

LeCroy Corporation X-Stream II page | 1 of 6

Hardware

Performance

Operating

System

Processing

Method

Elements of Processing Speed

X-Stream II TECHNICAL BRIEF

Peter J. Pupalaikis

Principal Technologist

September 2, 2010

Summary

This paper explains how X-

Stream II techonlogy improves

the speed and responsiveness

of LeCroy oscilloscopes.

The digital oscilloscope of today is required to process very long

waveforms in a very complex manner in order to provide measurements

that provide insight into system and circuit behavior. The capability of the

oscilloscope to provide insight is inextricably linked with the concept of

speed and responsiveness; this because the design engineer cannot wait

too long for the answers and because he must be able to drive the

instrument comfortably and confidently.

The elements of processing speed can be broken into three areas:

1. The processing and waveform readout hardware characteristics.

2. The operating system

3. The method of processing data embodied by proprietary software.

The purpose of this paper is to explain how LeCroy ties the design of the

oscilloscope in terms of hardware performance and operating system

together with proprietary processing methods to optimize speed of

complex, long waveform processing.

LeCroy Corporation X-Stream II page | 2 of 6

The processing hardware is dominated by the

processor, including the number of bits in the

processor, it’s instruction set and instruction set

extensions, the number of processor cores the clock

speed, and the cache memory. Of further

importance is the front-side bus speed, the amount

and the speed of main memory. Of particular

importance to the oscilloscope is the readout speed;

the speed that data is transferred from acquisition

memory into main memory.

The operating system is important because it

provides support for multiple cores and for multi-

threading. Most importantly of late is to support the

need for larger amounts of addressable memory.

Lately, when we talk about 64 bit processors and 64

bit operating systems, we are really talking about 64

bit address buses that can address huge amounts of

main memory. Finally, while not completely

operating system related but more related to the

processor are tools for handling multi-core and

processor instruction set extensions. These include

open openMP and performance primitives for signal

processing and mathematical operations.

The LeCroy WavePro 7Zi and WaveMaster 8Zi-A

line of oscilloscopes utilizes the most powerful

hardware and operating system components

available. We use an Intel® Core™ 2 Quad (four

cores) each operating at 3 GHz. It is a 64 bit

processor with 12Mb of level 2 cache and a front-

side bus operating at 1.33 GHz. It has a built in

floating point unit and supports Streaming SIMD

(single-instruction / multiple data) 4 or SSE4

instruction set extensions. It contains up to 8 Gb of

DDR II main memory. The transfer from acquisition

memory to main memory utilizes direct memory

access (DMA) and employs four lanes of PCIe gen I

serial links. These links move data into main

memory at a rate of up to 800 Mpoints per second

without processor intervention. Because LeCroy

uses the Microsoft® Vista™ 64 bit operating system,

the scope application can address all of the

available memory and more (32 bit operating

systems address up to 4 Gb max with typically only

1 Gb available to an application).

Regarding processing methods, LeCroy employs a

proprietary method that makes optimal use of cache

memory. In order to properly understand this use of

cache, it is useful to understand how the

microprocessor and microprocessor based

architectures have evolved over time.

About forty years ago when the microprocessor was

born, the simple embedded computer had one

memory bus. Generally, it had a program in non-

volatile storage, usually an EPROM, and some

storage area in volatile SRAM. The memory bus

operated at a very predictable speed dictated by the

system clock. In those days, if you wanted to

determine the performance of your system, you

could simply count up the number of instructions and

the number of clock cycles per instruction for a given

task and multiply the total cycles by the clock period.

The advantage was that the design engineer could

totally predict the performance. The disadvantage

was that there was really only one lever he could

apply to speed things up – reduce the number of

instructions.

Over time, Moore’s law led to dramatic changes in

CPU power. Moore’s law predicts a doubling of

transistor density every 18 months, which leads to a

doubling of processing speed every three years.

Both the exponential increases in speed and density

have yielded processors that go faster and handle

more complex instructions. The handling of complex

instructions has led to onboard barrel shifters,

floating point units, and to powerful added

instructions for multimedia and digital signal

processing. A quad core processor operating at 3

GHz, as used in the LeCroy WavePro 7Zi and

WaveMaster 8Zi oscilloscopes using instruction set

enhancements that work on four packed data

elements simultaneously in a single instruction per

core could potentially operate at 40 billion floating

point operations per second.

