PicoScope® 6000E Series

(ps6000a API)

Programmer's Guide

ps6000apg-1

PicoScope 6000 Series (A API) Programmer's Guide Contents

Contents

T INETOAUGCTION e e e e et e e e et e e e e e e e e te e e e e e e e eeeaaees 5

TWERICOIME ..ttt ettt ettt ettt et e et ettt et et ettt s ettt et ettt ettt s st ses s essans 5
2 Software license conditions

B TTAAEIMAIKS ..ottt ettt se e s s e s b e s a s b s b s b s b s s b s s s b sns s se s ssebensesensessnsessen
2 Programming OVEIVIEWcciiiuieiieeientieieetesieeteeitestte et setesttestesatesaeebesasesseenseensesseensesnsesnean 7
T SYSTEM FEQUITEIMENTS ...ttt e a e s bbbt b a bbb s s b b s e b s s et b s ansebesnasaetessnas 7
2 DFIVET ettt s bR e R Attt bbbttt 7
3 Voltage ranges
F Y R O N [Ty =1 e =1 - T 10
S TTIGQEIING evvieieeieieieceiet ettt b e es sttt a s s b s s s b e s s s e s e b s s e se bbb s e s e e b e b ssste s s sssesebesesssesessnansnsesanas 11
6 SAMPIING MOAES ..ottt ettt bbbt b s se b ae b s b s b s e b st bs b ssebense b nsesnes 12
T BIOCK MOAE ...ttt b st ss s b s s s s sssenanans 12
2 RAPIA BIOCK MOAE ...ttt st enasssnannnans 15
3 Streaming mode .. 20
A REtriEVING STOTEA AATAovcveivieeireire ettt bt bt b st b bbb sse b s s bas e sansenansens 22
7 TIMEDASES ..ottt sttt s et s et b st e s s b A e s s e s s e san s e s s s eb e sae s eaesnses s senrnan 22
8 Combining SEVEral 0SCIlIOSCOPESoeceeeeeeeeeeee ettt ettt ran e 23
9 Handling intelligent probe iNTEFACTIONSc.coueviveiriicieecce ettt bbb nenaa 24
S APITUNCLIONS ..ottt ettt et s e ae s e s e s te b eseeteesensesens 25
1 ps6000aChannelCombinationsStateless - get possible channel combinations
2 ps6000aCheckForUpdate - is firmware update available? ... 27
3 ps6000aCloseUnit - CIOSE @ SCOPE UEVICEoeveeceeeeieeeceeeeete ettt sttt s s nenans 28
4 ps6000aEnumerateUnits - get a list of UNOPENEA UNILSc.cvuieieeierieie s 29
5 ps6000aFlashLed - flash the front-pan@l LEDccocoieiueieeirinineeeee sttt ssssassases 30
6 ps6000aGetAdcLimits - get min and Max SamMPle VAIUESc.couoverveeerveeeeeeee e 31
7 ps6000aGetAnalogueOffsetLimits - get analog offset information .32
8 ps6000aGetDeviceResolution — retrieve the device resolution ... 33
9 ps6000aGetMaximumAvailableMemory - depending on hardware resolutionccoceoveeveeenicnninnnens 34
10 ps6000aGetMinimumTimebaseStateless - find fastest available timebase ... 35
11 ps6000aGetNoOfCaptures - query how many captures Madeccoccueeeverveirreeererereeeeeeesseses e 36
12 ps6000aGetNoOfProcessedCaptures - query how many captures processedccoeeeeueieeeeereeeeennns. 37
13 ps6000aGetStreamingLatestValues - read streaming data ... 38
1 PICO_STREAMING_DATAL_INFO
2 PICO_STREAMING_DATA_TRIGGER_INFO ..ottt sesess s ssssaees 40
14 ps6000aGetTimebase - get available timebases ... 41
15 ps6000aGetTriggerinfo - get trigger timing informationocooeuoceeeeeeeee e 42
T PICO_TRIGGERL_INFO ...ttt sttt st s sss s s sttt sss s sss bbb st st snsensesssnsnsans 43
16 ps6000aGetTriggerTimeOffset - get timing COMECTIONScooveiiveieeiicieeecee e 44
17 ps6000aGetUnitInfo - get information @about AEVICE ..ot 45

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 2

PicoScope 6000 Series (A API) Programmer's Guide Contents

18 ps6000aGetValues - get block MOde data ..ottt 46
T DoOWNSAMPING MOUES ..ottt bbbt sas b e s naes s aenanans 47
19 ps6000aGetValuesAsync - read data Without BIOCKINGccoeuriiiniineneineinreeeeee e 48
20 ps6000aGetValuesBulk - read multiple segments
21 ps6000aGetValuesBulkAsync - read multiple segments without blockingcccceceeieeieicecieeiee, 50
22 ps6000aGetValuesOverlapped - get rapid block data ..o 51
1 Using GetValueSOVETAPPEA()cvuiveeeeeeeeeeeeeeeeee ettt sanen 52
23 ps6000aGetValuesTriggerTimeOffsetBulk - get trigger time offsets for multiple segments 53
24 ps6000alsReady - get status Of DIOCK CAPIUIEcooiviiieeiee et 54
25 ps6000aMemorySegments - set number of memory segments .. 55
26 ps6000aMemorySegmentsBySamples - set size of memory Segmentsccceeeeveeerrrinisenceeeeenenenns 56
27 ps6000aNearestSamplelntervalStateless - get nearest sampling intervalc.cooovoreececeicence. 57
28 ps6000aNoOfStreamingValues - get number of captured Samplesccooeieieeceieeceeeeeeeeeeees 58
29 ps6000a0penUnit - OPEN @ SCOPE UEVICEcoeuieevieeirieisieisieieieie st es s tesss s essssesssbesssssnsessssesssssssnans 59
30 ps6000a0penUnitAsync - open unit Without bIOCKINGcoveiivriiiriere e 60
31 ps6000a0penUnitProgress - get status of opening @ UNit ..o 61
32 ps6000aPingUnit - check if device is still connected .62
33 ps6000aQueryMaxSegmentsBySamples - get number of segments ... 63
34 ps6000aQueryOutputEdgeDetect — check if output edge detection is enabledcccccooviviveeevcinnee. 64
35 ps6000aRunBlock - start bloCk MOAE CAPLUEooeovieeeieeceeceeee ettt 65
36 ps6000aRunStreaming - start streaming MOde CAPIUTE ..o 67
37 ps6000aSetChannelOff - disable 0ne ChanNEl ... 69
38 ps6000aSetChannelOn - enable and set options for one channel ..., 70
39 ps6000aSetDataBuffer - provide location of data buffer .72
40 ps6000aSetDataBuffers - provide locations of both data buffers ..o, 74
41 ps6000aSetDeviceResolution — set the hardware reSoIUtioNcccceiceieiieeesee e 75
1 PICO_DEVICE_RESOLUTION €nuUMErated tYPecooeerreremeereeeeeeereeseeeseeseesseeseeseesseesesssesssesessessssneesees 75
42 ps6000aSetDigitalPortOff — switch of f digital INPULSc..cviveeieeeceee e 76
43 ps6000aSetDigitalPortOn — set up and enable digital inputs
44 ps6000aSetNoOfCaptures - modify rapid bIoCK MOE ...
45 ps6000aSetOutputEdgeDetect — change triggering behavior
46 ps6000aSetPulseWidthQualifierConditions - specify how to combine channels ..., 80
47 ps6000aSetPulseWidthQualifierDirections - specify threshold directionscccccoeeeereieirccireneiennnn 81
48 ps6000aSetPulseWidthQualifierProperties - specify threshold 10giCc.covoerinriorireireirreeereseeeenee 82
49 ps6000aSetSimpleTrigger - SEt UP trIGQEINGovcuereeeeeeeeeeeeeete ettt nnans 83

50 ps6000aSetTriggerChannelConditions - set triggering logic
1 PICO_CONDITION structure

51 ps6000aSetTriggerChannelDirections - set trigger dir€CtioNSccocvevercereereneneneiene e 86
T PICO_DIRECTION STIUCTUNEcometieete ettt sens 87
52 ps6000aSetTriggerChannelProperties - Set UP tHGQEIiNGccoeviveeeveieeieieeeeee e aes 88
1T TRIGGER_CHANNEL_PROPERTIES STrUCTUTEou ittt sesseaensenans 89
53 ps6000aSetTriggerDelay - set post-trigger delay ..o seaseaeeae 90
54 ps6000aSetTriggerDigitalPortProperties - set port dir€Ctionsccoveveeeevereeeeceeeeeeeeee e 91

