the customer deems necessary.
the spare parts approved by YokoGAWA when replacing parts
(4) This spoductiet is not designed or manufactured to be used in critical applications that directly affect or threaten human lives. Such applications include nuclear
power equipment, devices using radioactivity, railway facilities, aviation power equipment, devices using radioactivity, railway facilities, aviation
equipment, air navigation facilities, aviation facilities, and medical equipment. If so used, it is the user's responsibility to include in the system additional equipment and devices that ensure personnel safety.
5) Modification of the product is strictly prohibited.
(6) This product is intended to be handled by skilled/trained personnel for electric devices.
(7) This product is UL Recognized Component. In order to comply with UL standards, end-products are necessary to be designed by those who have knowledge of the cements

Model and Suffix Codes

- UT55A

- UT52A

Accessories (sold separately)
The following is an accessory sold sep

Model	Suffix code		
50 A	-00	Parameter Setting Software	Description

- Brackets

Part number: L4502TP (2 pcs for upper and lower sides
USer's Manual (CDOROM) Model UTAPOOO
Note: Contains all manuals
Operation Guide for Single-loop Control (this document) $\times 6$ (A) size)
(Installation and Wiring, Initial Settings, operations, and Parameters)

How to Install

- Installation Location

the instrument should be installed in indoor locations meeting the following Instrumented panel
This instrument is designed to be mounted in an instrumented panel. Mount the
instrument in a location where its terminals will not inadvertently be touched instrument in all location wentilated locations

$$
\begin{aligned}
& \text { Well ventilated locations } \\
& \text { Mount the instrument in } w
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mount the instrument in well v. } \\
& \text { internal temperature from ring. } \\
& \text { However, make sure that the }
\end{aligned}
$$

However, make sure that the Exposure to wind may cause the temperature sensor accuracy to deteriorate. To mount multiple indicating controllers, see the external dimensions/panel cutout dimensions which follow. If mounting other instruments adjacent to the instrument, the instruments.
Locations with little mechanical vibration
Instal the instrument in a location subject to little mechanical vibration
Horizontal location
Mount the instrum horizontally and ensure that it is level, with no inclination to Mount the instru
the right o o left.

Note
If the instrument is moved from a location with low temperature and low humidity to a place with high temperature and high humidity, or if the temperature changes
rapidly, condensation will result. Moreover, in the case of thermocouple inputs, rapidly, condensation will result. Moreover, in the case of thermocouple inputs,
measurement errors will result. To avoid such a situation, leave the instrument in the new environment under ambient conditions for more than 1 hour prior to using it.
Do not mount the instrument in the following locations
Outdoors
Locations subject to direct sunlight or close to a heater
Instal the instrem
Install the instrument in a location with stable temperatures that remain close to an
average temperature of $23^{\circ} \mathrm{C}$. Do not mount it in locations subject to direct sunlight average temperature of 23°. Do not mount it in locations subject to direct sunlight
or close to a heater. Doing so adversely affects the instrument. or close to a heater. Doing so adversely affects the instrument.
Locations with substantial amounts of oily fumes, steam, corrosive gases
The presence of oily fumes, steam moisture, dust, or corrosive es ar s The presence of oily fumes, steam, moisture, dust, or corrosive gases adversely
affects the instrument. Do not mount the instrument in locations subject to any of these substances.
Areas near electromagnetic field generating sources
Do not place magnets or tools that generate magnetism near the instrument. If the
instrument is used in locations close to a strong electromagnetic field generating source, the magnetic field may cause measurement errors.
inst ion
Locations where the display is is difficult to see
Locations where the display is difficult to osee
The instrument uses an LD for the display unit
The instrument uses an LCD for the display unit, and this can be difficult to see
from extremely oblique angles. Mount the instrument in seen as much as possible from the front.

- Areas close to flammable articles
Absolutely do not place the instrument directly Absolutely do not place the instrument directly
on flammable surfaces. If such a circumstance is unavoidable and the instrument must be placed close
to a flammable item, provide a shield for it made of 1.43 to a flammable item, provide a shield for it made of 1.43
mm thick plated steel or 1.6 mm thick unplated steel with a space of at least 150 mm between it and the instrument on the top, bottom, and sides.
Areas subject to being splashed with wat

Be sure to turn OFF the power supply to the controller before in-
stalling it on the panel to avoid an electric shock.

YOKOGAWA

YOKOGAWA ELECTRIC CORPORATION
Network Solutions Business Division
KocAWA CORPDROM Msashino-shi, Tokyo $180-8750$ JAPAN
YOKOGAWA CoRPORATION OF AMERICA
Head Office and for product sales

YOKOGAWA EUROPE B.V.
 www.yokogawa.com/ns

- Mounting the Instrument Main Unit

Provide an instrumented panel steel sheet of 1 to 10 mm thickness.
After opening the mounting hole on the panel, follow the procedelure
Atter opening the mounting hole on the panel, follow the procedures below to insta

1) Insert the controller into the opening from the front of the panel so that the 2) terminal board on the rear is at the far side.
figure below, then tighten the screws of the brackets. Take care no to overighte figure
them.

> Tighten the screws with appropriate tightening torque within 0.25 N.m. Otherwise it may cause the case deformation or the bracke damage. Make sure that foreign materials do not enter the inside of the instrument through the case's slit holes.

- External Dimensions and Panel Cutout Dimensions

UT52A

N " stands for the number of controllers to be
installed. sstalled.
However, the measured value applies if $\mathrm{N} \geq 5$.

4. Hardware Specifications

1. This instrument is for Measurement Category I (CATI) Do This instrument is for Meaaurement Category I (CAT.I). Do not use for measurements in locations falling under Measurement Catego
ries IIIII, and IV.

Input Specification

Universal Input (Equipped as standard)

- Number of inputs: 1

Input Type				Accuracy	- Input sampling (control) period: Same as the standard-equipped universal input - Input resistance: About 1 M Ω				
		Instrument Range							
		-270.010 $13770.0^{\circ} \mathrm{C}$	-450.0 0 2 $2500.0{ }^{\text {or }}$	to.1\% of instumentrange \pm			ons at stan		
	к	$\frac{-270.0 \text { ot } 1000.0^{\circ} \mathrm{C}}{-200.010} 5$	-450.0 ${ }^{\text {co } 2300.0{ }^{\text {or }}}$		Burnout	erm	to have occurre	fitis 0.1 V	
	J	-200.00 to $1200.00^{\circ} \mathrm{C}$	-30.0.010 2300.00\%	less	- Universa	nput	ptional suffix	code: /U1)	
		-270.0 to $40.0 .0{ }^{\circ} \mathrm{C}$	-450.007 750.0\%		Nun	uts:	table of Mod	and Suffix Co	
	T	$0.000400 .0{ }^{\circ} \mathrm{C}$	-200.00 to 750.0\%	less than -200.0. ${ }^{\text {a }}$ a fthermocouple T	Input type		, and mea	rement accura	y: Same as the standard
				$\pm 0.15 \%$ of instrument range ± 1 digit	quippe		cept the table		
	в	$0.00101800 .00^{\circ} \mathrm{C}$	32 to 3300	$\pm 5 \%$ of instrument range ± 1 digit for less than $400^{\circ} \mathrm{C}$	Input		Instrume	t Range	Accuracy
	s	$0.001700 .0{ }^{\circ} \mathrm{C}$	$32103100^{\circ} \mathrm{F}$			Jpt100	-200.0 to $50.00^{\circ} \mathrm{C}$	-300.0 to 1000.0\%	$\pm 0.5^{\circ} \mathrm{C} 11$ digit
	R	$0.010 .1700 .00^{\circ} \mathrm{C}$	$3203100{ }^{\circ} \mathrm{F}$	± 0.15			-150.00 to 150.000 ${ }^{\circ} \mathrm{C}$	-200.000 300.0.\%	$\pm 0.2^{\circ} \mathrm{C} \pm 1$ digit
	N	-200.0 to 1300.0. ${ }^{\circ}$	-300.0 to 2400.09F	$\pm 0.1 \%$ of instrument range ± 1 digit $\pm 0.25 \%$ of instrument range ± 1 digit	4-wir RTD		-200.0 to 850.0. ${ }^{\circ}$	-300.0t0 1560.0	(ta0.19 of instument rang
				for esss than $0^{\circ} \mathrm{C}$			-200.010 $50.00^{\circ} \mathrm{C}$	-300.0 10 1000.09\%	$\pm 0.5^{\circ}+11$ digit
	E								

Note $1: \pm 0.5^{\circ} \mathrm{C} \pm 1$ digit in the range between -200.0 a and $500.0^{\circ} \mathrm{C} /-300.0$ and $1000.0^{\circ} \mathrm{F}$

- Input sampling (control) period: Same as the standard-equipped universal inpu.
- Analog Output Specifications

Number of outputs:
Control output: 1
Cooling-side control output of Heating/cooling type:
Current output: 4 to to 20 mADC or 0 to $20 \mathrm{mADCl} /$ load resistance of 600Ω or less
Current output accuracy: $\pm 0.1 \%$ of span ($\pm 5 \%$ of span for 1 mA or less)
The accuracy is that in the standard operating conditions: $23 \pm 2^{\circ} \mathrm{C}, 55 \pm 10 \% \mathrm{RH}$, and power frequency at $50 / 60 \mathrm{~Hz}$
Use: Time proportion
On-voltage: 12 V or morelload resistance of 600Ω or more
Off-voltage: 0.1 VDC or less

ever is larger

- Step Response Time Specification

Within 1 s (when the contron period is 200 ms) or 100 ms)
Within 1 s (when the control period is 200 ms)
(63\%\% of analog output response time when a step change of 10 to 90% of input span is applied)
Triac Output Specifications

- Contact type and number of output: zero cross; 1 point
Load voltage: 75 to 250 VAC

Load voltage: 75 to 250 VAC
Allowable load current: 0.8 A when the ambient temperature is $20^{\circ} \mathrm{C}, 0.3 \mathrm{~A}$ when the ambient temperature is $50^{\circ} \mathrm{C}$.