The Moore’s law progression has led to unbelievable

increases in CPU performance, but this performance

has not always been translatable to the periphery of

the chip as indicated by the front-side bus speed or

the speed of access to main memory.

LeCroy Corporation X-Stream II page | 3 of 6

M
H

z

CACHE

MAIN MEMORY

CPU

DISK STORAGE MEDIUM

small

1 Mb

1 Gb

1 Tb

M
H

z
G

H
z

s
lo

w

S
P
E
E
D

S
IZ

E

LARGE MEMORY low speed

small memory HIGH SPEED

The solution to this speed problem is the cache

memory.

Cache memory architectures involve a cache

controller with a relatively small amount of memory

internal to the processor. It operates to broker

transactions between the thirsty processing

hardware and the relatively slow main memory. On

every access to memory that the processor tries to

make, the cache controller checks to see if the

desired data exists in the cache. If so, the data is

sped from the cache memory to the processor. If

not, a so-called “cache-miss” occurs and we say that

the processor stalls. The cache controller holds up

processing and goes to main memory to get the

missing data. Usually, to keep things moving briskly,

the cache accesses more memory than is requested

in an operation

called a “cache-

line fill”. In this

operation, multiple

data elements

around the

requested element

are accessed in a

burst transfer

mode. In this way

the cache

controller keeps

the most recently

accessed data in

its cache memory.

Most modern

cache architectures implement a “write-back” cache.

This architecture suspends writes until they are

required. During a cache-miss, the cache controller

must flush out the oldest data elements to make

room for the new data and it is during this time that

data writes occur as well.

This paper does not have the room to explain all of

the nuances of cache architecture designs, but it is

sufficient to point out that the performance of the

system can be highly unpredictable. The

unpredictability is based on how data is processed.

From the previous explanation, one can see that a

cache architecture causes the performance to be

limited by the internal CPU power and speed only

when nearby data elements are operated on very

frequently. The performance will be limited by the

transfer speed from main memory to the CPU cache

when the data elements operated on are frequently

different or are located far away from each other.

What governs the determination of frequency or

distance of data elements can be made by simply

determining whether the data being operated on fits

in cache memory. Of course for a digital

oscilloscope operating on long waveforms the data

elements can never fit entirely in the limited cache,

but the goal is to limit the number of transfers

between main memory and cache memory as much

as possible in order to optimize speed of processing.

Cache memory is a marvelous thing and has the

possibility of dramatic speeds of processing. The

problem is that

optimum use of cache

is directly in conflict

with the ease of

programming long

memory processing

applications. I will try

to illustrate the

situation here with an

example:

Consider processing

that is performed on

an oscilloscope

waveform. Let’s

consider the

processing as a series

of three steps. The actual type of processing is not

important to discuss so let’s say that first we will

apply processing function A to a waveform, and then

function B followed by function C. For the purposes

of this discussion, let’s say that these functions are

unary and apply to each element in the waveform.

The traditional and easiest way to perform this

processing is create an intermediate data buffer and

then for each point in the waveform, apply

processing function A to each point read from the

input waveform and store the result in the buffer.

Then, for each point in the buffer, processing

function B is applied and stored back in the buffer.

Finally, for each point in the buffer, processing

function C is applied and stored back in the buffer.

LeCroy Corporation X-Stream II page | 4 of 6

Traditional Processing Method

Operation that results in a “cache-miss”