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 3

PicoScope 6000 Series (A API) Programmer's Guide Contents

1T PICO_DIGITAL_CHANNEL_DIRECTIONS STIUCTUIEcoruurirrrinirirnissesseseeseessesssssssssssssssssssssssssssssnens 92
55 ps6000aSigGenApply - SEt OUIPUL PATAMETELScccuiuevieeiieeierieieeiee ettt s e ss st sessenenbens 93
56 ps6000aSigGenClockManual - control signal generator ClOCK ... 94
57 ps6000aSigGenFilter - switch output filter on or of f
58 ps6000aSigGenFrequency - et OUtPUL fFITEQUENCYc.cueviveieieeeeeieeeeeee ettt nenaens
59 ps6000aSigGenFrequencyLimits - get limits in SWEEP MOAEcoovievieeiiieiiieeeeee e 97
60 ps6000aSigGenFrequencySweep - set signal generator to frequency sweep modecccceeveeveenenen. 98
61 ps6000aSigGenLimits - get signal generator parametersooooeeeeeceeeceeeceeeeeeee e 99
62 ps6000aSigGenPause - stop the Signal ENETIAtOrc.cevievieeiiieieeee et
63 ps6000aSigGenPhase - set signal generator phase
64 ps6000aSigGenPhaseSweep - set signal generator to sweep in phasecoeieveeeenicenecerecnnnen, 102
65 ps6000aSigGenRange - set signal generator output VOItAQESccueveueeecveeceeeceeeeeceecee e 103
66 ps6000aSigGenRestart - CONtINUE @fter PAUSEceveivevieeiieeeteee ettt 104
67 ps6000aSigGenSoftwareTriggerControl - set software triggeringccccceeeeeeeeeveereeeeeeces e 105
68 ps6000aSigGenTrigger - choose the trigger @VENT ... 106
69 ps6000aSigGenWaveform - choose signal generator waveform ..., 107

70 ps6000aSigGenWaveformDutyCycle - set duty cycle

71 ps6000aStartFirmwareUpdate - update the device firmware ... 109
72 ps6000aStop - STOP SAMPIINGceveieeiieiee ettt sttt et aas s s s s s s ssssessnses 110
73 ps6000aTriggerWithinPreTriggerSamples - switch feature on or offcc.cooeeveiiceieeeeeee 111
4 CAIIDACKS ...ttt a ettt ettt neeseneas
1 ps6000aBlockReady - indicate when block-mode data ready
2 ps6000aDataReady - indicate when post-collection data readyoocveeeeerrnenenenenerercneeeeeeeeene 113
3 PicoUpdateFirmwareProgress - get status of firmware update ..o 114
4 PicoProbelnteractions() — callback for PicoConnect probe eVentsccccoeveiveeveereeveeresisesesiessonns 115
1 PICO_USER_PROBE_INTERACTIONS STIUCTUIE ...ttt et esseassaeens 116
5 PICOAWGOVEITANGEINTEIACTIONScocuiieiciricireciriicieietcie ettt sese s sttt st eae 118
S REFEIENCE ...ttt ettt ettt a et bt s s e aeeaenes 119
T NUMENC AAA TYPES oottt sttt as sttt st et s et e st esassenassenassnes 119
2 Enumerated types and CONSTANTS ..ottt b e e s s s nen s 119
3 DIIVEE STALUS COUESoerieiieieireet ittt ettt 120
A GIOSSAIY oottt sttt bbb stk A ARttt 120
B SNIPPELS ..ottt ettt et et r e et e et e ae e aeeaa e aeerbe e e e eteebeesteereeseensesraens 0
INAEX ettt ettt ettt b et e a et et s et et et beebe e st be s e st eneeaenes 121

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 4

PicoScope 6000 Series (A API) Programmer's Guide

Introduction

T Introduction

1.1 Welcome

The PicoScope 6000E Series of oscilloscopes from Pico Technology
is a range of compact high-performance units designed to replace
traditional benchtop oscilloscopes and digitizers.

This manual explains how to use the ps6000a API (application
programming interface) for the PicoScope 6000E Series scopes. For
more information on the hardware, see the PicoScope 6000E Series
Data Sheet.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved.

PicoScope 6000 Series (A API) Programmer's Guide Introduction

1.2 Software license conditions

The material contained in this release is licensed, not sold. Pico Technology Limited grants a license to the
person who installs this software, subject to the conditions listed below.

Access. The licensee agrees to allow access to this software only to persons who have been informed of these
conditions and agree to abide by them.

Usage. The software in this release is for use only with Pico Technology products or with data collected using
Pico Technology products.

Copyright. Pico Technology Ltd. claims the copyright of, and retains the rights to, all material (software,
documents, etc.) contained in this software development kit (SDK) except the example programs. You may copy
and distribute the SDK without restriction, as long as you do not remove any Pico Technology copyright
statements. The example programs in the SDK may be modified, copied and distributed for the purpose of
developing programs to collect data using Pico products.

Liability. Pico Technology and its agents shall not be liable for any loss, damage or injury, howsoever caused,
related to the use of Pico Technology equipment or software, unless excluded by statute.

Fitness for purpose. As no two applications are the same, Pico Technology cannot guarantee that its equipment
or software is suitable for a given application. It is your responsibility, therefore, to ensure that the product is
suitable for your application.

Mission-critical applications. This software is intended for use on a computer that may be running other software
products. For this reason, one of the conditions of the license is that it excludes use in mission-critical
applications, for example life support systems.

Viruses. This software was continuously monitored for viruses during production, but you are responsible for
virus-checking the software once it is installed.

Support. If you are dissatisfied with the performance of this software, please contact our technical support staff,
who will try to fix the problem within a reasonable time. If you are still dissatisfied, please return the product and
software to your supplier within 14 days of purchase for a full refund.

Upgrades. We provide upgrades, free of charge, from our web site at www.picotech.com. We reserve the right to
charge for updates or replacements sent out on physical media.

1.3 Trademarks

Pico Technology and PicoScope are trademarks of Pico Technology Limited, registered in the United Kingdom
and other countries.

PicoScope and Pico Technology are registered in the U.S. Patent and Trademark Office.
Windows, Excel and Visual Basic for Applications are registered trademarks or trademarks of Microsoft

Corporation in the USA and other countries. LabVIEW is a registered trademark of National Instruments
Corporation. MATLAB is a registered trademark of The MathWorks, Inc.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 6

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

2 Programming overview

The ps6000a.d11 dynamic link library in the 1ib subdirectory of your Pico Technology SDK installation
directory allows you to program a PicoScope 6000E Series oscilloscope using standard C function calls.

Atypical program for capturing data consists of the following steps:
e Open the scope unit.

e Set up the input channels with the required voltage ranges and coupling type.

e Set up triggering.

e Start capturing data. (See Sampling modes, where programming is discussed in more detail.)
e Wait until the scope unit is ready.

e Stop capturing data.

e Copy data to a buffer.

Close the scope unit.

Numerous sample programs are available on the picotech channel of GitHub. These demonstrate how to use the
functions of the driver software in each of the modes available.

2.1 System requirements

Using with PicoScope for Windows

To ensure that your PicoScope 6000E Series PC Oscilloscope operates correctly, you must have a computer with
at least the minimum system requirements to run one of the supported operating systems, as shown in the
following table. The performance of the oscilloscope will be better with a more powerful PC, and will benefit from
a multi-core processor.

Item Specification

Operating system All desktop versions of Windows with mainstream support.
32-bit and 64-bit versions.

Processor, Memory, Free disk space |As required by the operating system
Ports USB 2.0 or 3.0 port

Using with Linux
Beta drivers are available for various Linux distributions. Instructions are available on our website.

Using with macOS
A software development kit (SDK) for macOS can be downloaded from our website.

Using with custom applications
32-bit and 64-bit drivers are available for Windows. The 32-bit drivers will also run in 32-bit mode on 64-bit
operating systems.

UsB

The ps6000a driver offers three different methods of recording data, all of which support USB 1.1, USB 2.0, and
USB 3.0. Your oscilloscope will operate very slowly on a USB 1.1 port; USB 2.0 or faster is strongly recommended
for best performance.

2.2 Driver

Your application will communicate with a PicoScope 6000 library called ps66006a.d11, which is supplied in 32-
bit and 64-bit versions. The driver exports the PicoScope 6000 function definitions in standard C format, but this
does not limit you to programming in C. You can use the API with any programming language that supports
standard C calls.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 7

https://github.com/picotech/
https://www.picotech.com/downloads/linux
https://www.picotech.com/downloads

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

The API depends on another library, picoipp.d11, whichis supplied in 32-bit and 64-bit versions, and on a low-

level driver, WinUsb . sys. These drivers are installed by the SDK and configured when you plug the oscilloscope
into each USB port for the first time. Your application does not call these drivers directly.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 8

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

2.3 Voltage ranges

You can set a device input channel to any voltage range from +10 mV to +20 V with the
ps600@aSetChannelOn() function. Each sample is scaled to 16 bits. The minimum and maximum values
returned to your application depend on the sampling resolution in use and can be queried by

ps6000aGetAdcLimits() . This function replies with the following values:

Resolution 8 bits 10 bits 12 bits
Voltage Value returned
maximum +32 512 (0x7F00) +32 704 (0x7FCO0) +32 736 (Ox7FEQ)
zero 0 0 0
minimum -32 512 (0x8100) —32 704 (0x8040) -32 736 (0x8020)

Example at 8-bit resolution

1. Call ps6@BBaSetChannelOn() +1v-k . JF00 +32 512

with range setto PICO_1V.

3F80 +16 256

2. Apply a sine wave input of +500 mV — S
500 mV amplitude to the
oscilloscope.
ov 0000 0

3. Capture some data using the
desired sampling mode.
-500 mV —- C080 -16 256

4. The data will be encoded as
shown opposite.

-1V —- —_—— 8100 -32 512

Digital inputs (with optional MSO pods)
See ps600BaSetDigitalPort().

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 9

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

2.4 MSO digital data

Applicability
Any device with MSO pods attached. MSO pods are automatically recognized by the driver when connected.

A PicoScope MSO has two 8-bit digital ports—Digital 1 and Digital 2—making a total of 16 digital channels.