- Minimum load current: 20 mA (*)
*: If there is a risk of surge current, connecta a cur
Use: Time proportional output, Alarm outp
Time resolution of control output: 1 /commercial frequency (s) 0.1% of
Relay Contact Output Specification
- Contact type and number of outputs:
Control output: contact point 1c; 1 point

Cooling-side control output of Heating/cooling type: contact point 1c; 1 point
forUT55A only)
For UT52A, contact point 1a; 2 points for both heating and cooling sides
Alarm output: contact point 1a; 3 points (common is independent)

Allowable signal source resistance
TC or mV input: 250Ω or less
les.
Effects of signal source resistance: $0.1 \mathrm{\mu V} / \Omega$ or less
DC voltage input: 2 kR or less

Contact rating:
Contact point 1 c (control output): $250 \mathrm{VAC}, 3 \mathrm{~A}$ or $30 \mathrm{VDC}, 3 \mathrm{~A}$ (resistance load) Contact point 1 a (control output): $240 \mathrm{VAC}, 3 \mathrm{~A}$ or $30 \mathrm{VDC}, 3 \mathrm{~A}$ (resistance load)
Contact point 1 a (alarm output): $240 \mathrm{VAC}, 1 \mathrm{~A}$ or 30 VDC,
Use: Time proportional output, alarm output, FAll output, e
Time resolution of control output: 10 mo o or 0.1% of of output, whichever is larger
Tote

- Position Proportional Output Specifications

Position signal input: Slid resistance: 100Ω to $2.5 \mathrm{k} \Omega$ of total resistance
100% side and slide line: with disconneection detection
0% side: without disconeection detection
0% side: without disconnection detection
Current input: 4 to 20 mA (with disconnection detection
Sampling period: 50 ms
Measurement resolution:
osition proportionation: 0.1% of input spa

- Retransmission Output Specifications

Number of outputs: Retransmission output: 1 , shared with 15 VDC loop power supply.
Current output: 4 to 20 mADC or 0 to $20 \mathrm{mADC} /$ load resistance of 600Ω or less Current output accuracy: $\pm 0.1 \%$ of span (55% of span for 1 mA or less) The accuracy is that in the stand
and power frequency at $50 / 60 \mathrm{~Hz}$.
15 V DC Loop Power Supply Specifications
(Shared with retransmission output)

- Power supply: 14.5 to 18.0 VDC
DC
Maximum supply current: About 21 mA (with short-circuit current limiting circuit)
- Contact Input Specifications

Number of inputs: See the table of Model and Suffix Codes.
Input type: No-voltage contact input or transistor contact inpu
Input contact rating: $12 \mathrm{VDC}, 10 \mathrm{~mA}$ or mor
Use a contact with a minimum on-ccurent
Use a contact with

- ONOFF detection:
No-voltage contact input:
Contact resistance of $1 \mathrm{k} \Omega$ or less is determined as "ON" and contact
resistance of $50 \mathrm{k} \Omega$ or more as "OFF."
Transistor contact input:
Input voltage of 2 V or less is determined as "ON" and leakage current must not
exceed 100 AA when "OFF."
Minimum status detection hold time: : Control period +50 ms
Transistor Contact Output Specification
Number of outputs: See the table of Model and Suffix Codes.
Output type: Open collector (SINK current)
Output contact rating: Max. 24 V DC, 50 mA

- Heater Break Alarm Specificatio

- Number of inputs: 2 . Number of outpus: 2 (ransistor contact output)

Use: Measures the heater current using an external current transformer (CT) and generates a heater break alarm when the measured value is less than the break detection value. Current transformer input resistance: About 9.4Ω
Current transformer input range: 0.0 to 0.0 A Ams (0.12 Arms or more cannot be applied.)
Heater current setting range: OFF, 0.1 to 300.0 Arms eater current setting range: OFF, 0.1 to 300.0 Arms
Heater current measured value display range: 0.0 to 360.0 Arms
Note: The CT ratio can be set. CT ratio seting range: 1 to 3300
Recommended CT: CT from U.R.D., Ltd.
CTLL-- - - H : CT ratio 800, measurable
CTLL-6-S-H: CT ratio 800, measaruable current range: 0.1 to 80.0 Arms
CTL-12L-30: CT ratio 3000 , measurable current range: 0.1 to 180.0 Arms
Heater current measurement period: 200 ms
Heater current measurement accuracy: $: 55 \%$

- Heater current measurement accuracy: $\pm 5 \%$ of current transformer input range

- 24 V DC Loop Power Supply Specifications

Use: Power is supplied to a 2 -wire transmitte.
Power supply: 21.6 to 28.0 V DC
Power supply: 21.6 to 28.0 VDC
Rated current: 4 to 20 mADC
Maximum supply current: About 30 mA (with shor-c-ircuit current limiting circuit.)

- Safety and EMC Standards

Safety: Compliant with IEC/EN61010-1 (CE), approved by CAN/CSA C22.2 Installation category: CAT. II Pollution degree: 2
Measurement category: I (CAT. I)
Rated measurement input voltage: Max. 10 VDC
Rated transient overvoltage: 1500 V (Note)
Rated transient overvoltage 1500 V (Note)
Note: This is a reference safty standard valu for Measurement Category Iof fIEC/ENCSA

EMC Conformity standards:
CE marking
EN61326-1 Class A, Table 2 (For use in industrial locations)
EN61326-2-3 EN 5011 Class A, Group 1
EN $1000-3-2$ Class A
C-tick mark
EN 550111
The instrums A, Group 1
The instrument continues to operate at a measurement accuracy of within $\pm 20 \%$
of the range during testing. of the range during testing.

- Construction, Installation, and Wiring
- Dust-proof and drip-proof: IP56 (for front panel) (Not available for side-by-side
close mounting.).
Material: Polycarbonate (Flame retardancy: UL94V-0)
Case color. White (Light graye or Black (Light charcoal gray)
Weight: 0.5 kg or less
External dimensions (mm):
UT55A: $96(\mathrm{~W}) \times 96(\mathrm{H}) \times 65$ (depth from the panel face)
UT52A: $48(\mathrm{~W}) \times 96$ (H) $\times 65$ (depth from the panel face)
(Depth except the projection on the rear panel)
(nstallation: Direct panel mount
Installation. Direct panel mounting; mounting bracket, one each for upper and
Iower mounting
lower mounting
Panel cutout dim

Mounting attitude: Up to 30 degrees above the horizontal. No downward titing allowed
Wiring: M3 screw terminal with square washer (for signal w wining and power wiring)
- Power Supply Specifications and Isolation

 - Power consumption: UT55A: 18 VA (DC:9 $\mathrm{VA}, \mathrm{AC}: 14 \mathrm{VA}$ if $/ \mathrm{VC}$ option is specified)
- Data backup: Nonvolatile memory (DC: 7 VA , AC: 11 VA if $/ D \mathrm{CC}$ option is specified) Data backup: Nonvolatile memory
Power holdup time: 20 ms (for 100 VAC drive)
Withtanding voltage
Between primary terminals and secondary terminals: 2300 VAC for 1 minute
Between primary terminals: 1500 VAC for 1 minute
Between primary terminals: 1500 VAC for 1 minute
Between secondary terminals: 500 VAC for 1 minute
(Primary terminals: Power" and relay output terminals; Secondary terminals:
Analog I/O signal terminals, contact input terminals, communication terminals

Insulation remesinistancer fer
Between powerifsupply terminals and a grounding terminal: $20 \mathrm{M} \Omega$ or more at 500 VDC
Isolation specifications

PV (univivsal) input tereminals
Remole (univerasal) input temminals with direct input/ Remote input terminala
A.

Aux. analog (AlN2) input terminals

Valve position (feedback) input terminals
Control relay (contact point c / contact point a) / Triac output terminals
Alarm-1 relay (contact point a) output terminals
Alarm-3 relay (contact point a) output terminals
Position proportional relay output terminals
Contact input terninals (all)
RS-485 communication terminals (2 ports)
24 VDC loop powe supply terminals
Conlact output transistor) terminals
PROFIBUS-DP/DeviceneetCC-Link communication terminals
Current transformer input terminals
The circuits divided by lines are insulated mutually.

- Environmental Conditions

Normal Operating Conditions:
Ambient temperature:-10 to $50^{\circ} \mathrm{C}\left(-10\right.$ to $40^{\circ} \mathrm{C}$ for side-by-side close mounting
For the CC-Link option, 0 to $50^{\circ} \mathrm{C}$ (0 to $40^{\circ} \mathrm{C}$ for side-by-side close mounting) Mmbient humidity: 20 to 90% RH (no condensation allowed)
Magnetic field: $400 \mathrm{~A} / \mathrm{m}$ or less
Continuous vibration at 5 to 9 Hz :
minutes each in the three axis directions itude of 1.5 mm or less, 100 ct min for 90 Continuuus vibration at to to $150 \mathrm{~Hz}: 4.9 \mathrm{~m} / \mathrm{s}^{2}$ or less, $10 \mathrm{ct} / \mathrm{min}$ for 90 minutes each in the three axis directions.
Short-period vibration: $14.7 \mathrm{~m} / \mathrm{s}^{2}, 15$ seconds or less

Shock: $98 \mathrm{~m} / \mathrm{s}^{2}$ or less, 11 ms
Altitude: 2000 m or less above
arm-up time: 30 mintubo sea level
Startup time: Within 10 seconds

Transportation and Storage Conditions:

- Temperature: -25 to $70^{\circ} \mathrm{C}$
- Temperature change rate: $22^{\circ} \mathrm{C} / \mathrm{h}$ or less

Humidity: 5 to $95 \% \mathrm{RH}$ (no condensation allowed)
Effect of ambient temperature
 Current input: $: 0.01 \%$ of $\mathrm{FS} . \mathrm{I}^{\circ} \mathrm{C}$
RTD input: $\pm 0.05^{\circ} \mathrm{C} / \mathrm{Cl}^{\circ} \mathrm{C}$ (ambient temperature) or less

Analog input: $\pm 0.05 \%$ of F. . . or less
Analog output: $\pm 0.05 \%$ of F . or less

- Waste Electrical and Electronic Equipment (WEEE),

Directive 2002/96/EC

This is an explanation of how to dispose of this product based on Waste Electrical and
Electronic Equipment (WEEE), Directive 2002/96/EC. This directive is only valid in the EU. Marking
This product complies with the WEEE Directive (2002/96//CC) marking
requirement. This marking indicates that you must not discard this
electricallelectronic product in domestic household waste.
Product Category
With reference to the equipment types in the WEEE directive Annex 1 , this product is classified as a "Monitoring and Control instrumentation" product. Do not disposes in domestic household waste. When disposing products in the EU
contact your local Yokegawa Europe B.V. office.
5. How to Connect Wires
 knowledge and practical experience.
Be sure to turn OFF the power supply
WARNING - Be sure to turn OFF the power supply to the controller before wiring to avoid an electric shock. Use a tester or similar device to ensure that no
power is beeing supplied to a cable to be connectec. As a safety measure, always install a circuit breaker (an IEC
60947 -compatible product, $5 \mathrm{~A}, 100 \mathrm{~V}$ or 220 V AC) in an easily 60947 -compatible product, $5 \mathrm{~A}, 100 \mathrm{~V}$ or 220 VAC) in an easily
accessible location near the instrument. Moreover, provide indication that the switch is a device for turning offt the power to the instrument. Install the power cable keeping a distance of more than 1 cm from othe
signal wires.
The power cal
Requirements cable is required to meet the IEC standards concerned or the Wiring shoulul be ine installed to conform to NEC (National Elecectrical ANSIINFPA-70) or the wiring construction standards in countries or egions where wiring will be installed. For control relay output, alarm rela
connections, use heat-resistant cables.
Since the insulation provided to each relay output terminal is Functional Since the insulation provided to each relay output terminalis Functional
insulation, provide Reinforced insulation to the external of the device as necessary. (Refer to the drawing below.)