and/or corresponding main memory

access
=

=
Operation that results in a “cache-hit” and

therefore no main memory access

Input Waveform

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

Final Result

Streaming Processing Method

Result of Applying function C – Final Result

Input Waveform

A A A A A

B B B B B

C C C C C

Result of Applying function A

Result of Applying function B

Recalling the operation of cache memory, one can

see that while the software to perform this

processing is relatively

straightforward, it is not optimal

from a cache memory

standpoint, especially when

applied to long waveforms. To

understand this, consider the

fact that during the processing

of function A, each element will

need to be read from main

memory into cache. This is

unavoidable. Assuming a

modern cache architecture, If

the waveform is small enough

to fit into the cache then it will

stay there even if the memory

is written into the buffer after

function A is applied. This

means that even though the

software instructions store the

result into the buffer, the cache

controller suspends this write until it

needs to push something out of cache. Again, only

if the waveform can fit into

cache, when function B and C

is applied, every data point

exists in the cache and the

reading, processing and storing

of the waveform back in the

buffer generates no bus

activity. Since the bus is much

slower than the CPU, the CPU

operates at its maximum

speed. This description shows

an optimum situation. In this

small waveform example, the

data is read once from main

memory into cache and

eventually written once from cache to

main memory even though many data reads and

writes were coded in the

software.

Now, let’s consider a long

memory case. Like the short

memory case, as function A is

applied data is moved from main memory to cache

on the first access. When function A is applied and

stored in the buffer, no bus activity is generated yet.

But, as processing continues

and data is accessed from the

input waveform, eventually the

cache runs out of space and

must make room for new data.

At that point in time, the earlier

buffer writes must be resolved

and the data is written to main

memory (i.e. is pushed out of

cache) to make room for the

new data. On each subsequent

read of data, old cached data

must be pushed out to make

room for the new data request.

This means that virtually every

data access to perform function

A results in a read and write

operation between main memory

and cache – only because the

waveform did not fit in the cache.

Now consider function B. At the

beginning of processing function B, the cache

contains the end portion of the

result of function A. This means

that the first elements of the data

buffer are not in the cache.

Therefore, each data element

processed for function B also

causes a read and write

operation between main memory

and cache.

Contrasting the short waveform

and long memory behavior, the

short waveform (assumed to fit

in cache) needs one write and

one read access for each data

element processed, regardless of the

number of operations applied to the data element.

The long waveform (assumed

not to fit in cache) needs one

write and one read access per

processing function applied. It is

important to consider the impact

of this. Not only are there more

transfers between cache and main memory, but in

LeCroy Corporation X-Stream II page | 5 of 6

Simple Streaming Processing

A B C

D

Result 1

Result 2

Waveform

Result 1 = Waveform+A+B+C

Result 2 = Waveform+A+B+D

Streaming Processing with Dynamic Buffer Placement

BUFFERA B C

D

Result 1

Result 2

Waveform

Buffer = Waveform+A+B

Result 1 = Buffer+C

Result 2 = Buffer+D

most cases, the number of transfers will be the total

bottleneck for system performance. In long

waveform cases, the bus transfer speed will

completely determine the performance. In short

waveform cases,

the processor

speed and

processor core

utilization will

determine the

performance. The

latter is desirable

because it is much faster.

In oscilloscope usage, processing needs are

becoming more and more demanding and the

lengths of waveforms are becoming longer and

longer. This means that for serious processing

cases, the oscilloscope must perform complex,

cascaded operations on very long waveforms. So

how do you get short waveform type of performance

where the processor capability dominates on long

waveforms where the bus speed bottleneck tends to

dominate? The answer is part of the LeCroy X-

Stream architecture.

X-Stream

processing

behavior

can be

summarized

most

succinctly as

follows: For long waveforms, the waveform is

broken into many smaller waveforms. These smaller

waveforms are processed in a manner that

optimizes the cache utilization. Finally, the smaller

waveform results are reassembled in the end into

the final long waveform result.

This all sounds very simple, but in practice the

architecture necessary to achieve this is very

complicated. LeCroy has several patents on this

technology. It is the reason that LeCroy

oscilloscopes have traditionally outperformed the

competing instruments in processing speed by huge

factors.

LeCroy introduced the X-Stream architecture in

2002 with the WaveMaster. At that introduction,

LeCroy produced the fastest processing scope

around. That’s what X-Stream was all about – fast

processing. Since

that time, many

architectural

improvements were

envisioned which

culminated in X-

Stream II introduced

with the WavePro 7 Zi

Series. While X-Stream I was all about fast

processing, X-Stream II is all about responsiveness.

The key elements of X-Stream II include:

1. Dynamic buffer placement to improve

situations where the streaming architecture

falters.