Use the ps60BBaSetDataBuffer() and ps60800aSetDataBuffers() functions to set up buffers into

which the driver will write data from each port individually. For compatibility with the analog channels, each buffer
is an array of 16-bit words. The 8-bit port data occupies the lower 8 bits of the word. The upper 8 bits of the word
are undefined.

Digital 2 buffer Digital 1 buffer
Sample, [XXXXXXXX,2D7...2D0], [XXXXXXXX,1D7...1D0],

Sample [XXXXXXXX,2D7..2D0] _, | [XXXXXXXX,1D7..1D0] _,

n-1

Retrieving stored digital data
The following C code snippet shows how to combine data from the two 8-bit ports into a single 16-bit word, and
then how to extract individual bits from the 16-bit word.

// Mask Digital 2 values to get lower 8 bits
portValue = 0x00ff & appDigiBuffers[2][i];

// Shift by 8 bits to place in upper 8 bits of 16-bit word
portValue <<= 8;

// Mask Digital 1 values to get lower 8 bits,
// then OR with shifted Digital 2 bits to get 16-bit word
portValue |= @x00ff & appDigiBuffers[@][i];

for (bit = 0; bit < 16; bit++)

{
// Shift value 32768 (binary 1000 0000 0000 0060).
// AND with value to get 1 or @ for channel.
// Order will be 2D7 to 2DO9, then 1D7 to 1D@.

bitValue = (©x8000 >> bit) & portValue? 1 : 9;

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 10

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

2.5 Triggering

PicoScope 6000E Series PC Oscilloscopes can either start collecting data immediately or be programmed to wait
for a trigger event to occur. In both cases you need to use the trigger functions:

e ps60@BBaSetTriggerChannelConditions()
e ps60BBaSetTriggerChannelDirections()
e ps600BaSetTriggerChannelProperties()
e ps600BaSetTriggerDelay() (optional)

These can be run collectively by calling ps60008aSetSimpleTrigger (), or singly.

A trigger event can occur when one of the input channels crosses a threshold voltage on either a rising or a falling
edge. It is also possible to combine up to four inputs using the logic trigger function.

The driver supports these triggering methods:

Simple edge
Advanced edge
Windowing
Pulse width
Logic

Delay

Drop-out

Runt

The pulse width, delay and drop-out triggering methods additionally require the use of the pulse width qualifier
functions:

e ps60BBaSetPulseWidthQualifierProperties()
e ps60@BaSetPulseWidthQualifierConditions()
e ps60BPaSetPulseWidthQualifierDirections()

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 11

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

2.6 Sampling modes

PicoScope 6000E Series oscilloscopes can run in various sampling modes.

Block mode. In this mode, the scope stores data in its buffer memory and then transfers it to the PC. When
the data has been collected it is possible to examine the data, with an optional downsampling factor. The data
is lost when a new run is started in the same segment, the settings are changed or the scope is powered
down

The driver can return data asynchronously using a callback, which is a call to one of the functions in your own
application. When you request data from the scope, you pass to the driver a pointer to your callback function.

When the driver has written the data to your buffer, it makes a callback (calls your function) to signal that the

data is ready. The callback function then signals to the application that the data is available.

Because the callback is called asynchronously from the rest of your application, in a separate thread, you
must ensure that it does not corrupt any global variables while it runs.

If you do not wish to use a callback, you can poll the driver instead.

Rapid block mode. This is a variant of block mode that allows you to capture more than one waveform at a time

with a minimum of delay between captures. You can use downsampling in this mode if you wish.

Streaming mode. This mode enables long periods of data collection. In raw mode (no downsampling) it
provides fast data transfer of unlimited amounts of data at up to 312 MB/s (3.2 ns per sample) in 8-bit mode
with USB 3.0.

If downsampling is enabled, raw data can be sampled at up to 1.25 GS/s for a single channel in 8-bit mode.
Downsampled data is returned while capturing is in progress, at up to 312 MB/s. The raw data can then be
retrieved after the capture is complete. The number of raw samples is limited by the memory available on the
device, the selected resolution and the number of channels enabled.

Triggering is supported in this mode.

Note: The oversampling feature of older PicoScope oscilloscopes has been replaced by
PICO_RATIO_MODE AVERAGE.

2.6.1 Block mode

In block mode, the computer prompts a PicoScope 6000E series oscilloscope to collect a block of data into its
internal memory. When the oscilloscope has collected the whole block, it signals that it is ready and then
transfers the whole block to the computer's memory through the USB port.

Block size. The maximum number of values depends upon the size of the oscilloscope's memory. The
memory buffer is shared between the enabled channels, so if two channels are enabled, each receives half
the memory. These features are handled transparently by the driver. The block size also depends on the

number of memory segments in use (see ps60008aMemorySegments()) and the sampling resolution.

Sampling rate. A PicoScope 6000E Series oscilloscope can sample at a number of different rates according
to the selected timebase and the combination of channels that are enabled. See the PicoScope 6000E Series
Data Sheet for the specifications that apply to your scope model.

Setup time. The driver normally performs a number of setup operations, which can take up to 50 milliseconds,
before collecting each block of data. If you need to collect data with the minimum time interval between

blocks, use rapid block mode and avoid calling setup functions between calls to ps608@aRunBlock (),
ps600@aStop() and ps60BPaGetValues().

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 12

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

® Downsampling. When the data has been collected, you can set an optional downsampling factor and examine
the data. Downsampling is a process that reduces the amount of data by combining adjacent samples. It is
useful for zooming in and out of the data without having to repeatedly transfer the entire contents of the
scope's buffer to the PC.

® Memory segmentation. The scope's internal memory can be divided into segments so that you can capture
several waveforms in succession. Configure this using ps688@8aMemorySegments() or

ps600BaMemorySegmentsBySamples().

® Data retention. The data is lost when a new run is started in the same segment, the settings are changed, or
the scope is powered down.

See Using block mode for programming details.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 13

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

2.6.1.1 Using block mode

This is the general procedure for reading and displaying data in block mode using a single memory segment:

1. Open the oscilloscope using ps6008alpenUnit ().
2. Select channel ranges and AC/DC/50 Q coupling using ps6080aSetChannelOn() and

ps60B@aSetChannel0ff().
3. Using ps600@0aGetTimebase (), select timebases until the required nanoseconds per sample is
located.

4, Use the trigger setup functions ps6000aSetTriggerChannelConditions(),
ps600PaSetTriggerChannelDirections() and
ps60B0aSetTriggerChannelProperties() to set up the trigger if required.

5. Start the oscilloscope running using ps60080aRunBlock ().

6. Wait until the oscilloscope is ready using the ps68808aBlockReady () callback (or poll using

ps6000alsReady()).

7. Use ps600@BaSetDataBuffer () totell the driver where your memory buffer is. For greater efficiency
with multiple captures, you can do this outside the loop after step 4.

8. Transfer the block of data from the oscilloscope using ps6008aGetValues().

9. Display the data.

10. Repeat steps 5t09.

11. Stop the oscilloscope using ps60808aStop ().
12. Request new views of stored data using different downsampling parameters: see Retrieving stored data.

13. Close the device using ps60@@8aCloseUnit ().

(ropiication)

(psGOOOaOpenUnit
(psGOOOaSetChannel Set up device
ps6000aGetTimebase m«'
‘“.,‘..uw'
“...-
(psSOOOaSetTrlgger functions .-u'“‘ eese*®

eensees™™” e Data received

(pSGOOOaRunBIock

CApp: ps6000aBlockReady)4‘

CpsGOOOaSetDataBuffer)—>
CpsSOOOaGetValues)—»

Data processed

2.6.1.2 Asynchronous calls in block mode

ps600@aGetValues() may take along time to complete if a large amount of data is being collected. To avoid
hanging the calling thread, it is possible to call ps608@8aGetValuesAsync () instead. This immediately returns

control to the calling thread, which then has the option of waiting for the data or calling ps68608aStop () to abort
the operation.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 14

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

2.6.2 Rapid block mode

In normal block mode, the PicoScope 6000E Series scopes collect one waveform at a time. You start the device
running, wait until all samples are collected by the device, and then download the data to the PC or start another
run. There is a time overhead of tens of milliseconds associated with starting a run, causing a gap between
waveforms. When you collect data from the device, there is another minimum time overhead which is most
noticeable when using a small number of samples.

Rapid block mode allows you to sample several waveforms at a time with the minimum time between
waveforms. It reduces the gap from milliseconds to less than 1 microsecond.

See Using rapid block mode for details.

2.6.2.1 Using rapid block mode

You can use rapid block mode with or without aggregation. With aggregation, you need to set up two buffers for
each channel, to receive the minimum and maximum values.

Without aggregation
1. Open the oscilloscope using ps6008a0penUnit ().
2. Select channel ranges and AC/DC coupling using ps6888aSetChannelOn() and

ps600@aSetChannel0ff().

3. Set the number of memory segments equal to or greater than the number of captures required using

ps60BBaMemorySegments (). Use ps68BBaSetNoOfCaptures() before each run to specify the

number of waveforms to capture.

4, Using ps6000aGetTimebase (), select timebases until the required nanoseconds per sample is
located.

5. Use the trigger setup functions ps608@8aSetTriggerChannelConditions(),
ps60BBaSetTriggerChannelDirections() and
ps6000aSetTriggerChannelProperties() to setup the trigger if required.

6. Start the oscilloscope running using ps6888aRunBlock ().

Wait until the oscilloscope is ready using the ps600@aBlockReady () callback.