[^0]Provide electricity from a single-phase power supply. If the power is
noisy, instal an isolation transformer on the primary side, and use a line filter on the secondary sidd. .hnen measures against noise are taken, do
not install the primary and secondary power abbes close to each other not install the primary and secondary power cables close to each other.
If there is a risk of external lightning surges, use a lightning arrester etc. For TC input, use shielded compensating lead wires for wiring. For RTD Input, use shielded wires that have low conductor resistance and cause
no significant differences in resistance between the three wires. no significant differences in resistance between the three wires.
Since the control output relay has a life span (resistance load of 100,000 imes), use the auxiliary relay to perform ON/OFF control.
The use of inductance (L) loads such as auxiliary relays, motors and
solenoid valves causes malfunction or relay failure; always insert a solenoid valves causes malfunction or relay failure; always insert a
CR filter for use with alternating current or a diode for use with direct current, as a spark-removal surge suppression circuit, into the line in parallel with the load
After completing the
After completing the wiring, the terminal cover is recommended to use
for the instrument.

- Recommended Crimp-on Terminal Lugs
${ }^{(\varnothing d)}$
$\xrightarrow[(\mathrm{A})]{2}$

Recommended tightening torque: $0.6 \mathrm{~N} \cdot \mathrm{~m}$
Applicab

6. Terminal Wiring Diagrams

\section*{- Do not use an unassigned terminal as the relay terminal.} | Do not use an unassigned terminal as the relay terminal. |
| :--- |
| Do not use a $100-24 \mathrm{~V}$ AC power supply for the 24 V AC/DC |
| model; otherwise, the instrument will malfunction. |

- Cable Specifications and Recommended Cables

Purpose	Name and Manufacturer
supply, realy contac	$\underbrace{\text { boov Grade heateresistant PVC insulated wies, JIS C }}$
Thermocouple	Shiedted compensaining lead wires, IIS 1610
RTD	Shiedded wires (threeflour conductors), UL24822 (Hitachi Cable)
Other signas (other than conlact inutuouput)	Shielded wires
Others signas (conlact inpututuput)	Unstielded wires
RS 485 communication	Shielded w wies
Ethemet communicaion	1000 BASE-TX (CAT-5)/10 BASE
PRRFIIUSS.DP communiciaion	Dedicated cable for PROFIBUS-PP (Shielded dwo-wies
Devicenet communicaion	Dedicated cable for Deviceenet (Shielded fivewires)
CO-Link communicaion	Dedicated cable for CC-Link (Shielded three-wirs)

PROFIBUS-DP/CC-Link Connector (wiring side) (Part number: A1987JT) DeviceNet Connector (wiring side) (Part number: L4502BW)

DC Relay Wiring

AC Relay Wiring

- UT55A

- UT55A (Continued from page 3)

- UT52A

$\begin{array}{lll}\text { Operation } & \text { UT55A/UT52A } & \text { Uigitadvanced } \\ \text { Guide } & \text { Digital Indicating Controllers } & \end{array}$ Operation Guide for Single-loop Control
 Initial Settings

YOKOGAWA

This operation guide describes basic settings and operations of the UT55A/UT52A.
For details of each function, see User's manual.

Contents

No. in figure	Name	Descripition			
(1)		Displays PV. In error code if an error occurs. Displays the scrolling guide in the Menu Display and Parameter Setting Display when the guide display ON/OFF is set to ON.			
(2)	Grow	Displays a group number (1 to 8 or R) and terminal area (E 1 to E 4). 1 to 8 represent SP numbers in the Operation Display			
(3)	Symbol	Displays a parameter symbol.			
${ }^{44}$	Data display (orange)	Display a parameters setpoint and menu symbol.			
(5)	Bar-graph display (orange and white)				
(6)	$\begin{array}{\|l} \text { Event indicator } \\ \text { (orange) } \end{array}$	UT55A: Lit when the alarms 1 to 8 occur. (Initial value: 1 to 4) UT52A: Lit when the alarms 1 to 4 occur Event displays other than alarms can be set by the parameter			
(7)	Key navigation indicator (green)	Lit or blinks when the Up/Down or Left/Right arrow key operationis possible.			
8)	Parameter display levelindicator (green)	Displays the setting conditions of the parameter display level func tion.			
		Parameter display level		EASY	PRO
		Standard seting mode		Unlit	Unit
		Professional seting mode		Unlit	Lit
(9)	$\begin{aligned} & \text { Deviation indicator } \\ & \text { (for UT55A only) } \\ & \text { (green) } \end{aligned}$				
(10)	Status indicator(green and red)	Display the operating conditions and control status.			
		Indicator		Indicator Descripition	
		CAS	Lit when in remole mode (REM).		
			Lit wen in cascade mode (CAS).		
		PRG			
		STOP			
		man	Lituhen in maual mode (MAN		
(11)	Security idicicator	Lit if pasasword is set. The selup parameter setiting are locked.			
(12)	Ladder operation indicator (green)	It while the ladder operation is executed.			
${ }^{13)}$	Loop 2 indicator (LP2 lamp) (green)	Lit when the control mode is Cascade control. is displayed on Setpoint display. In the Parameter Setting Display, the LP2 lamp indicates the loop of displayed menu symbol or parameter symbol. The LP2 lamp is lit while the Loop- 2 menu symbol or parameter symbol is displayed.			

2. Setup Procedure

3. Quick Setting Function (Setting of Input and Output)

ler.
Turn on the controller to start the Quick setting function
Jurn on the controller to start the Quick setting funciio start the control action.
The items (parameters) to be set by Quick setting function are as follows.
(1) Control type (PID control, Heating/cooling control
(1) Control type (PID control, Heating/cooling control, etc.).
(2) Input function (PV innut tyee, range, scale (at voltage in
(2) Input function (PV input type, range, scale (at voltage input), etc.)
($)$ (tion (contro output type and cycle time)

After turning on the controller, first decide whether or not to use the Quick setting func-
tion.
The Quick setting function can be used only when the control mode is Single-loop The Quick seting function can be used only when the control mode is single-loop
control. For other control modes, set the functions without using the Quick setting unction.

Operation in Initial Display

Press the SET/ENTER key while YES is displayed to start the Quick seting function appear without starting the Quick setting function.

Operation for Setting

To select the parameter setting displayed key to move to the next parameter.
To change and set the parameter
setpoint blinking. The blinking state allo allows pross the SET/ENTER key to start the Use the Up/Down/Leftriight arrow keys to change the setpoint. Press the SETEN

- Making Settings Using Quick Setting Function

Example: Setting to PID control, thermocouple type K (range of 0.0 to
$500.0^{\circ} \mathrm{C}$) and current control output $\left.500.0^{\circ} \mathrm{C}\right)$, and current control output
For the detexiled procedure and switching of displays, see "Flow of Quick Setting
Function" below. For the parameters to set see se

1) Press the SET/ENTER key while YES for QSM (Quick setting mode) is displayed
(2) Set the control type parameter (CNT) to PD (PID (3) Set the PV input type parameter (IN) to K1 $1\left(-270.0\right.$ to 1370.0°) (4) Set the PV input unit parameter (UNIT) to C (Degree Celsius). (5) Set the maximum value of PV input range parameter (RH) to 500.0 . (6) Set the minimum value of PV input range parameter (RL) to 0.0 .
(7) Set the output type selection parameter (OT) to OUT terminals (curre
(8) Finally, EXIT is displayed. Change NO to YES and press the SET/ENTER key to
complete the setup. Operation Display appears.

- Flow of Quick Setting Function

In Quick setting mode, the parameter guide appears on PV display.
This guide can be turned

- Parameters to be set

Control Type

Parameter Symbol	Name of Parameter	Setting Range
CNT	Controt tyee	PID: PID control ONOF: ON/OFF control (1 point of hysteresis) ONOF2: ON/OFF control (2 points of hysteresis) 2P2L: Two-position two-level control S-PI: Sample PI control BATCH: Batch PID control FFPID: Feedforward control

Input Function

Note 1: SDP, SH, and SL are displayed only for voltage/current inpu
Note 2: W: W.-5\%RRM-N-26\%Re (Hoskins MTG.Col), ASTM E988
Output Function

Parameter Symbol	Name of Parameter	Setting Range	
от			
ст		0.50 1000.0 s	
сте	Cooling-side control output cycle tim		

Adjusting Valve Position Automatically (for a Position Proportional Type Controller Only)

1. $\begin{aligned} & \text { PV } \\ & \text { MAN } \\ & \text { is } \\ & \text { it }\end{aligned}$

256 is it :808 Show the Operation Display
(3if) $+\frac{\text { PataMiter }}{\text { Hold down }}$ If the correct password is not enterec, setup
CREM $\begin{gathered}\text { When a password is set, PASS } \\ \text { If the correct password is not } \\ \text { parameters cannot be changed } \\ \text { CTL menu is displayed. }\end{gathered}$
SEEMLEL CTL menu is displayed.

CFB

SELMDUE OUT menu is displayed.
4. \qquad The parameter V.AT (automatic valve position adjustment) is displayed. Press the SET/ENTER key. (in
5. $7 E D$ OFF blinks
${ }^{\prime}{ }^{\prime}$ 'Press the Up arrow key.
6.
 ON is displyed.
Binks
uling the change 1 Perass the StTENTER key: ©

ON has been registered and the automatic adjustment of the valve position starts. V.AT blinks during the automatic adjustment After the adjustment is completed, press
the DISPLAY key or DISP key once to return to the Operation Display

5. Setting Alarm Type

The following operating procedure shows an example of changing the alarm-1 tye

개민

Setting Alarm Setpoint

The following operating procedure shows an example
of group 1 to 180.0 .
Before seting the alarm setpoint, check the alarm type
To change the alarm type, see "5. Setting Alarm Type.

1. Show the Operation Display
2. Display MODE menu with the same procedure as described in
tting Alarm Type.

- \triangle Press the Right arrow key

Press the SET/ENTER key.
til A1 appears.

Each parameer and group can be changed
in the Parameter Seting Displays of alarm
∇ Up/Down arrow keys: parameters
$\triangle \triangleright$ Left/Right arrow keys: groups
Display the parameter and group

> Press the SET/ENTER key.