2. Preview modes that allow quick, preliminary

views of waveform results during zooming

and scope adjustment.

3. Processing abortability that enables

stopping during scope adjustment.

Dynamic

buffer

placement

involves the

placing of

buffers in the

processing

stream at

strategic locations to improve processing

throughput. To understand this effect, remember

that the conventional processing model involves

buffers at every step of the process. It can be

viewed as a buffer placed in between every single

processing element. In the streaming model that

LeCroy employs, small buffers that fit in cache are

employed everywhere, but a buffer containing the

full results of processing would only be placed at the

end of the processing stream, if at all. In X-Stream

II, an optimization is performed in situations where

multiple processing streams pass through common

processing elements, as in the figures. In many

cases, processing data multiple times in the cache-

friendly way still optimizes the speed of processing,

LeCroy Corporation X-Stream II page | 6 of 6

Preview vs. Final Calculation Result

but when the processing is intensive and complex,

this is not the case.

In these situations,

the LeCroy X-Stream

II architecture places

buffers into the

processing stream

dynamically to avoid

multiple calculations.

In this manner, X-

Stream II is an

intelligent blend between

traditional and streaming methodologies but in all

cases optimizes the throughput.

The X-Stream II optimizations for responsiveness

are tied to the capability to both preview results of

processing and to abort processing. The way these

two work together is that whenever a change is

made to a scope setting, the software

simultaneously begins calculating new results and

also a preview result based on rescaling of the

picture on the screen. If the preview finishes before

the processing, the user sees the preview followed

by the updated result of the processing when it

finally finishes. If the

processing finishes

first, the user sees the

result of the processing

only. If, during

calculation of the

processing, the user

modifies a setting, the

processing is aborted

and restarted using the

new changes and the user only

sees the preview result. The result of this behavior

is important when the user is trying to set up the

oscilloscope or is making rapid changes to the

settings based on measurement observations. It is

really helpful when the processing is complex and

time consuming and the waveforms are long. Using

traditional processing methods available in other

oscilloscopes, the user must wait for the processing

to complete before seeing the display result and

making another setting change. In some cases, the

processing can take more than ten seconds and if

the user wants to make multiple settings changes,

he must wait for the results of

each long processing interval

before making another setting

change. This type of operation

can be very frustrating.

In conclusion, fast oscilloscope

processing is a combination of the

right hardware and operating

system and congruent processing

methods. X-Stream II is a

processing method technology

that extends the cache-friendly

processing methods LeCroy

introduced in X-Stream I and adds

dynamic buffer placement for

further speed optimization and

adds result previews and

processing abort capability for

superior oscilloscope

responsiveness.

abort

Zoom

preview

Start

Calculating

5 Mpt FFT

Update

display

Zoom

preview
Update

display

1
Change to 5

Mpts

2
Change to 2

Mpts

abort

Zoom

preview
Update

display

3
Change to 1

Mpts

Start

Calculating

2 Mpt FFT

Calculate 1

Mpt FFT

Update

display

Zoom

preview

4
Change to

500 Kpts

Calculate

500 Kpt FFT

Update

display
abort

The user zooms from 10 to 5 Mpts

The scope begins calculating a zoom preview of the result

of zooming and and also begins calculating the FFT

The user sees the result of the zoom preview – FFT still

calculating

The user zooms again – the FFT calculation is aborted

The scope again begins calculating a zoom preview of the

result of zooming and and also begins calculating the FFT

The user again sees the result of the zoom preview – FFT

still calculating

The user zooms again – the FFT calculation is aborted

The scope again begins calculating a zoom preview of the

result of zooming and and also begins calculating the FFT

The user sees the result of the zoom preview

The FFT completes and he sees the result

The user zooms again

The scope again begins calculating a zoom preview of the

result of zooming and and also begins calculating the FFT

Finally, since the FFT is smaller, it competes before the

preview. The preview is aborted and the user sees the full

result of the FFT calculation

User

Interface

Thread

Preview

Thread

Processing

Thread
The user is viewing the result of a 10 Mpt FFT – He wants

to zoom in to 500 Kpts. He will turn the zoom control knob

four clicks to see what he wants