8. Use ps6@BBaSetDataBuffer () to tell the driver where your memory buffers are. Call the function once
for each channel/segment combination for which you require data. For greater efficiency with multiple
captures, you could do this outside the loop after step 5.

. Transfer the blocks of data from the oscilloscope using ps60008aGetValuesBulk().

10. Retrieve the time offset for each data segment using

ps600BaGetValuesTriggerTimeOffsetBulk().
11. Display the data.
12. Repeat steps 6 to 11 if necessary.

13. Stopthe oscilloscope using ps688@aStop ().
14. Close the device using ps60800aCloseUnit ().

With aggregation
To use rapid block mode with aggregation, follow steps 1 to 7 above and then proceed as follows:

N

8a. Callps60@@aSetDataBuffers() tosetup one pair of buffers for every waveform segment required.
9a. Callps600BaGetValuesBulk() foreach pair of buffers.

10a. Retrieve the time offset for each data segment using

ps600BaGetValuesTriggerTimeOffsetBulk().

Continue from step 11 above.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 15

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

2.6.2.2 Rapid block mode example 1: no aggregation

#define MAX_WAVEFORMS 100
#define MAX_SAMPLES 1000

Set up the device up as usual.

Open the device

Channels

Trigger

Number of memory segments (this should be equal or more than the no of captures required)

// set the number of waveforms to MAX_WAVEFORMS
ps6008BaSetNoOfCaptures(handle, MAX_WAVEFORMS);

pParameter = false;

s60080aRunBlock

(
handle,

Q, // noOfPreTriggerSamples

10000, // noOfPostTriggerSamples

1, // timebase to be used

&timeIndisposedMs,

Q, // segment index

1pReady,

&pParameter

);

Comment: these variables have been set as an example and can be any valid value. pParameter will be set true
by your callback function 1pReady.

while (!pParameter) Sleep (9);

PICO_ACTION action = PICO_CLEAR_ALL | PICO_ADD;
int32_t first_segment_to_read = 10;

for (int32_t i = 0; i < 10; i++)

{
for (int32_t c¢ = PICO_CHANNEL_A; ¢ <= PICO_CHANNEL_D; c++)
{

ps600BaSetDataBuffer

(
handle,

c,
buffer[c][i],
MAX_SAMPLES,
PICO_INT16_T,
first_segment_to_read + i,
PICO_RATIO_MODE_RAW,
action

)

action = PICO_ADD;

}
}

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 16

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

Comments: buffer has been created as a two-dimensional array of pointers to int16_t, which will contain 1000

samples as defined by MAX_SAMPLES. Only 10 buffers are set, but it is possible to set up to the number of
captures you have requested.

ps6000aGetValuesBulk
(
handle,
Q, // startIndex
&noOfSamples, // set to MAX_SAMPLES on entering the function
10, // fromSegmentIndex
19, // toSegmentIndex
1, // downsampling ratio
PICO_RATIO_MODE_RAW, // downsampling ratio mode
overflow // indices @ to 9 will be populated (index always

starts from 9)
)
Comments: the number of samples could be upto noOfPreTriggerSamples +

noOfPostTriggerSamples, the values setin ps688@aRunBlock (). The samples are returned starting
from the sample index. This function does not support aggregation. The above segments start at 10 and finish at
19 inclusive. Itis possible for fromSegmentIndex to wrap around to toSegmentIndex, for example by
setting fromSegmentIndex to 98 and toSegmentIndexto7

ps60BBaGetValuesTriggerTimeOffsetBulk

(
handle,

times,

timeUnits,

10,

19

)

Comments: the above segments start at 10 and finish at 19 inclusive. It is possible for the f romSegmentIndex
to wrap around to the toSegmentIndex, for example if fromSegmentIndex is setto 98 and
toSegmentIndexto7.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 17

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

2.6.2.3 Rapid block mode example 2: using aggregation

#define MAX_WAVEFORMS 100
#define MAX_SAMPLES 1000

Set up the device up as usual.

Open the device

Channels

Trigger

Number of memory segments (this should be equal or more than the number of captures required)

// set the number of waveforms to MAX_WAVEFORMS
ps6008BaSetNoOfCaptures(handle, MAX_WAVEFORMS);

pParameter = false;
ps60080aRunBlock
(
handle,
0, // noOfPreTriggerSamples,
1000000, // noOfPostTriggerSamples,
1, // timebase to be used,
&timeIndisposedMs,
9, // segmentIndex
1pReady,
&pParameter
Corr)lments: the set-up for running the device is exactly the same whether or not aggregation will be used when
you retrieve the samples.

PICO_ACTION action = PICO_CLEAR_ALL | PICO_ADD;

for (int32_t c¢ = PICO_CHANNEL_A; c <
{

ps600@aSetDataBuffers

(
handle,

c,
bufferMax[c],
bufferMin[c]
MAX_SAMPLES,
PICO_INT16_T,
0,
PICO_RATIO_MODE_AGGREGATE,
action

)

action = PICO_ADD;

}

Comments: since only one waveform will be retrieved at a time, you only need to set up one pair of buffers; one
for the maximum samples and one for the minimum samples. Again, the buffer sizes are 1000 samples.

PICO_CHANNEL_D; c++)

for (int32_t segment = 10; segment < 20; segment++)

{
ps600BaGetValues

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 18

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

handle,

e,

&noOfSamples, // set to MAX_SAMPLES on entering
1000,

&downSampleRatioMode, // set to RATIO_MODE_AGGREGATE
index,

overflow

)

ps600@aGetTriggerTimeOffset

(
handle,

&time,
&timeUnits,
index

)
}

Comments: each waveform is retrieved one at a time from the driver with an aggregation of 1000.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved.

19

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

2.6.3 Streaming mode

Streaming mode can capture data without the gaps that occur between blocks when using block mode. This
makes it suitable for high-speed data acquisition, allowing you to capture long data sets limited only by the
computer's memory. (At the highest sampling rates, the size of the device's capture buffer may limit the capture
size.)

The device can return either raw or downsampled data to your application while streaming is in progress. When
downsampled data is returned, the raw samples remain stored on the device.

e Downsampling. The driver can return either raw or downsampled data. You should set up the number of
buffers needed to accept the requested data. Aggregation requires two buffers, one for the minimum values
and one for the maximum values. Other downsampling modes require only a single buffer.

See Using streaming mode for programming details.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved.

20

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

2.6.3.1 Using streaming mode

This is the general procedure for reading and displaying data in streaming mode using a single memory segment:

1.
2.

© ©

Open the oscilloscope using ps6008alpenUnit ().

Select channels, ranges and AC/DC/50 Q coupling using ps608@80aSetChannelOn () and
ps60B@aSetChannel0ff().

Use the trigger setup functions ps6000aSetTriggerChannelConditions(),
ps60BBaSetTriggerChannelDirections() and
ps60B0aSetTriggerChannelProperties() to set up the trigger if required.
Callps6p@@aSetDataBuffer () totell the driver where your data buffer is.

Set up aggregation and start the oscilloscope running using ps688@aRunStreaming().

Call ps600@aGetStreaminglatestValues() to get data. If the function runs out of buffer space,

return to step 4.
Process data returned to your application's function. This example is using autoStop, so after the driver
has received all the data points requested by the application, it stops the device streaming.

Call ps600@aStop(), evenif autoStop is enabled.
Request new views of stored data using different downsampling parameters: see Retrieving stored data.

Close the device using ps68088aCloseUnit ().

Application ‘

(ps6000a0OpenUnit

Set up device

(ps6000aSetDataBuffer

(ps6000aSetTrigger... functicms))7'v

(ps6000aRunStreaming

(ps6000aGetStreamingLatestValue

V' N
]
]
-
Q
Q
-
Q

Data processed

\
vy Aut, st()p

s:
(App: ps6000aStreamingReady)4—

(ps6000aStop

End streaming

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 21

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

2.6.4 Retrieving stored data

You can retrieve data from the ps6000a driver with a different downsampling factor when

ps60800aRunBlock () orps608@BaRunStreaming() has already been called and has successfully captured
all the data. Use ps60@@aGetValuesAsync().

rvpiication |

(psSOOOaSetDataBuffer)\

C psGOOOaGetValuesAsyna—p Data processed

C App: psGOOOaDataReadD/

2.7 Timebases

The API allows you to select any of 232 different timebases based on a maximum sampling rate of 5 GHz. The
timebases allow slow enough sampling in block mode to overlap the streaming sample intervals, so that you can
make a smooth transition between block mode and streaming mode.

timebase sample interval formula sample interval examples
Oto4 2timebase /5000 000 000 0 =>200 ps

1=>400ps

2 =>800ps

3=>1.6ns

4=>32ns
510 232-1 (timebase—4) / 156 250 000 5=>6.4ns

232-1=>~687s

Applicability Calls to ps60B@aGetTimebase ()

Notes

1. The maximum possible sampling rate may depend on the number of enabled channels and on the sampling
mode. Please refer to the data sheet for details.