	Hystersis Hysteresis	Hysteresis Hystere
		Deviaion $\stackrel{\perp}{ \pm} \stackrel{\rightharpoonup}{P v}$ setpont SP or Target SP
	Stieresis Hystere	Hysteresis Hysteresis
		Closity
	Ont sp or Targe SP	${ }_{\text {spoont }}$ SP or Target ${ }^{\text {P }}$
Control output high limit (15 high limit (17) high limit (17)	Hysteresis	Hysteresis
		Camat
	Ouput Alams selpoint	Output Alam setpo
Control output low limit (16) Cooling-side control outputlow limit (18) low limit (18)	Hysteresis	Hysteresis
	losid	
	Harm setpoint ofutput	Alam setpoint
Feedback inut tigh imint (27)	Fault diagnosis alarm (30) Burnout of PV input, RSP remote input, or AIN2/AIN4 auxiliary analog input. ADC failure, RJC error	
Feeddack input tow linit (28)		
	FALL (31)	
PV velocity (29)	For hefatary deayt the cont	

$\stackrel{\Delta \nabla}{\Delta}$ Change the setpoint using the Up/Down arrow $\triangleleft \triangleright$ keys to increase and decrease the value and
the LeftIRight arrow keys to move between digits. Press the SET/ENTER key. ©

The setpoint has been registered. After the setup is completed, press the DISPLAY key or DISP key once to return to the Operation Display.

When AUTO is switched into MAN, the control output value in AUTO mode is held. The controller can be operated manually from the hold value. If the manual presyet output is set (MPON parameter \neq OFF), the controller can be 6. Switching between RUN and STOP

RUN and STOP switching can be performed using any of the following: (1) Contact The following shows an example of switching using the contact input. (The switching function is assigned to DI2 contact for the factory defaut.)
For details of other switching methods and the For details of other switching methods and the display appearing when the operation is started, see User's Manual

PV input	Displays 1 I
Control output	

Display in STOP mode

 "STOP" is dis

Display in STOP mode in Heating/cooling control "Cooling-side preset output value" is displayed on the left side of the "ST" symbol, and "Heating-side preset output value" is on the right side.

7. Switching between REM (Remote) and LCL (Local)

Remote and local switching can be performed using any of the following:
(1) Contact input, (2) Parameter, (3) Communication, and (4) User function key. LCL (Local)
REM (Rerrorm
Control is performed using an external analog signal that is used as the target set
point. The following shows an example of switching from local to remote using the parameter.
For details of other switching methods, see User's Manual
For details of other switching methods, see User's Manual.

- The PID group for the local SP number is used as PID in remote mode.
NOTE
When the contact input is ON, operation cannot be performed using the parameter
communication, or key. When the contact input is OFF and the setting is switche communication, or key. When the contact input is OFF and the setting it switched
using the parameter, communication, or key, the last switching operation is per
formed 1. Show the Operation Display.

8. Manipulating Control Output in Manual Mode

NOTE

In manual mode, control output is manipulated by operating the keys (the value is
changed using the Up/Down arrow keys, then outputted as it is). changed using the Up/Down arrow keys, then outputted as it is).
Even if the SET/ENTER key is not pressed, the control output
Even if the SETIENTER key is not pressed, the control output value changes ac
cording to the displayed value.
In stop mode (when the STOP lamp is iti), control output cannot be manipulated.

Manual operation in Heating/cooling contro

II. DIDH 9 I3

- Symbol of heargg-side control outp Sooling-side control output
Symbol of cooling side
Up arrow key: concurrently decreases cooling-side control output and increase heating-side control output.
Down arow key; concurrently
Down arrow key: concurrently increases cooling-side control output and decreases Either none of the heating-side and cooling-side outputs are presented, or both of them are presented according to the dead band setting.)

9. Troubleshooting

- Troubleshooting Flow

If the Operation Display does not appear after turning on the controllers power, check the procedures in the following flowchart.
If a problem anpears to be complicated, contact our sales representatives.

- Remedies if Power Failure Occurs during Operations
Instantaneous power failure within 20 ms .
A power failure is not detected A power
operation continues.
- Power failure for less than about 5 seconds, or for about 5 seconds or more.
Affects the "setings" and "operation sta tus."
\qquad

$$
2
$$

The errorrs shown below may occur in

PV display (Operation	Setpoint display (Operation Display)	Status indicator (Operation Display)	Parameter that displays error details	Error descripion	Cause and diagnosis	Remedy
Indication of	Indication off	-	-	Fauly Mcu ram / MCU Rom	MCU RAM / MCU ROM are failed.	Fault. Contact us for repair
ERR	SYS ----	-	-	System data error	System datai is corupied.	Fautry. Contact us for repair
	$\begin{array}{\|l\|} \hline \text { PAR } 0004 \\ \text { (for user default value error only) } \end{array}$		Stup parameter (PA.ER)	User (parameter) defaut value error	User parameter is corrupted. Initialized to factory default value	Check and reconfigure the initializedsetting parameters. Error indication iserased when the power is turned onagain.
	PAR 0010			Setup parametereror	Setup parameter data is corrupted.	
	PAR 0020 (for operation parameter error only			Ope	Operation parameter data is corrupted Initialized to user default value.	
			Setup parameter (OP.ER)	Nonresponding hardware of extended function (E1 to E4terminal areas)	Inconsistence of system data and Nonrespondion Nonresponding communication between terminal areas).	${ }^{\text {Faulty }}$ Contact sor repair
(normal	Somal indication	Rightmost decimal point on PV display blinks. Rightmost decimal point on Symbol display blinks.	stup parameer (PA.ER)	Calibration value error	Initialized to calibrated default value because of corrupted factory default value	auth. Contact us for repair.
				Fauty FRAM	Dotat witing Stsoring) to FRAM is inoossibe	
Normal	Normal indication	LADDER lamp bin	Setup parameere((LA.ER)	Corupied lader program	Ladder program is corrupted Operates without ladder	Download the ladder rogram ag
Normal indication		-	Setup parameler (OP.ER)	profie error	User profile is corupled.	Download the user profilie ag

Errors during Operation
The errors shown below may occur during operation. (For inputtoutput action when each error occurs, see User's Manual

	Setpoint display (Operation Display)	$\begin{aligned} & \text { Status indicator } \\ & \text { (Operation Display) } \end{aligned}$	Parameter that displays error details	Error description	Cause and diagnos	Remedy
AD.ERR	Norma indication (Note)	-	Setup parameter (AD1.E)		Analog input terminal AD value	$\underset{\text { Feulty }}{\text { contact us for repair }}$
	indication (Note)	-	Setup parameler (AD1.E)	Universal input terminal RJC error PV input -RSP input (E1-terminal area)	Universal input teminal RJC	Faulty. ontact us for repai Set the parameter RJC to OFF to erase error indication
B.OUT	Norma i indication (Note)	-	Setup prameter (AD1.E)		Analog input temminal sensor burn	Check wiring and sensor rased in normal operation.
			Setup parameter (PV1.E/ PV2.E)	PV input burnout error (Loop 1,	Burnut of analog inut connected to	Check wiring and sensor of connected g input terminals Error indication is erased in normal operation.
$\begin{aligned} & \text { OVER } \\ & \text {-OVER } \end{aligned}$	Sormal indication	-	Setup parameter (PV1.E/ PV2.E)	PV input over-scale PV input underscal (PV valus ous out of 5 to 105\%) 1, Loop 2)	PV input is out of -5 to 105%. Also occurs when the data out of range which is the ladder calculation result is input.	Check analog input value or ladder program.
	Normal indication	-	stup parameter (PV1. / /PV2.E)		Buma	Check viring and sensor. Eror
	RSP B.OUT	-	Setup parameer (PV1.E/ PV2.E)	Burnout error when RSP input is	Burnout of analog input connected to RSP when RSP is used for control computation	Chece wining and sensors.: Fror indication
Normal indication	OUT --.--	-	Setup parameler (AD2.E)	$\begin{aligned} & \text { Feedbad } \\ & \text { burnout } \end{aligned}$	Feedback input burnut	Check wiring of feedback input resisto current. Error indication is erased in normal operation.
$\begin{aligned} & \text { Normal } \\ & \text { indication } \end{aligned}$	Normal indication	LADDER Ramp links	meter (LA.ER)	Lader calculation overifow		Check the ladeer rrogram.
				Load factor over 100%	Computation does not end within the control period (load factor is 100\% more) Computation does not end within the control	Change the control period or reduce program. Change entrol period or reduce the
				Ladder program error	Ladder program is corrupted.	Download the ladder program again. If the error indication is still not erased, there is a fault. Contact us for repair.
	$\begin{aligned} & 0.00000000 \\ & \text { (Decimal point on the left of } \\ & \text { the Svmbol disnlav hlinks) } \end{aligned}$	-	Setup parameler (OP.ER)		Peer-topeeer communication error	$\begin{aligned} & \text { Check that the target devices are } \\ & \text { connected correctly. } \\ & \text { Recovery at normal receipt. } \end{aligned}$
AT.E	Normal indication	-	Setup parameer (PV1.EPVV2.E)	Auto-tuning time-out (Loop 1, Loop 2)	Auto-tuning does not end even when 24 hours have elapsed after the start of tuning	Check the process. Hold down any . erase the error indication
VAT.E	Normal indication	-	Setup parameler (AD2.E)	Valve position automatic adjustment error adjustment error	Fully-closed valve position is equal to or larger than the fully-open valve position after automatic valve position adjustment is performed.	Check wiring and valve. Hold down any key to erase the error indication
(notral	0.00000000 (Decimal point on the left of the Symbol display blinks)	-	Setup parameter (OP.ER)	Communication error (RS-485 communication)	Framing parity erro Buffer overflow Checksumater time-out checksum) CRC check error (Modbus/RTU) LRC check error (Modbus/ASCII)	Check the communication parameters Recovery at normal receipt Hold down any key to stop blinking.
$\begin{aligned} & \text { Normal } \\ & \text { indication } \end{aligned}$		-	Setup parameer (OP.ER)	Communication error coordinated operation)	Inconsistence of loop between coordinated master and slaves Communication from coordinated master is interrupted for 2 seconds.	Check the communication parameters Recovery at normal receipt. Change from remote to local mode to stop blinking. local, SP tracking does not work even if it is set to ON.
$\begin{aligned} & \text { Normal } \\ & \text { indication } \end{aligned}$		-	Setup parameler (OP.ER)	User profile error	User profile is corupted.	Download the user profile again.
$\begin{array}{l}\text { Normal } \\ \text { indication }\end{array}$	Normal indication	Rightmost decimal point on Symbol display blinks	Setup parameerer (PA.ER)	Fauty FRAM	Writing storing) datat to FRAM is impossible.	Fauly. Contact us for
Undefined	Undefined	-	-		MCU / DCU is corruped.	Fault. Contact us for repaif.

Note: When an error occurs in input shown in Analog input display (OPeration display), Setpoint display shows the same symbol as the PV display.
$\begin{array}{ll}\text { Operation } & \text { UT55A/UT52A } \\ \text { Guide } & \text { Digital Indicating Controllers } \\ & \text { Operation Guide for Single-loop Control }\end{array}$
Parameters

YOKOGAWA \uparrow

Operation Parameters

 Hold down the PARAMETER key or PARA key for 3 seconds to move from the Opera-tion Display to the Operation Parameter Setting Dispay. Press the DISPLAY key or
DISP key once to return to the Operation Display. Operaion Dsipaly

.

Move to the Setup Parameter Seting Dispay:
Hold downt the PARAMETRR Rey or PARA A key and the Left arow key simultaneousy
for sec.