2. In streaming mode, the speed of the USB port may affect the rate of data transfer.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 22

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

2.8 Combining several oscilloscopes

Itis possible to collect data using up to 64 PicoScope 6000E Series oscilloscopes at the same time, depending
on the capabilities of the PC. Each oscilloscope must be connected to a separate USB port. The

ps600808alpenUnit () function returns a handle to an oscilloscope. All the other functions require this handle
for oscilloscope identification. For example, to collect data from two oscilloscopes at the same time:

CALLBACK ps6000aBlockReady(...)
// define callback function specific to application

handlel = ps60800alpenUnit()
handle2 = ps60800alpenUnit()

ps6000aSetChannelOn(handlel)
// set up unit 1
ps606BaRunBlock (handle1)

ps6000aSetChannelOn(handle2)
// set up unit 2
ps6000aRunBlock (handle2)

// data will be stored in buffers
// and application will be notified using callback

ready = FALSE

while not ready
ready = handlel_ready
ready &= handle2_ready

Note: an external clock may be fed into the 10 MHz clock reference input or a trigger into the Aux Trig input to
provide some degree of synchronization between multiple oscilloscopes.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 23

PicoScope 6000 Series (A API) Programmer's Guide Programming overview

2.9 Handling intelligent probe interactions

The PicoScope 6000E Series has an intelligent probe interface, which supplies power to the probe as well as
allowing the scope to configure and interrogate the probe. Your application can choose to be alerted whenever a
probe is connected or disconnected, or when its status changes.

Probe interactions use a callback mechanism, available in C and similar languages.

Applicability All models

Note In addition to ps6000aApi. h, you must alsoinclude PicoDeviceEnums.h. This file
contains definitions of enumerated types that describe the intelligent probes.

Procedure
Define your own function to receive probe interaction callbacks.

Callps600@alOpenUnit () to obtain a device handle.
Call ps6000aSetProbelnteractionCallback () to register your probe interaction callback function.
Capture data using the desired sampling mode. See Sampling modes for details.

Call ps6BBBaCloseUnit () torelease the device handle. The makes the scope device available to other
applications.

arLODdN =

TApplication |
G)sGOOOaOpenUnit)—>
GJsGOOOaSetProbeInteractionCaIIback)—} Set up device
@ther setup functions)—P

G)ata capture functions): Start collection
Grobe interaction callback \: Probe status
J changes

G)sGOOOaCIoseUnit)—> Close down device

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 24

PicoScope 6000 Series (A API) Programmer's Guide API functions

3 API functions

The PicoScope 6000E Series API exports the following functions for you to use in your own applications for
Microsoft Windows. Similar APIs are available for other platforms: see www.picotech.com > Downloads for
details. All functions are C functions using the standard call naming convention (__stdcall). They are all

exported with both decorated and undecorated names.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 25

https://www.picotech.com/downloads

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.1 ps6000aChannelCombinationsStateless - get
possible channel combinations
PICO_STATUS ps66008aChannelCombinationsStateless

(
int16_t handle,
PICO_CHANNEL_FLAGS * channelFlagsCombinations,
uint32_t * nChannelCombinations,
PICO_DEVICE_RESOLUTION resolution,
uint32_t timebase

)

This function returns a list of the possible channel combinations given a proposed configuration (resolution and
timebase) of the oscilloscope. It does not change the configuration of the oscilloscope.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6008alpenUnit().

* channelFlagsCombinations, on exit, alist of possible channel combinations. See
PicoDeviceEnums.h.

* nChannelCombinations, on exit, the length of the channelFlagsCombinations list.
resolution, the proposed vertical resolution of the oscilloscope.
timebase, the proposedtimebase number.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 26

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.2 ps6000aCheckForUpdate - is firmware update

available?
PICO_STATUS ps6008aCheckForUpdate
(
int16_t handle,
PICO_FIRMWARE_INFO * firmwareInfos,
int16_t * nFirmwareInfos,
uint16_t * updatesRequired
)
This function checks whether a firmware update for the device is available.
Applicability
All modes
Arguments

handle, the device identifier returned by ps6008aOpenUnit ().

firmwareInfos, onexit, alistof PICO_FIRMWARE _INFO structures containing firmware updates
information.

nFirmwareInfos, on exit, the number of structures inthe firmwareInfos list.
* updatesRequired, on exit, whether the device needs updates (1) or not (8).

Returns

PICO_OK
PICO_HANDLE_INVALID
PICO_USER_CALLBACK
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 27

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.3 ps6000aCloseUnit - close a scope device

PICO_STATUS ps6000aCloseUnit
(

int16_t handle

)

This function shuts down a PicoScope 6000E Series oscilloscope.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6000alpenUnit ().

Returns

PICO_OK
PICO_HANDLE_INVALID
PICO_USER_CALLBACK
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 28

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.4 ps6000aEnumerateUnits - get a list of unopened
units

PICO_STATUS ps600@aEnumerateUnits
(

intl16_t * count,

int8_t * serials,

int16_t * seriallth

)

This function counts the number of PicoScope 6000 (A API) units connected to the computer, and returns a list of
serial numbers and other optional information as a string. Note that this function can only detect devices that are

not yet being controlled by an application. To query opened devices, use ps600808aGetUnitInfo().

Applicability
All modes

Arguments
* count, on exit, the number of PicoScope 6000 (A API) units found.

* serials, if anempty string onentry, serials is populated on exit with a list of serial numbers separated
by commas and terminated by a final null. Example:

AQ00B5/139,VDR61/356,Z0R14/107
On entry, serials can optionally contain the following parameter(s) to request information:

-v : model number

-c : calibration date

-h : hardware version

-u : USB version

-f : firmware version
Example (any separator character can be used):

-v:-c:-h:-u:-f
On exit, with all the above parameters specified, each serial number has the requested information appended in
the following format:

AQBB5/139[6425E,01Jan21,769,2.08,1.7.16.0]
serials canbe NULL if device information or serial numbers are not required.

* seriallth, on entry, the length of the int8_t buffer pointed to by serials; on exit, the length of the
string writtento serials

Returns

PICO_OK

PICO_BUSY
PICO_NULL_PARAMETER
PICO_FW_FAIL
PICO_CONFIG_FAIL
PICO_MEMORY_FAIL
PICO_ANALOG_BOARD
PICO_CONFIG_FAIL_AWG
PICO_INITIALISE_FPGA

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 29

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.5 ps6000aFlashLed - flash the front-panel LED

PICO_STATUS ps6000aFlashlLed
(

int16_t handle,
int16_t start

)

This function flashes the status/trigger LED on the front of the scope without blocking the calling thread. Calls to
ps60@@aRunStreaming() and ps60@BaRunBlock () cancel any flashing started by this function. It is not

possible to set the LED to be constantly illuminated, as this state is used to indicate that the scope has not been
initialized.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6008aOpenUnit ().

start, the action required:
<0 : flashthe LED indefinitely.
0 : stop the LED flashing.

>0 . flashthe LED start times. If the LED is already flashing on entry to this function, the flash count
willbe resetto start.

Returns

PICO_OK
PICO_HANDLE_INVALID
PICO_BUSY
PICO_DRIVER_FUNCTION
PICO_NOT_RESPONDING

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 30

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.6 ps6000aGetAdcLimits - get min and max sample

values
PICO_STATUS ps6000aGetAdcLimits
(
int16_t handle,
PICO_DEVICE_RESOLUTION resolution,
int16_t * minValue,
int16_t * maxValue
)
This function gets the maximum and minimum sample values that the ADC can produce at a given resolution.
Applicability
All modes
Arguments

handle, the device identifier returned by ps6008aOpenUnit ().
resolution, the vertical resolution about which you require information.
* minValue, the minimum sample value.

* maxValue, the maximum sample value.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NULL_PARAMETER (if bothmaxValue and minValue are NULL)

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 31

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.7 ps6000aGetAnalogueOffsetLimits - get analog
offset information

PICO_STATUS ps6600aGetAnalogueOffsetLimits

(
int16_t handle,
PICO_CONNECT_PROBE_RANGE range
PICO_COUPLING coupling
double * maximumVoltage,
double * minimumVoltage
)
This function is used to get the maximum and minimum allowable analog offset for a specific voltage range.
Applicability
All modes
Arguments

handle, the device identifier returned by ps6008aOpenUnit().
range, the voltage range for which minimum and maximum voltages are required
coupling, the type of AC/DC/50 Q coupling used

* maximumVoltage, on output, the maximum analog offset voltage allowed for the range. Set to NULL if not
required.

* minimumVoltage, on output, the minimum analog offset voltage allowed for the range. Set to NULL if not
required.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_INVALID_VOLTAGE_RANGE

PICO_NULL_PARAMETER (if bothmaximumVoltage and minimumVoltage are NULL)
PICO_INVALID_COUPLING

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 32

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.8 ps6000aGetDeviceResolution — retrieve the device
resolution

PICO_STATUS ps6000aGetDeviceResolution
(

int16_t handle,
PICO _DEVICE RESOLUTION * resolution
)
This function retrieves the vertical resolution of the oscilloscope.
Applicability
All modes
Arguments

handle, the device identifier returned by ps600@aOpenUnit().
* resolution, on exit, theresolution of the device.

Returns
PICO_OK or other code from PicoStatus.h

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 33

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.9 ps6000aGetMaximumAvailableMemory - depending
on hardware resolution

PICO_STATUS ps6000aGetMaximumAvailableMemory
(

int16_t handle,

uint64_t * nMaxSamples,

PICO_DEVICE_RESOLUTION resolution

)

This function returns the maximum number of samples that can be stored at a given hardware resolution.
Applicability
All modes
Arguments

handle, the device identifier returned by ps6000alpenUnit ().
* nMaxSamples, on exit, the number of samples.
resolution, the resolution in bits.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF _RANGE
PICO_TOO_MANY_SAMPLES

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 34

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.10 ps6000aGetMinimumTimebaseStateless - find
fastest available timebase

PICO_STATUS ps6000aGetMinimumTimebaseStateless

(
int16_t handle,
PICO_CHANNEL_FLAGS enabledChannelFlags,
uint32_t * timebase,
double * timelnterval,
PICO_DEVICE_RESOLUTION resolution

)

This function returns the shortest timebase that could be selected with a proposed configuration of the
oscilloscope. It does not set the oscilloscope to the proposed configuration

Applicability
All modes

Arguments
handle, the device identifier returned by ps6008alpenUnit().

enabledChannelFlags, abitfieldindicating which channels are enabled in the proposed configuration.
Channel Ais bit 0 and so on.

* timebase, on exit, the number of the shortest timebase possible with the proposed configuration.
* timeInterval, on exit, the sample periodin seconds corresponding to.timebase.
resolution, the vertical resolution in the proposed configuration.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF_RANGE
PICO_TOO_MANY_SAMPLES

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 35

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.11 ps6000aGetNoOfCaptures - query how many
captures made

PICO_STATUS ps60008aGetNoOfCaptures
(

int16_t handle,

uint64_t * nCaptures

)

This function returns the number of captures collected in one run of rapid block mode. You can call this function
during device capture, after collection has completed or after interrupting waveform collection by calling

ps6000aStop().

The returned value (nCaptures) can then be used to iterate through the number of segments using

ps600B0aGetValues(), orinasingle callto ps600@8aGetValuesBulk () where it is used to calculate the

toSegmentIndex parameter.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6008aOpenUnit().

nCaptures, on output, the number of available captures that has been collected from calling

ps60800aRunBlock().

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF _RANGE
PICO_TOO_MANY_SAMPLES

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 36

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.12 ps6000aGetNoOfProcessedCaptures - query how
many captures processed

PICO_STATUS ps6000aGetNoOfProcessedCaptures

(
int16_t handle,

uint64_t * nProcessedCaptures

)

This function gets the number of captures collected and processed in one run of rapid block mode. It enables
your application to start processing captured data while the driver is still transferring later captures from the
device to the computer.

The function returns the number of captures the driver has processed since you called ps6888aRunBlock (). It
is for use in rapid block mode, alongside the ps680808aGetValuesOverlapped() function, when the driveris
set to transfer data from the device automatically as soon as the ps608@aRunBlock () function is called. You
can call ps6000aGetNoOfProcessedCaptures() during device capture, after collection has completed or
after interrupting waveform collection by calling ps688@aStop ().

The returned value (nProcessedCaptures) can then be used to iterate through the number of segments using

ps600BBaGetValues(), orinasingle callto ps600@8aGetValuesBulk (), where itis used to calculate the

toSegmentIndex parameter.

When capture is stopped
If nProcessedCaptures =0, you will also need to call ps6008aGetNoOfCaptures(), in order to determine
how many waveform segments were captured, before calling ps60008aGetValues() or

ps6000aGetValuesBulk().

Applicability
Rapid block mode

Arguments
handle, the device identifier returned by ps600@aOpenUnit().

* nProcessedCaptures, on exit, the number of waveforms captured and processed.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 37

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.13 ps6000aGetStreaminglLatestValues - read streaming
data

PICO_STATUS ps6000aGetStreaminglLatestValues

(
int16_t handle,
PICO_STREAMING_DATA_INFO * streamingDataInfo,
uint64_t nStreamingDatalnfos,
PICO_STREAMING_DATA_TRIGGER_INFO * triggerInfo

)

This function populates the streamingDataInfo structure with a description of the samples available and the
triggerInfo structure to indicate that a trigger has occurred and at what location.

Applicability
Streaming mode only

Arguments
handle, the device identifier returned by ps6000alpenUnit ().

* streamingDataInfo, alistof structures.See PICO_STREAMING_DATA_INFO.

nStreamingDataInfos, the number of structures inthe streamingDataInfo list.

* triggerInfo, alistof structures containing trigger information. See
PICO_STREAMING_DATA_TRIGGER_INFO

Returns PICO_OK
PICO_WAITING_FOR_DATA_BUFFERS -indicates that you need to call
ps600BaSetDataBuffer() again

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 38

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.13.1 PICO_STREAMING_DATA_INFO
Alist of structures of this type is passed to ps6000aGetStreaminglatestValues() inthe

streamingDatalInfo argument to specify parameters for streaming mode data capture. It is defined as
follows:

typedef struct tPicoStreamingDatalnfo
{
PICO_CHANNEL channel_;
PICO_RATIO_MODE mode_;
PICO_DATA_TYPE type_;

int32_t noOfSamples_;
uint64_t bufferIndex_;
int32_t startIndex_;
int16_t overflow_;

} PICO_STREAMING_DATA_INFO;

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements
channel_, the oscilloscope channel that the parameters apply to.

mode_, the downsampling mode to use.

type_, the data type to use forthe sample data.

noOfSamples_, the numberof samples made available by the driver.
bufferIndex_, anindexto the starting sample within the specified waveform buffer.
startIndex_, anindexto the waveform buffer withinthe capture buffer.

overflow_, aflagindicating whether a sample value overflowed (1) or not (0).

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 39

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.13.2 PICO_STREAMING_DATA_TRIGGER_INFO

A structure of this type is returned by ps6000aGetStreaminglatestValues() inthe triggerInfo
argument to return information about trigger events.

typedef struct tPicoStreamingDataTriggerInfo
{

uint64_t triggerAt_;

intl16_t triggered_;

intl16_t autoStop_;
} PICO_STREAMING_DATA_TRIGGER_INFO;

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements
triggerAt_, anindextothe sample on which the trigger occurred.

triggered_, aflagindicating whether a trigger occurred (1) or did not occur (0).

autoStop_, aflagindicating whether the oscilloscope was in autoStop mode (1) or not (0).

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 40

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.14 ps6000aGetTimebase - get available timebases

PICO_STATUS ps6000aGetTimebase

(
int16_t handle,
uint32_t timebase,
uint64_t noSamples,
double * timeIntervalNanoseconds,
uint64_t * maxSamples
uint64_t segmentIndex
)

This function calculates the sampling rate and maximum number of samples for a given timebase under the
specified conditions. The result will depend on the number of channels enabled by the last call to

ps6000aSetChannelOn() or ps666BaSetChannelOff().
The easiest way to find a suitable timebase is to call ps60@0@aNearestSampleIntervalStateless().

Alternatively, you can estimate the timebase number that you require using the information in the timebase guide,
then pass this timebase to ps6000aGetTimebase () and check the returned timeIntervalNanoseconds
argument. Repeat until you obtain the time interval that you need.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6008aOpenUnit().

timebase, see timebase guide.

noSamples, the number of samples required. This value is used to calculate the most suitable time interval.

timeIntervalNanoseconds, on exit, the time interval between readings at the selected timebase. Use NULL
if not required.

maxSamples, on exit, the maximum number of samples available. The scope allocates a certain amount of
memory for internal overheads and this may vary depending on the number of segments, number of channels
enabled, and the timebase chosen. Use NULL if not required.

segmentIndex, theindex of the memory segment to use.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_TOO_MANY_SAMPLES
PICO_INVALID_CHANNEL
PICO_INVALID_TIMEBASE
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF _RANGE
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 411

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.15 ps6000aGetTriggerinfo - get trigger timing

information

PICO_STATUS ps6000aGetTriggerInfo

(
intl16_t handle
PICO_TRIGGER_INFO =* triggerInfo,
uint64_t firstSegmentIndex,
uint64_t segmentCount

)

This function gets trigger timing information from one or more buffer segments.

Call this function after data has been captured or when data has been retrieved from a previous capture.

Applicability
Block mode, rapid block mode

Arguments
handle, the device identifier returned by ps6000alpenUnit ().

* triggerInfo, alistof structures, one for each buffer segment, containing trigger information.
firstSegmentIndex, theindex of the first segment of interest.
segmentCount, the number of segments of interest.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF _RANGE
PICO_NULL_PARAMETER
PICO_NO_SAMPLES_AVAILABLE
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 42

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.15.1 PICO_TRIGGER_INFO

Alist of structures of this type containing trigger information is written by ps6000aGetTriggerInfo() tothe
triggerInfo location. The structure is defined as follows:

typedef struct tPicoTriggerInfo

{
PICO_STATUS status;
uint64_t segmentIndex;
uint64_t triggerIndex;
double triggerTime;
PICO_TIME_UNITS timeUnits;
uint64_t missedTriggers;
uint64_t timeStampCounter;

} PICO_TRIGGER_INFO;

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements
status, indicates success or failure.

segmentIndex, the number of the segment.
triggerIndex, theindex of the sample at which the trigger ocurred.

triggerTime, the time at which the trigger occurred.

timeUnits, the unit multiplier to use with triggerTime.

missedTriggers, the number of trigger events, if any, detected since the start of previous segment.

timeStampCounter, thetimein samples from the first capture to the current capture. The status
PICO_DEVICE_TIME_STAMP_RESET indicates that the trigger time has started over.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 43

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.16 ps6000aGetTriggerTimeOffset - get timing
corrections

PICO_STATUS ps6000aGetTriggerTimeOffset
(
intl16_t handle
int64_t * time,
PICO_TIME_UNITS * timeUnits,
uint64_t segmentIndex

)

This function gets the trigger time offset for waveforms obtained in block mode or rapid block mode. The trigger
time offset is an adjustment value used for correcting jitter in the waveform, and is intended mainly for
applications that wish to display the waveform with reduced jitter. The offset is zero if the waveform crosses the
threshold at the trigger sampling instant, or a positive or negative value if jitter correction is required. The value
should be added to the nominal trigger time to get the corrected trigger time.