Operation for Setting
key to move to the next parameter. To change and set the parameter setting, press the SET/ENTER key to start the setpoint blinking. The blinking state allows you to make changes (setting mode). Use the Up/DownnLLettRight
register the setting.
Note that there are some parameters which are not displayed depending on the model and suffix codes, control mode (CTLM), control type (CNT), etc. The parameters for
professional setting mode (LEVL: PRO) are not described in this manual. See User's

- Operation Mode

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \end{aligned}$	Name of Parameter	Setting Range	${ }_{\substack{\text { Intital } \\ \text { value }}}^{\text {a }}$	User	${ }_{\text {display }}^{\substack{\text { dispel } \\ \text { level }}}$
$\operatorname{sis}_{(S, R)}$	stoprun swith		Run		EASY
$\underset{(R, L)}{R_{R}, L_{1}}$	Remotelocal swith	LCL: Local mode REM: Remone Select a remote input method fo acquiring the target setpoint from remote input or communication using the parameter RMS.	LCL		
$\begin{aligned} & \text { (At } \\ & \text { (AT) } \end{aligned}$	Auto-turing swith		OFF		
$\begin{gathered} \text { SPNDG } \\ \text { (SPNO.) } \end{gathered}$	SP number selection	1 to 8 (Depends on the setup parameter SPGR. setting.)	1		
(P10)	PID number	The PID group number being selected is displayed. 1 to 8, R: PID group for referenc deviation	1		

- SELECT Parameter

Parameter symbol	Name of Parameter			Setting Range				\|nitial	User	
$\begin{gathered} \text { Registered } \\ \text { parameter } \\ \text { symbol } \\ \hline \end{gathered}$	$\begin{aligned} & \text { SELECT parameter } 10 \\ & \text { to } 19 \end{aligned}$			Setting range of a registered param- For details, see User's Manual.				-	${ }_{\text {den }}^{\substack{\text { Table } \\ \text { below }}}$	
Paramerer	n=10	$\mathrm{n}=11$	n=12	$\mathrm{n}=13$	$n=14$	$\mathrm{n}=15$	n=16	$\mathrm{n}=17$	$\mathrm{n}=18$	
csn										

For the registration of SELECT parameters, see User's Manual.

SP and Alarm Setpoint Setting Paramete

Parameter symbol	Name of Parameter	Setting Range	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \substack{\text { value }} \end{array}$	$\begin{array}{\|c\|} \hline \text { User } \\ \text { setting } \end{array}$	$\underbrace{\text { a }}_{\substack{\text { Dispray } \\ \text { lovel }}}$
$\underset{(\mathrm{sp})}{5 P}$	Target selpoint	0.0 to 100.0% of PV input range (EU) (Setting range: SPL to SPH)	SPL	$\begin{aligned} & \text { Table } \\ & \text { below } \end{aligned}$	EASY
$5(\mathbb{S U B)}$	$\begin{aligned} & \text { Sub-target setpoint (in } \\ & \text { Two-position two-level } \\ & \text { control) } \end{aligned}$	Set the offset from SP. 100.0\% of PV input range span (EUS)			
$\begin{aligned} & \text { Pl divn } \\ & \hline \text { PIONN } \end{aligned}$	PID number selection	St a pid group number to use setup param eter PIDG. setting.)	1108		
$\begin{aligned} & A \mid \text { to } \\ & A B \\ & (A 110 A 8) \end{aligned}$	Alarm-1 1 - 8 selpoint	Set a display value of setpoint of PV larm, SP alarm, deviation alarm -19999 to 30000 (Set a value within the input range.) input type	0		

For the parameter SP (target setpoint), 8 groups are displayed for the factory defaut.
The number of groups can be changed by the setup parameter SPGR. (number of The number of groups can be changed by the setup parameter SPGR. (number of
SP groups). For the alarm setpoint parameter, alarm-1 to- - are displayed for the fac-
tory default. The number of alarms can be changed using the setup parameter ALNO (number of alarms). To change the number of SP groups or alarms, see User's Manual

SP-related Setting Paramete

$\begin{gathered} \text { Parameter } \\ \text { symbor } \end{gathered}$	Name of Parameter	Setting Range	${ }^{\text {n }}$	User	Display
RMS	Remote input method	RSP: Via remote (auxiliary analog) input \qquad	RSP		
$\underset{\sim R L L}{P R L}$	Remote input file	OFF, 110120 s	OFF		
$\underset{(R T)}{(R)}$	Remote inputratio	$\mathrm{SP}=$ Remote input \times RT + Remote input bias 0.001 to 9.9 0.001 to 9.999	1.000		STD
${ }_{\text {R } 655}$	Remote input bias	-100.0 to 100.0% of PV input range span (EUS)	$\begin{array}{\|l\|l\|} \hline 0.0 \% \\ \text { oifput } \\ \text { input } \\ \text { sapen } \\ \text { span } \end{array}$		
$\operatorname{Ul}_{(\cup P R)}$	SP ramp-up rate	Used to prevent SP from changing suddenly. Set a ramp-up rate or ramp-down rate	OFF		
$\begin{aligned} & \text { dNR } \\ & \text { (NNR) } \\ & \hline \end{aligned}$	SPramp-down rate	using the parameter TMU. OFF, $0.0+1$ digit to 100.0% of PV input range span (EUS)	OFF		EASY
$\begin{aligned} & \text { (TMU } \end{aligned}$	SP ramp-rate time unit	HOUR: Ramp-up rate or ramp-down rate per hour MIN: Ramp-up rate or ramp-down rate per minute	Hour		
$\begin{gathered} \text { SPR } \\ \text { (SPT) } \end{gathered}$	SP traking selection	Tracking is performed when the mode changes from Remote to Local. (The local setpoint keeps track of the remote setpoint.) OFF, ON	on		
P6't	PV tracking selection	Causes the setpoint to keep track of reverts to its original value at a prese rate of change. The UPR, DNR, and ing conditions: 1) MAN \rightarrow AUTO, 2) STOP \rightarrow AUTO, 3) Power-on, 4) SP number change, 5) SP change OFF, ON	OfF		sto

Alarm Function Setting Parameter

■ PV-related Setting Parameter

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \end{aligned}$	Name of Parameter	Setting Range	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \\ \text { value } \end{array}$	$\begin{array}{\|c\|} \hline \text { User } \\ \text { setting } \end{array}$	Display Ievel
$\begin{aligned} & 65 \\ & (85) \end{aligned}$	PV input	-100.0 to 100.0% of PV input range span (EUS)			EASY
	PV input filer	OFF, 1 10 120 s	OFF		

- PID Setting Parameter

$\begin{gathered} \text { Parameter } \\ \text { symbol } \end{gathered}$	Name of Parameter	Setting Range	$\begin{aligned} & \text { Initial } \\ & \text { value } \end{aligned}$	$\left\|\begin{array}{\|c\|c\|c\|} \hline \text { sesting } \end{array}\right\|$	${ }_{\text {display }}^{\substack{\text { devel }}}$
${ }_{(P)}^{p}$	Proportional band Heating-side proportion- al band (in Heating/cool ing control)		5.0\%		
$\begin{aligned} & 1 \\ & (1) \\ & \hline \end{aligned}$	Integral time Heating-side integral time (in Heating/cooling contro	$\begin{aligned} & \text { OFF: Disable } \\ & 1 \text { to } 6000 \mathrm{~s} \end{aligned}$	240 s		
$\begin{aligned} & d \\ & (0) \end{aligned}$	Derivative time Heating-side derivative time (in Heating/cooling control	Off: Disable	60 s		
$\begin{aligned} & \mathrm{OH} \\ & \hline \mathrm{OH} \end{aligned}$	Control output high limit Heating-side control output high limit (in Heating/cooling contro		100.0\%		
$\begin{aligned} & (0 L \\ & (O L) \end{aligned}$	Control output low limit Heating-side control output low limit (in Heat ing/cooling control)	$\begin{array}{\|l\|} \hline-5.0 \text { to } 104.9 \%, \text { (OL<OH), SD: Tight } \\ \text { shit } \\ \text { shut Heating/cooling contro: } 0.0 \text { to } \\ 104.9 \% \text { (OL<OH) } \\ \hline \end{array}$	0.0\%		
$\begin{gathered} M R \\ (M R) \end{gathered}$	Manual reset		50.\%		
$\begin{gathered} 445 \\ (H 5) \end{gathered}$	Hysteresis (in ON/OFF control, Position Two-position two-level control) Heating-side ON/OFF control hysteresis (in Heating/cooling control)				EASY
$5(14 y$ (suHy	Sub-hysteresis (in Two-position two-level control)		$\left.\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { o.fpo } \\ \text { onput } \\ \text { range } \\ \text { sppant } \end{array} \right\rvert\,$		
$\underset{(H Y Y U P)}{ }$	Upper-side hysteresis (in ON/OFF control)	0.0 to 100.0% of PV input range span (EUS)			
HHYLD	Lower-side hysteresis (in ON/OFF control)		$\begin{array}{\|l\|l\|} \hline \begin{array}{l} 0.5 \% \\ \text { ofpo } \\ \text { input } \\ \text { fane } \\ \text { span } \end{array} \\ \hline \end{array}$		
$\begin{gathered} (\mathbb{R}) \\ (\mathbb{R}) \end{gathered}$	Direct/reverse action switch		Rvs		
	$\begin{aligned} & \text { Sub-direct/reverse } \\ & \text { action switch (in Two- } \\ & \text { position two-level } \\ & \text { control) } \\ & \hline \end{aligned}$	DIR: Direct action	DR		
$\underset{\left(P_{c}\right)}{\rho_{c}}$	Cooling-side propor- tional band	(Cooling-side ON/OFF control applies when 0.0% in Heating/cooling control)	5.0\%		
$I_{(16)}$	Cooling-side integral time	$\begin{aligned} & \text { OFF: Disable } \\ & 1 \text { to } 6000 \mathrm{~s} \end{aligned}$	240 s		
${ }^{\mathrm{d} \mathrm{c}} \mathrm{C}$	Cooling-side derivative time	OFF: Disable 1 to 6000 s	60 s		
	Cooling-side control output high limit	0.1 1 10 05.0\%, (OLCoOHC)	100.0\%		
$\begin{aligned} & \text { OLL } \\ & \text { (0) } \end{aligned}$	Cooling-side control output low limit	0.to 004.9\%, (OLCOOHC)	0.0\%		
$\underset{\substack{H 45 c \\(H y s c)}}{ }$	Cooling-side ON/OFF control hysteresis	0.0to 100.0\%	0.5\%		Eas
(${ }_{\text {(}{ }^{\text {b }} \text {) }}$	Output dead band (in Heating/cooling contro Heating/cooling control or Position proportional control)	In Heating/cooling control: -100.0 to 55.0\% In Position proportional contro: 1.0 to 10.0 . 50.0\% In Position to 10.0%	3.0\%		
$\underset{(P O)}{P 0}$	ng-side preset output (in Heating/cool ing control	In STOP mode, fixed contriol utput can be generated. In Position propor- tional contol vavive opening can be set. -5.0 to 10.05%	0.0\%		
$\begin{aligned} & 5 \mathrm{~S}(\mathrm{PD}) \\ & \text { (su.po) } \end{aligned}$	Sub-preset output (in Two-position two-lev control)	In STOP mode, fixed sub-control 0\%, 100\%	0\%		
$\underset{(P 0 C)}{ }$	$\begin{aligned} & \text { Cooling-side preset } \\ & \text { output } \end{aligned}$	In STOP mode, cooling-side fixed control output can be generated. -5.0 to 105.0%	0.0\%		