Call this function after data has been captured or when data has been retrieved from a previous capture.

Applicability
Block mode, rapid block mode

Arguments
handle, the device identifier returned by ps6008aOpenUnit().

time, on exit, the time at which the trigger point occurred

timeUnits, on exit, the time units in which time is measured. The possible values are:
PICO_FS
PICO_PS
PICO_NS
PICO_US
PICO_MS
PICO_S

segmentIndex, the number of the memory segment for which the information is required.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF _RANGE
PICO_NULL_PARAMETER
PICO_NO_SAMPLES_AVAILABLE
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 44

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.17 ps6000aGetUnitinfo - get information about device

PICO_STATUS ps6000aGetUnitInfo

(
int16_t handle,
int8_t * string,
int16_t stringlLength,
int16_t * requiredSize
PICO_INFO info

)

This function retrieves information about the specified oscilloscope. If the device fails to open, only the driver
version and error code are available to explain why the last open unit call failed. To find out about unopened

devices, callps60@@aEnumerateUnits().

Applicability
All modes

Arguments

handle, identifies the device from which information is required. If an invalid handle is passed, the error code
from the last unit that failed to open is returned.

string, onexit, the unitinformation string selected specified by the info argument. If stringis NULL, only
requiredSize is returned.

stringlLength, the maximum numberof int8_t values that may be writtento string.
requiredSize, on exit, the required length of the string array.
info, anumber specifying what information is required. The possible values are listed in the table below.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_INVALID_INFO
PICO_INFO_UNAVAILABLE
PICO_DRIVER_FUNCTION

info Example

0 PICO_DRIVER_VERSION - Version number of ps6000a DLL 1,0,0,1
1 PICO_USB_VERSION - Type of USB connection to device: 1.1,2.0 or 3.0 3.0

2 PICO_HARDWARE_VERSION - Hardware version of device 1

3 |PICO_VARIANT_INFO - Model number of device 6403

4 |PICO_BATCH_AND_SERIAL - Batch and serial number of device KJL87/6
S PICO_CAL_DATE - Calibration date of device 30Sep09
6 PICO_KERNEL_VERSION - Version of kernel driver 1,1,2,4
7 PICO_DIGITAL_HARDWARE_VERSION - Hardware version of the digital section 1

8 PICO_ANALOGUE_HARDWARE_VERSION - Hardware version of the analog section 1

9 PICO_FIRMWARE_VERSION_1 - Versioninformation of Firmware 1 1,0,0,1
A PICO_FIRMWARE_VERSION_2 - Versioninformation of Firmware 2 1,0,0,1

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 45

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.18 ps6000aGetValues - get block mode data

PICO_STATUS ps6000aGetValues

(
int16_t handle,
uint64_t startIndex,
uint64_t * noOfSamples,
uint64_t downSampleRatio,
PICO_RATIO_MODE downSampleRatioMode,
uint64_t segmentIndex,
int16_t * overflow

)

This function returns block-mode data, with downsampling if requested, starting at the specified sample number.
Itis used to get the stored data from the oscilloscope after data collection has stopped.

Applicability
All modes.

Arguments
handle, the device identifier returned by ps6008alpenUnit().

startIndex, azero-based indexthatindicates the start point for data collection. It is measured in sample
intervals from the start of the buffer.

noOfSamples, on entry, the number of raw samples to be processed. On exit, the actual number retrieved. The
number of samples retrieved will not be more than the number requested, and the data retrieved always starts
with the first sample captured.

downSampleRatio, the downsampling factor that will be applied to the raw data. Must be greater than zero.

downSampleRatioMode, which downsampling mode to use. The available values are:
PICO_RATIO_MODE_AGGREGATE
PICO_RATIO_MODE_DECIMATE
PICO_RATIO_MODE_AVERAGE
PICO_RATIO_MODE_TRIGGER - cannot be combined with any other ratio mode
PICO_RATIO_MODE_RAW

segmentIndex, the zero-based number of the memory segment where the data is stored.

overflow, onexit, asetof flags that indicate whether an overvoltage has occurred on any of the channels. It
is a bit field with bit 0 denoting Channel A.

Returns

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 46

PicoScope 6000 Series (A API) Programmer's Guide

API functions

PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_DEVICE_SAMPLING
PICO_NULL_PARAMETER
PICO_SEGMENT_OUT_OF _RANGE
PICO_INVALID_PARAMETER
PICO_TOO_MANY_SAMPLES
PICO_DATA_NOT_AVAILABLE
PICO_STARTINDEX_INVALID
PICO_INVALID_SAMPLERATIO
PICO_INVALID_CALL
PICO_NOT_RESPONDING
PICO_MEMORY
PICO_RATIO_MODE_NOT_SUPPORTED
PICO_DRIVER_FUNCTION

3.18.1

Downsampling modes

Various methods of data reduction, or downsampling, are possible with the PicoScope 6000E Series
oscilloscopes. The downsampling is done at high speed by dedicated hardware inside the scope, making your
application faster and more responsive than if you had to do all the data processing in software.

You specify the downsampling mode when you call one of the data collection functions, such as

ps6000BaGetValues(). The following modes are available:

PICO_RATIO_MODE_AGGREGATE

PICO_RATIO_MODE_AVERAGE

PICO_RATIO_MODE_DECIMATE

PICO_RATIO_MODE_DISTRIBUTION

PICO_RATIO_MODE_TRIGGER
PICO_RATIO_MODE_RAW

Reduces every block of n values to just two values: a
minimum and a maximum. The minimum and maximum
values are returned in two separate buffers.

Reduces every block of n values to a single value
representing the average (arithmetic mean) of all the
values.

Reduces every block of n values to just the first value in
the block, discarding all the other values.

Not implemented.
Gets 20 samples either side of the trigger point.

No downsampling. Returns raw data values.

ps6000apg-1

Copyright © 2021 Pico Technology Ltd. All rights reserved.

47

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.19 ps6000aGetValuesAsync - read data without
blocking

PICO_STATUS ps6000aGetValuesAsync
(

int16_t handle,

uint64_t startIndex,

uint64_t noOfSamples,
uint64_t downSampleRatio,
PICO_RATIO_MODE downSampleRatioMode,
uint64_t segmentIndex,
PICO_POINTER 1pDataReady,
PICO_POINTER pParameter

)

This function obtains data from the oscilloscope, with downsampling if requested, starting at the specified
sample number. It delivers the data using a callback.

Applicability
Streaming mode and block mode

Arguments

handle,

startIndex,

noOfSamples,

downSampleRatio,
downSampleRatioMode,
segmentIndex: seeps60@BaGetValues

lpDataReady, a pointerto the user-supplied function that will be called when the data is ready. This is usually
aPicoDataReadyUsingReads() function. For compatibility with older applications the driver also supports a

ps6@@@aDataReady () function.

pParameter, avoid pointerthat will be passed to the callback function. The data type is determined by the
application

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_DEVICE_SAMPLING
PICO_NULL_PARAMETER
PICO_STARTINDEX_INVALID
PICO_SEGMENT_OUT_OF _RANGE
PICO_INVALID_PARAMETER
PICO_DATA_NOT_AVAILABLE
PICO_INVALID_SAMPLERATIO
PICO_INVALID_CALL
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 48

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.20 ps6000aGetValuesBulk - read multiple segments

PICO_STATUS ps600BaGetValuesBulk

(

int16_t handle,

uint64_t startIndex,
uint64_t * noOfSamples,
uint64_t fromSegmentIndex,
uint64_t toSegmentIndex,
uint64_t downSampleRatio,

PICO_RATIO_MODE downSampleRatioMode,

int16_t * overflow

)

This function retrieves waveforms captured using rapid block mode. The waveforms must have been collected

sequentially and in the same run.

Applicability
Rapid block mode

Arguments

handle, startIndex, noOfSamples, downSampleRatio, downSampleRatioMode,

overflow: seeps60BBaGetValues

fromSegmentIndex, toSegmentIndex:

where the data is stored

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF _RANGE
PICO_NO_SAMPLES_AVAILABLE
PICO_STARTINDEX_INVALID
PICO_NOT_RESPONDING
PICO_DRIVER_FUNCTION
PICO_INVALID_SAMPLERATIO

zero-based numbers of the first and last memory segments

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 49

PicoScope 6000 Series (A API) Programmer's Guide

API functions

3.21 ps6000aGetValuesBulkAsync - read multiple
segments without blocking

PICO_STATUS ps6000aGetValuesBulkAsync

(

int16_t handle,

uint64_t startIndex,

uint64_t noOfSamples,
uint64_t fromSegmentIndex,
uint64_t toSegmentIndex,
uint64_t downSampleRatio,
PICO_RATIO_MODE downSampleRatioMode,
PICO_POINTER 1pDataReady,
PICO_POINTER pParameter

)

This function retrieves more than one waveform at a time from the driver in rapid block mode after data collection
has stopped. The waveforms must have been collected sequentially and in the same run. The data is returned

using a callback.