Tuning Paramete

Zone Control Parameter
Menu symbol: ZOMNE (ZONE)

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \end{aligned}$	Name of Parameter	Setting Range	Intital value		$\underbrace{\substack{\text { devel }}}_{\text {Dispay }}$
	Reference point 107		$\begin{aligned} & 100.0 \% \\ & \text { oifo } \\ & \text { input } \\ & \text { range } \end{aligned}$	Table	
$\begin{aligned} & \text { RHY } \end{aligned}$	Zone PID switching hysteresis	Hysteresis can be set for switching a araference. point 0.0 to 010.0% of PV input range span (EUS)			STD
$\begin{aligned} R_{\text {R R }} d_{0}^{\prime} \end{aligned}$	Reference deviaion	Set a deviation from SP. The PID for reference deviation is used if there is a larger deviation than the preset reference deviation. OFF: Disable $0.0+1$ digit to 100.0% of PV input range span (EUS)	off		

- P Parameter (for Ladder Program)

10-segment Linearizer-1, -2 Setting Parameter

Setup Parameters

Hold down the PARAMETER key or PARA key and Left arrow key simultaneously for 3 seconds to move from the Operation Display or Operation Parameter Setting Display the Setup Parameter Seting Display.
Press the DISPLAY key or DISP key once to return to the Operation Display.

∇ кеу

Move to the Operation Parameter Seting Display:
Hold down the PARAMETER Rey or PARA key for 3 sec.

Peration for Setting

To select the parameter setting dis
key to move to the enext parameter.
To change and set the parameter. To change and set the parameter seting, press the SETTENTER key to start the set
point blinking. The blinking state allows you to make changes (setting mode). Use the point blinking. The blinking state alows you to make changes setting mode). Use the
Upp/Downn/LetrRight arrow keys to change the setpoint. Press the SET/NTTER key to egister the setting,
Note that there are some parameters which are not displayed depending on the Model
nd S Suffix codes, control mode (CTLM), control type (CNT), etc. The parameters for proand Suffix codes, control mode (CTLM), control type (CNT), etc. The parameters for pro-

Control Function Setting Parameter

$\begin{gathered} \text { Parameter } \\ \text { symbol } \\ \hline \end{gathered}$	Name of Parameter	Setting Range	Initial value	User settin	${ }_{\text {Display }}^{\substack{\text { level }}}$
${ }_{\text {[ETLM }}^{\text {CELM }}$	Control mode	When using the controls other than Single-loop control, see User's Manual. SGL: Single-loop control CAS1: Cascade primary-loop control CAS2: Cascade secondary-loop control CAS: Cascade control BUM: Loop control for backup PVSW: Loop control with PV switching PVSEL: Loop control with PV auto-selector PVHD: Loop control with PV-hold function	sGL		sto
$\begin{gathered} \text { (ANT } \\ \text { (CNT) } \end{gathered}$	Controt tye	PID: PID control ONOF2: ON/OFF contol (2 poit hysteresis) 2P2L: Two-position two-level control H/C: Heating/cooling control S-PI: Sample PI control BATCH: Batch PID control FFPID: Feedforward contro			EASY
	Number of SP groups	Set a number of SP groups to use. 1 to 8	${ }^{8}$		
$\begin{gathered} \text { ZONO } \\ (Z O N) \end{gathered}$	Zone PID selection	If set to "SP group number selection," allows PID constants to be selected for each SP PID con group. If set to "Zone PID selection," automatically selects PID constants according to the range 0: SP group number selection 1 1: Zone PID selection (selection by PV) 3: SP group number selection 2 by target SP) 4. Zone PID selection (selection by SP)	0		STD
	Number of PID groups	Set a number of PID groups to use. 1 to 8	${ }^{8}$		
$\underset{\text { (SMP) }}{\substack{\text { SMP }}}$	Input sampling period (control period) (control period)	50: 50 ms s, 100: 100 ms , 200: 200 ms	100		

- PV Input Setting Parameter

Menu symbol: Pl' (PV)

$\begin{aligned} & \text { Paramete } \\ & \text { symbol } \end{aligned}$	Name of Parameter	Setting Range	$\begin{aligned} & \text { Initial } \\ & \text { value } \end{aligned}$	$\begin{gathered} \hline \text { User } \\ \text { setting } \end{gathered}$	$\underbrace{\text { Dispayay }}$ level	
$\underset{(\mathbb{N})}{\substack{n \\ \hline}}$	PV input tye		OFF		EASY	
	PV input nit	$\begin{aligned} & -: \text { No unit, C: Degree Celsius } \\ & -: \text { No unit, --: No unit, ---: No unit, } \\ & \text { F: Degree Fahrenheit } \end{aligned}$	c			
$\underset{(R H)}{R_{(R)}}$	Maximum value of PV input range	the input type -For temperature input actually controlled. $(\mathrm{RL}<\mathrm{RH})$) -For voltage/current input- Set the range of a voltage \qquad				
$\underset{(R L)}{R_{(R)}}$	Minimum value of PV input range					
$5_{(S D P)}$	PV input scale decimal point postion		$\begin{aligned} & \text { Depends } \\ & \text { on the } \\ & \text { input type } \end{aligned}$			
$\begin{gathered} 5 \mathrm{SH}_{1} \end{gathered}$	Maximum value of PV input scale	-19999 to 30000, (SL<SH).	Deends			
$\begin{aligned} & (\mathrm{sL}) \\ & \hline \end{aligned}$	Minimum value of PV input scale	\|SH-SL	330000			
$\underset{(B S L)}{6 S L}$	PV input burouta acion	$\begin{aligned} & \text { OFF: Disable } \\ & \text { UP: Upscale } \\ & \text { DOWN: Downscale } \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{\text { innunts } \\ \text { inut tre }} \end{array}$			
$\mathrm{A}_{(\mathrm{A} \cdot \mathrm{BS}}$	PV analog inut bias	-100.0 to 100.0% of PV input range span (EUS)	$\begin{gathered} 0.0 \% \text { of } \\ \text { PVinut } \\ \text { range } \\ \text { span } \end{gathered}$		Sto	
$\underset{(A F L L}{A F}$	PV analog inut filer	OFF, 1 10 120 s	OFF			

\square RSP Input Se

Parameter symbol	Name of Parameter	Setting Range	$\begin{aligned} & \text { Initial } \\ & \text { value } \end{aligned}$	User	$\left.\right\|_{\text {Display }} ^{\text {level }}$
$\underset{(N \mathbb{N})}{\substack{n \\ \hline}}$	RSP remote inut tyee	$0.4-2 \mathrm{~V}: 0.400$ to 2.000 V $-5 \mathrm{~V}: 1.000$ to 5.000 V $0-2 \mathrm{~V}: 0.000$ to 2.000 V $0-10 \mathrm{~V}: 0.00$ to 10.00 V $0-125: 0.000$ to 1.250 V For option /U1, RSP remote input type is same as PV input type	1-5V		
$\operatorname{lin}_{\text {UNNTT }}$	RSP remote inpu	$\begin{aligned} & \hline-: \text { No unit, C: Degree Celsius } \\ & -: \text { No unit, }--: \text { No unit, ---: No unit, } \\ & \text { F: Degree Fahrenheit } \end{aligned}$	c		
$\underset{(R H)}{\substack{\text { RH }}}$	Maximum value of RSP remote input rang		$\begin{aligned} & \text { Depends } \\ & \text { on the } \\ & \text { input type } \end{aligned}$		
$\underset{(R)}{(R L)}$	Minimum value of RSP remote input range		$\begin{aligned} & \text { Depends } \\ & \text { on the } \\ & \text { input type } \end{aligned}$		
$\underset{(S D P)}{\substack{\text { SDP }}}$	RSP remote input scale decimal point position		$\begin{aligned} & \text { Depends } \\ & \text { on the } \\ & \text { input type } \end{aligned}$		

- RSP Input Setting Parameter (E1-terminal Area) (Continued)

- AIN2/AIN4 Aux. Analog Input Setting Parameter (E2/E4-terminal Area)

Parameter symbol	Name of Parameter	Setting Range	${ }^{\text {n }}$ (nitial	$\begin{array}{\|c} \hline \text { User } \\ \text { setting } \end{array}$	$\underbrace{\substack{\text { level }}}_{\text {Display }}$
${ }_{(1 N)}$	AIN2/AIN4 aux. analog input type		${ }^{1.5 \mathrm{~V}}$		EASY
$\operatorname{LiNN}_{\text {UNTT }} t$	AIN2/AIN4 aux. analog input unit		c		
$\underset{(R H)}{(R H)}$	Maximum value of AIN2 ux. analog input range	Depends on the input type. aplied that scale across which the voltage	$\begin{aligned} & \text { Depende } \\ & \text { nontur } \\ & \text { nouptre } \end{aligned}$		
$\underset{(R)}{(R L)}$	Minimum value of AIN2/ AIN4 aux. analog input range	set using the maximum value of input scale (SH) and m (Input is always 0\% when RL=RH.)	Depends on the input type		
$5 d p$	AIN2/AIN4 aux. analog input scale decimal point input scal				
$\underset{(\mathrm{SH})}{\substack{5 H}}$	Maximum value of AIN2 AIN4 scale	-19999 to $30000,($ SLLSHH),ISH-SL $\mid \leq 30000$	$\begin{aligned} & \text { Depends } \\ & \text { on the } \\ & \text { input type } \end{aligned}$		
$\begin{gathered} 5 L \\ (\mathrm{SLL}) \\ \hline \end{gathered}$	Minimum value of AIN2/ AIN4 aux. analog input scale		$\begin{aligned} & \text { Depends } \\ & \text { on the } \\ & \text { input type } \end{aligned}$		
$\underset{(B S L)}{65 L}$	AIN2/AIN4 aux. analog input burnout action	$\begin{aligned} & \text { OFF: Disable } \\ & \text { UP: Upscale } \\ & \text { DOWN: Downscale } \end{aligned}$	$\begin{aligned} & \text { Depends } \\ & \text { on the } \\ & \text { input type } \end{aligned}$		STD

- Input Range, SP Limiter Setting Parameter

$\begin{gathered} \text { Parameter } \\ \text { symbol } \end{gathered}$	Name of Parameter	Setting Range	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|} \substack{\text { value }} \end{array}$	$\begin{array}{\|c} \text { User } \\ \text { setting } \end{array}$	$\underbrace{\text { den }}_{\substack{\text { Display } \\ \text { level }}}$
Pund	Control PV input unit		$\begin{gathered} \text { Same } \\ \text { sav put } \\ \text { ninut } \\ \text { unit } \end{gathered}$		
$P_{(P . D P)}\left(P^{\prime}\right.$	Control PV input decimal point position		1		
$\begin{aligned} & \text { PRH } \\ & (P, R H) \end{aligned}$	Maximum value of control PV input range	-19999 to 30000, (P.RLLP.R.RH),			STD
$\begin{gathered} P R(P R L) \\ (P R L) \end{gathered}$	Minimum value of control PV input range	\|P.RH-P.RLL ≤ 30000			
$\underset{\text { (SPH) }}{5 \mathrm{PH}}$	SP high limit	0.0to 100.0\% of PV input range (EU),	$\begin{array}{\|c\|c\|} \hline 10.0 \% \% \\ \text { of of } \\ \text { onve } \\ \text { range } \end{array}$		
${ }_{\text {(}}^{5 P L}$	SP low linit		$\begin{aligned} & \text { oit oiv } \\ & \text { oinput } \\ & \text { ranat } \end{aligned}$		

■ Output Setting Parameter

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \end{aligned}$	Name of Parameter	Setting Range	$\underset{\substack{\text { mitial } \\ \text { value }}}{\text { len }}$	${ }_{\text {User }}^{\substack{\text { Seting } \\ \text { sel }}}$	${ }_{\text {Dispay }}^{\substack{\text { Devel } \\ \text { leat }}}$	
$\begin{aligned} & \text { Ot } \\ & \text { (0T) } \end{aligned}$					EASY	
$\frac{[t}{(c)}$	Control output cycle time Heating-side control output cycle time (in Heating/cooling contro	0.5 to 1000.0 s	30.0 s		EASY	
	Cooling-side control output cycle time					
$\begin{aligned} & \text { línt } \\ & \text { (VAT) } \end{aligned}$	Automatic valve position adjustment	OFF: Stop automatic adjustment ON: Start automatic adjustment	OFF			
$\begin{aligned} & 1 / 1 / 55 \\ & (V . R S) \end{aligned}$	$\begin{aligned} & \text { Valve position setting } \\ & \text { reset } \end{aligned}$	Setting V.RS to ON resets the valve adjustment settings and causes the adjustment settings and caun indication "V.RS" to blink.	OFF			
	Fully-closed valve posi- tion setting	Pressing the SET/ENTER key with valv position set to the fully-closed position value to be stored. When V.L adjustmen is complete, V.L stops blinking.	-			
$\\|_{(N H)}^{\prime \prime}$	Fully-opened valve posi- tion setting	Pressing the SET/ENTER key with valve position set to the fully-opened position by Up arrow key causes the adjusted value to be stored. When V.H adjustment is complete, V.H stops blinking	.			
$\begin{aligned} & \left.t \cdot R_{t}, t\right) \\ & (R R T T) \end{aligned}$	Valve taveling time	510300 s	60 s		sto	
liM0d	Vave adiusting mode		0			
$\underset{(R T 5)}{(R)}$	Retransmission output type of RET		PV1		EASY	
$\begin{gathered} \text { Rer } \\ (\mathrm{RH}) \end{gathered}$	Maximum value of retransmission output scale of RET	When RTS = PV1, SP1, PV2, SP2, TSP1, TSP2, PV, RSP, AIN2, or AIN4, RTL+1 digit to $30000-19999$ to RTH - 1 digit Decimal point position: When RTS=PV1, SP1, or TSP1, decimal When RTS=PV2, SP2, or TSP2, decimal	$\left.\begin{array}{\|c\|c\|} 100 \% \\ \text { of pout } \\ \text { invot } \\ \text { range } \end{array} \right\rvert\,$			
$\underset{(R T L)}{(R L L)}$	Minimum value of retransmission output scale of RET	When RTS=RSP, decimal point position When RTS=AIN2, decimal point position is same as that of AIN2 scale. is same as that of AIN4 scale.	$\begin{gathered} o \% \\ \text { of pout } \\ \text { input } \\ \text { range } \end{gathered}$			
$\begin{aligned} & 0 \mid 1 \mathrm{RS} 5 \\ & (01 \mathrm{RS}) \end{aligned}$	Retransmission output type of OUT current output	Same as RTS	OFF		sto	
$\begin{gathered} 0!\text { RH } \\ (0,1 R H) \end{gathered}$	Maximum value of retransmission output scale of OUT current output	When O1RS = PV1, SP1, PV2, SP2 SP1, TSP2, PV, RSP, AIN2, or AIN4, O1RL Decimal point position: When O1RS=PV1, SP point position is same as that of PV input When O1RS =PV2, SP2, or TSP2, decimal point position is same as that of RSP input.	.		TD	
$\begin{aligned} & 0 \\| R L \\ & (0, R) \\ & (0, R) \end{aligned}$	Minimum value of retransmission output scale of OUT current scale of output	same as that of $P V$ input scal When O1RS =RSP, decimal point position is same as that of RSP input scale. is same as that of AIN2 scale. When O1RS =AIN4, decima is same as that of AIN4 scale	.			

$\begin{aligned} & 022,55 \\ & \hline 10255 \end{aligned}$	Retransmission output type of OUT2 current output	Same as RTS	OFF	STD
O2RH	Maximum value o retransmission output output		-	
$02 R L$	Minimum value of retransmission output scale of outpu		-	
OUR	OUT current output range		4.20	STD
OULEA	OUT2 current output range		4.20	
REER	RET current output range		4.20	

Heater Break Alarm Setting Parameter

$\begin{gathered} \text { Parameter } \\ \text { svmbol } \end{gathered}$	Name of Parame	Setting Range	nitiaa value	$\begin{array}{\|c} \text { User } \\ \text { setting } \end{array}$	$\underbrace{\text { Dispay }}$ level
$\underset{\text { (HBB } 15}{ }$	Heater break alarmfunction selection	0: Heater current measurement1: Heater break alarm	1		EASY
HLC25	Heater break alarm-2 function selection		1		
$\begin{array}{ll} \hline 161 \end{array}$	Heater break alarm-1	OfF, 0.1 to 300.0 Ams	OfF		
${ }_{(H 6 B 2}$	Heater break alarm-2 current setpoint		off		
	CT1 coil winding number ratio	1103300	800		
$\begin{aligned} & {[t \cdot 2 t} \\ & (C C 2,2) \end{aligned}$	Ст2 coil winding number ratio		800		
HDNIN HON1)	Heater break alarm-1 On-delay timer	0.00 to 99.59 (m.s)	0.00		sto
HdNT	Heater break alarm-2 On-delay timer		0.00		

In cases where the current transformers manufactured by U.R.D. Co., Ltd are used, set
the following value for the coil winding number ratio.
CLL--S-S-H: 800
CTL-6-S-SH: 8000
■ RS-485 Communication Setting Parameter (E1/E3/E4-terminal Area)

Paramete	Name of Parameter	Setting Range		$\left\lvert\, \begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { settind } \end{array}\right.$	$\underbrace{\text { a }}_{\substack{\text { Dispay } \\ \text { level }}}$
(PSLL	Protocol sel		MBRTU		
$\begin{gathered} \text { (BPS) } \end{gathered}$	Baud		1920		EASY
$\underset{(P R 1)}{(P R I)}$	Pari	NONE: None EVEN: Even ODD: Odd	Even		
$5 t P$	Stop bit	1: 1 bit, 2: 2 bis	1		
dLiN	Data length	7:7	8		
$R d R$	Adress	11099	1		

- Ethernet Communication Setting Parameter (E3-terminal Area) Menu symbol EtHR (ETHR)

Parameter symbo	of Para	Setting Range	${ }_{\substack{\text { nitital } \\ \text { value }}}$	User	$\underbrace{\text { den }}_{\substack{\text { Display } \\ \text { level }}}$
$45 R$	Highspeed resonse mode	OFF, 1 to 8	1		
${ }_{\text {LPPS }}$	Baud rate	9600: 9600 bps 19200: 19.2 k bps 38400: 38.4 k bps	38400		EASY

■ PROFIBUS-DP Communication Setting Parameter (E3-terminal Area)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Parameter } \\
\text { symbol }
\end{gathered}
\] \& Name of Parameter \& Setting Range \& Intitial \& \[
\begin{aligned}
\& \text { Lser } \\
\& \text { seting }
\end{aligned}
\] \& \({ }_{\text {Display }}^{\substack{\text { devel }}}\) \\
\hline \[
\left(\begin{array}{l}
(B R) \\
\hline R
\end{array}\right.
\] \& Baud rate \& \begin{tabular}{l}
9.6K: 9.6k bps \\
19.2K: 19.2 k bps \\
187.5K: 187.5 k bps \\
\(0.5 \mathrm{M}: ~ 0.5 \mathrm{M} \mathrm{bps}\)
\(1.5 \mathrm{M}: 1.5 \mathrm{M}\) bps \\
3M: 3M bps
6M: 6M bps \\
12M: 12M bps \\
45.45K: 45.45 kbps
\end{tabular} \& aUto \& \& Y \\
\hline \[
\begin{aligned}
\& \substack{\text { dAR } \\
(A D R)}
\end{aligned}
\] \& Adres \& 0 to 125 \& \({ }^{3}\) \& \& \\
\hline \[
\begin{aligned}
\& \text { (BPS) } \\
\& (\mathrm{PPS})
\end{aligned}
\] \& Baud rate \& 9600: 9600 bps
19200: 19.2 k bps 38400: 38.4 k bs 38400: 38.4k bp

I \& 38400 \& \&

\hline $$
\overline{F \mid L I L E}
$$ \& Profile number \& 0 to 5 \& 0 \& \&

\hline
\end{tabular}

- DeviceNet Communication Setting Parameter (E3-terminal Area)

$\begin{gathered} \text { Parameter } \\ \text { symbol } \end{gathered}$	Name of Parameter	Setting Range	\pm	$\begin{aligned} & \text { User } \\ & \text { seting } \end{aligned}$	$\underbrace{}_{\substack{\text { Display } \\ \text { level }}}$
$\underset{(B R)}{6 R}$	Baud rate	125K: 125 k bps $250 \mathrm{~K}: 250 \mathrm{kps}$ $500 \mathrm{~K}: 500 \mathrm{kpps}$	125K		
	Addres	0 to 63	${ }^{63}$		
$\begin{aligned} & \text { (BP5) } \\ & (\mathrm{BPS}) \end{aligned}$	Badr rate	9600: 9600 bps 19200: 19.2 k bps $38400: 38.4 \mathrm{kbps}$	38400		
FILE	Profile number	0105	0		

CC-Link Communication Setting Parameter (E3-terminal Area)

$\begin{gathered} \text { Paramete } \\ \text { symbol } \end{gathered}$	Name of Parameter	Setting Range	$\underbrace{}_{\substack{\text { Initial } \\ \text { value }}}$	$\begin{array}{\|c\|} \hline \text { User } \\ \text { setting } \end{array}$	${ }_{\text {Display }}^{\substack{\text { Dispal } \\ \text { level }}}$	
$\underset{\text { (8R) }}{6 \text { R }}$	Baud rate		10м			
$\mathrm{R}_{\\| A D R} d R$	Address	1 1064	${ }^{3}$		EASY	
(BPS)	Bad rate	9600: 9600 bps 38400: 38.4 k bps	38400			
$\overline{F \mid(F I L E E}$	Profile number	0105	0			

Display Function Setting Parameter

Parameter symbol	Name of Parameter	Setting Range	\|litial	User seting	$\underbrace{\text { Dispay }}$ level
dil'b	Deviation display band				sto
PCMd (PCMD)	Active color PV display switch switch		-		EASY
$\underset{\text { PCH }}{\text { PCH }}$	PV color change high limit	Set a display value when in PV limit or SP deviation.	0		
$\underset{(P C L)}{P[L}$	PV color change low linit	ition depends on the input tye.	0		
$\underset{(\text { BAR1 }}{6 \text { GRR }}$	Upper barg-graph display registraion				STD
$\underset{\text { (BAR2) }}{\text { GRR }}$	Lower bar-graph display registration				
$\text { bollit } \text { (Biv) }$	Bar-graph deviation display band	0.0 to 100.0% of PV input range span (EUS) (EUS)	$\begin{array}{\|l\|l\|} \substack{10.0 \% \% \\ \text { opput } \\ \text { input } \\ \text { angene } \\ \text { span }} \\ \hline \end{array}$		
[lind	Guide display ONoFF	OFF	on		STD
E[ECO)	Economy mode		OFF		
68R1)	Brighness	(Dark) 1105 (Bright)	3		EASY
$\begin{gathered} \text { MLSD } \\ \text { (M.SD) } \end{gathered}$	Least significant digital mask of PV display	OFF: With least significant digit ON: Without least significant digit	OFF		STD

- SELECT Display Setting Parameter

| Parameier $n=1$
 Cs |
| :--- | :---: | :---: | :---: |
| $\begin{array}{l}\text { Key Lock Setting Parameter }\end{array}$ |

$\begin{gathered} \text { Parameter } \\ \text { symbol } \end{gathered}$	Name of Pa	Setting Range	Intital value	$\begin{array}{\|c\|} \hline \text { User } \\ \text { setting } \\ \hline \end{array}$	${ }^{\text {Display }}$ level
EDMMN	Communication write enable/disable	OFF: Enable, ON: Disable	OFF		Sto
$A R E A$	Front panel parameter data $(\boldsymbol{\nabla}, \mathbf{\Delta})$ key lock	OFF: Ullock, on: Lock	OFF		
${ }_{\text {A AMM }}$	Front panel AMM key lock		off		

- DI Function Registration Parameter

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \end{aligned}$	Name of Parameter	Setting Range	${ }_{\substack{\text { Intital } \\ \text { value }}}^{\text {a }}$	User	${ }_{\text {Display }}^{\substack{\text { Dispel } \\ \text { level }}}$
$\underset{(A M)}{ }$	Automan swich	Set an I relay number of contact input.	5025		sto
$p_{\text {(RLL }}^{\prime \prime}$	Remotelocal swith		5046		
$\begin{gathered} \substack{1, R \\ (\mathrm{~S} R)} \\ \hline \end{gathered}$	stoprun swith		5026		
[85	Swith to cAs		OfF		
RlUED (AUTO)	Swith to Auto	DI1: 5025, D12:5026, D13: 5027	OFF		
MRN	Switch to man		off		
$\begin{aligned} & \text { REM } \\ & (R \in M) \end{aligned}$	remote	E2 -terminal area DI21: 5057, DI22: 5058, DI23: 5059, DI24. 5060, DI25. 5061, DI26. 5062	off		
${ }_{(L C L}^{L C L}$	Swith to Local	E3-terminal are	off		
$\begin{aligned} & \text { At } \\ & \text { (AT) } \end{aligned}$	$\begin{aligned} & \text { Auto-tuning START/STOP } \\ & \text { switch } \end{aligned}$		off		
$\begin{aligned} & \text { (LATT) } \\ & \text { (LAT) } \end{aligned}$	Latch		off		
${ }_{\text {L LCd) }}$	LCD backlight ON/OFF switch		off		
Pu'RW	PV redmhite swith		OFF		

- DI Function Numbering Parameter

Parameter symbol	Name of Parameter	Setting Range	${ }_{\substack{\text { Intital } \\ \text { value }}}^{\substack{\text { a }}}$	User	${ }_{\text {Display }}^{\substack{\text { level }}}$
SPbD	Bit-o of SP number	Set an I relay number of contact input.Set "OFF to disable the function.Standard terminalsD11: $5025, \mathrm{DI2}: 5026, \mathrm{DI3}: 5027$	off		EASY
5Pbl\|	Bit-1 of SP number		OFF		
	Bit-2 of SP number		OFF		
	Bitz		off		
$\begin{gathered} \text { PRIDO } \\ (\text { PNNBO } \end{gathered}$	H0 of PID	E1-teminal area D\|11: 5041, D112: 5042, D113: 5043, D114:5044, D115:5045, D116: 50	off		
$\begin{gathered} \text { PiAbl } \\ \text { PN:B1) } \end{gathered}$	Bit-1 of Pli number		OFF		
$P_{\mathrm{Alb}}{ }^{2}$	Bitz of PlD number		off		
$\text { Pntb } 3$	Bit: of Pli umber		off		std
MPbD	Bit-0 of manual preset output number	E4-terminal area DI44: 5092, DI45: 5093, DI46: 509	OFF		
MPb 1	Bit-1 of manual preset output number		OFF		
$\underset{\substack{M P b \\(P D B 2)}}{ }$	Bit-2 of manual preset output number		off		
$5 \mathrm{SPbL}$	Bit changing method of SP number	0: Status switch 1 1: Status switch 2	0		STD

- AL1-AL3 Function Registration Parameter

Parameter symbol	Name of Parameter	Setting Range	Initial value	$\begin{array}{\|c\|} \hline \text { User } \\ \text { setting } \\ \hline \end{array}$	${ }_{\text {Display }}^{\substack{\text { bevel }}}$
ALAL15	ALI function selection	Set an I relay number. For the items Ex.) Set the number 4353 for AL1.S	4353		
$\text { RLL } 2.5$	AL2 function selection	Set "OFF" to disable the function. No function: OFF No function: OFF Alarm 2: 4354	4354		
	ction selection	$\begin{aligned} & \text { Alarm 4: } 4357 \\ & \text { Alarm 5: } 4358 \end{aligned}$	4355		sto
ORS	OUT relay function selection	Alarm 7: 4361 AUTO (ON) / MAN (OFF) status: 4193 REM (ON) / LCL (OFF) status: 4194	OFF		
$\begin{aligned} & \text { OR2.5 } \\ & (0 R 2.5) \end{aligned}$	OUT2 relay function	Output tracking (ON) switching signal: 4201	OFF		

- DO Setting Parameter (E1/E2/E3/E4-terminal Area)

- System Setting Parameter

$\begin{gathered} \text { Parameter } \\ \text { symbol } \end{gathered}$	Name of Parameter	Setting Range	Intitial	$\begin{gathered} \text { User } \\ \text { settino } \end{gathered}$	$\underbrace{\text { a }}_{\substack{\text { Dispay } \\ \text { level }}}$
RMd	Restart mod		cont		sto
	Restart timer	Set time between power on and the instant whe 0 to 10 s	0		
$\operatorname{EPPO}_{(\mathrm{PPO})}$	Input eror presest output	Set preset output value when input burnout or ADC error occur input burnout occurs in MAN 0: Preset output 2: 100% output	0		sto
FRED	Power frequency	AUTO, $60: 60 \mathrm{~Hz}, 50: 50 \mathrm{~Hz}$	auto		
O5M	Quick setting mode	OFF: Disable ON: Enable	on		
$\underset{\text { (LANG) }}{\text { LAME }}$	Guide display language	ENG: Engish FRA: GRER ench German SPA: Spanish			EASY
PR55	Password setting	0 (No password) to 65535	0		

- Error and Version Confirmation Parameter (for display only) | Menu symbol: ${ }^{\prime \prime} E R$ (VER) |
| :--- |
| Parameter |

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \end{aligned}$	Name of Parameter	Status record	$\left.\right\|_{\text {Display }} ^{\substack{\text { level }}}$
$\begin{gathered} \text { PRER } \\ (\text { PA. } \mathrm{R}) \end{gathered}$	Parameere eror staus		
$\begin{gathered} \text { OPER } \\ \text { (OPER) } \end{gathered}$	Opion eroro staus		
Ad IE	AD converete erero status 1		
RddeE	AD convereter eroro staus 2		
	Loop-1 1 V input error staus		
(evere	Loop-2 PV input error staus		
$\underset{\text { LAER }}{\text { LAER }}$	Laddereroro staus		
$\begin{aligned} & \text { MCL } \\ & \text { (Cu) } \end{aligned}$	mCU version		
$\mathrm{d} \mathrm{~d} \mathrm{CL}$	DCU version		
E[DU	ECU-1 version (E1-Eerninal area)		
${ }_{\text {E ECU2 }}$	ECU-2 version (E2-ereminal area)		
E[ECU3]	ECU-3 version (E3-erminal area)		
${ }_{\text {E ECU4 }}$	ECU-4 version (E44-erminal area)		
PARA	Parameler version		
$H^{\prime} E R$	Product ersion		
SER ${ }_{\text {(SER1) }}$	Serial number 1		
${ }_{\text {S }}^{\text {SERER2) }}$	Serial number 2		
MAE 1	MAC address 1 (E3-terminal area)		
$\underset{(\text { MACC } 2)}{ }$	MAC address 2 (E3-ereminala rea)		
MAC 3	MAC address 3 (E3-terminal rea)		

The parameters for Loop-2 are unavailable in Single-loop control.

- Parameter Display Level Parameter

$\begin{aligned} & \text { Parameter } \\ & \text { symbol } \end{aligned}$	of Parameter	ng Range	$\begin{aligned} & \text { Initial } \\ & \text { value } \end{aligned}$	Usering	$\left.\right\|_{\text {Display }} ^{\text {level }}$
LENL	Parameeter display level	ASY: Easy setting mode STD: Standard setting mod	STD		

For Professional setting mode, see User's Manual.

[^0]: When connecting two or more crimp-on terminal lugs to the tithtening the screw.

 - Note that the wiring of two or more crimp-on terminal lugs to the
 single high-voltage terminal of the power supply and relay, etc. single high-voltage terminal of the power supply and relay, etc.
 does not comply with the safety standard.