Applicability
Rapid block mode

Arguments

handle,

startIndex,

noOfSamples,
downSampleRatio,
downSampleRatioMode: see

fromSegmentIndex,

s6000aGetValues

toSegmentIndex: seeps60@BaGetValuesBulk

lpDataReady,
pParameter

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF _RANGE
PICO_NO_SAMPLES_AVAILABLE
PICO_STARTINDEX_INVALID
PICO_NOT_RESPONDING
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved.

50

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.22 ps6000aGetValuesOverlapped - get rapid block data

PICO_STATUS ps6000aGetValuesOverlapped

(
int16_t handle,
uint64_t startIndex,
uint64_t * noOfSamples,
uint64_t downSampleRatio,
PICO_RATIO_MODE downSampleRatioMode,
uint64_t fromSegmentIndex,
uint64_t toSegmentIndex,
int16_t * overflow

)

This function allows you to make a deferred data-collection request in rapid block mode. The request will be
executed, and the arguments validated, when you call ps68808aRunBlock (). The advantage of this method is
that the driver makes contact with the scope only once, when you call ps6888aRunBlock (), compared with

the two contacts that occur when you use the conventional ps6000aRunBlock (), ps60080@aGetValues()

calling sequence. This slightly reduces the dead time between successive captures in rapid block mode.

After calling ps600@aRunBlock (), you can optionally use ps60008aGetValues () to request further copies
of the data. This might be required if you wish to display the data with different data reduction settings.

Applicability
Rapid block mode

Arguments

handle,

startIndex,

* noOfSamples,

downSampleRatio,

downSampleRatioMode: see ps60@@aGetValues

fromSegmentIndex,
toSegmentIndex,
* overflow, seeps60BPaGetValuesBulk().

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 51

PicoScope 6000 Series (A API) Programmer's Guide

API functions

3.22.1 Using GetValuesOverlapped()

1.
2.
3.

4.

9.
10.
11.

Open the oscilloscope using ps6008alpenUnit ().

Select channel ranges and AC/DC coupling using ps6080808aSetChannelOn().
Using ps6000aGetTimebase (), select timebases until the required nanoseconds per sample is
located.

Use the trigger setup functions ps6000aSetTriggerChannelConditions(),
ps60BBaSetTriggerChannelDirections() and
ps60B0aSetTriggerChannelProperties() to set up the trigger if required.

Use ps600BaSetDataBuffer () totell the driver where your memory buffer is.
Set up the transfer of the block of data from the oscilloscope using

ps60B0aGetValuesOverlapped().
Start the oscilloscope running using ps6888aRunBlock ().
Wait until the oscilloscope is ready using the ps6888aBlockReady () callback (or poll using

ps600BalsReady()).
Display the data.
Repeat steps 7 to 9 if needed.

Stop the oscilloscope by calling ps6888aStop ().

A similar procedure can be used with rapid block mode.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved.

52

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.23 ps6000aGetValuesTriggerTimeOffsetBulk - get
trigger time offsets for multiple segments

PICO_STATUS ps6000aGetValuesTriggerTimeOffsetBulk

(

int16_t handle,

int64_t * times,
PICO_TIME_UNITS * timeUnits,
uint64_t fromSegmentIndex,
uinté4_t toSegmentIndex

)

This function retrieves the trigger time offset for multiple waveforms obtained in block mode or rapid block mode.
Itis a more efficient alternative to calling ps6000aGetTriggerTimeOffset () once for each waveform

required. See ps6000aGetTriggerTimeOffset () foran explanation of trigger time offsets.

Applicability
Rapid block mode

Arguments
handle, the device identifier returned by ps6000alpenUnit ().

* times, anarray of integers. On exit, the time offset for each requested segment index. times[@] will hold
the fromSegmentIndex time offsetandthelast times[] index will hold the toSegmentIndex time
offset. The array must be long enough to hold the number of requested times.

* timeUnits, an array of integers. The array must be long enough to hold the number of requested times. On
exit, timeUnits[@] will contain the time unit for fromSegmentIndex and the last element will contain the
time unit for toSegmentIndex. PICO_TIME_UNITS values are listed under

ps6000aGetTriggerTimeOffset().

fromSegmentIndex, the first segment for which the time offset is required

toSegmentIndex, the last segment for which the time offset is required. If toSegmentIndex is less than
fromSegmentIndex then the driver will wrap around from the last segment to the first.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_DEVICE_SAMPLING
PICO_SEGMENT_OUT_OF _RANGE
PICO_NO_SAMPLES_AVAILABLE
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 53

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.24 ps6000alsReady - get status of block capture

PICO_STATUS ps6000alsReady
(

int16_t handle,
int16_t * ready

)

This function may be used instead of a callback function to receive data from ps6@@@aRunBlock (). Touse

this method, pass a NULL pointer as the 1pReady argument to ps608@8aRunBlock (). You must then poll the
driver to see if it has finished collecting the requested samples.

Applicability
Block mode

Arguments
handle, the device identifier returned by ps608@aOpenUnit().

ready, output: indicates the state of the collection. If zero, the device is still collecting. If non-zero, the device
has finished collecting and ps600@8aGetValues () can be used to retrieve the data.

Returns

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 54

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.25 ps6000aMemorySegments - set number of memory
segments

PICO_STATUS ps60@0aMemorySegments
(

intl16_t handle

uint64_t nSegments,

uint64_t * nMaxSamples

)

This function sets the number of memory segments that the scope will use.

When the scope is opened, the number of segments defaults to 1, meaning that each capture fills the scope's
available memory. This function allows you to divide the memory into a number of segments so that the scope
can store several waveforms sequentially.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6008aOpenUnit().

nSegments, the number of segments required. See data sheet for capacity of each model.

* nMaxSamples, on exit, the number of samples available in each segment. This is the total number over all
channels, so if more than one channel is in use then the number of samples available to each channel is
nMaxSamples divided by the number of channels.

Returns

PICO_OK
PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_TOO_MANY_SEGMENTS
PICO_MEMORY
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 55

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.26 ps6000aMemorySegmentsBySamples - set size of
memory segments

PICO_STATUS ps600@aMemorySegmentsBySamples
(

int16_t handle

uint64_t nSamples,

uint64_t * nMaxSegments

)

This function sets the number of samples per memory segment. Like ps600@aMemorySegments () it controls
the segmentation of the capture memory, but in this case you specify the number of samples rather than the
number of segments.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6000aOpenUnit ().

nSamples, the number of samples required in each segment. See data sheet for capacity of each model. This
is the total number over n channels, where n is the number of enabled channels or MSO ports rounded up to the
next power of 2. For example, with 5 channels or ports enabled, n is 8. If n > 1, the number of segments available
will be reduced accordingly.

* nMaxSegments, on exit, the number of segments into which the capture memory has been divided.

Returns

PICO_OK
PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_TOO_MANY_SEGMENTS
PICO_MEMORY
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 56

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.27 ps6000aNearestSamplelntervalStateless - get
nearest sampling interval

PICO_STATUS ps6000aNearestSampleIntervalStateless

(
int16_t handle,
PICO_CHANNEL_FLAGS enabledChannelFlags,
double timeIntervalRequested,
PICO_DEVICE_RESOLUTION resolution,
uint32_t * timebase,
double * timeIntervalAvailable
)

This function returns the nearest possible sample interval to the requested sample interval. It does not change
the configuration of the oscilloscope

Applicability
All modes

Arguments
handle, the device identifier returned by ps608@aOpenUnit().

enabledChannelFlags, seeps600@aGetMinimumTimebaseStateless().
timeIntervalRequested, thetime interval, in seconds, that you would like to obtain.
resolution, the vertical resolution (number of bits) for which the oscilloscope will be configured.
* timebase, on exit, the number of the nearest available timebase.

* timeIntervalAvailable, on exit, the nearest available time interval, in seconds.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF _RANGE
PICO_TOO_MANY_SAMPLES

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 57

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.28 ps6000aNoOfStreamingValues - get number of
captured samples

PICO_STATUS ps60008aNoOfStreamingValues
(

int16_t handle,

uint64_t * noOfValues

)

This function returns the number of samples available after data collection in streaming mode. Call it after calling

ps60@BaStop().

Applicability
Streaming mode

Arguments
handle, the device identifier returned by ps6000alpenUnit ().

* noOfValues, on exit, the number of samples.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_NULL_PARAMETER
PICO_NO_SAMPLES_AVAILABLE
PICO_NOT_USED

PICO_BUSY
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 58

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.29 ps6000aOpenUnit - open a scope device

PICO_STATUS ps6000alpenUnit

(
int16_t * handle,
int8_t * serial,
PICO_DEVICE_RESOLUTION resolution
)

This function opens a PicoScope 6000E Series scope attached to the computer. The maximum number of units
that can be opened depends on the operating system, the kernel driver and the computer.

Applicability
All modes

Arguments

* handle, on exit, the result of the attempt to open a scope:
-1 :if the scope fails to open
0 :ifnoscopeis found
>0 :anumberthat uniquely identifies the scope
If a valid handle is returned, it must be used in all subsequent calls to API functions to identify this scope.

serial, onentry, anull-terminated string containing the serial number of the scope to be opened. If serialis
NULL then the function opens the first scope found; otherwise, it tries to open the scope that matches the string.

resolution, the required vertical resolution (in bits).

Returns

PICO_OK

PICO_OS_NOT_SUPPORTED
PICO_OPEN_OPERATION_IN_PROGRESS
PICO_EEPROM_CORRUPT
PICO_KERNEL_DRIVER_TOO_OLD
PICO_FW_FAIL
PICO_MAX_UNITS_OPENED
PICO_NOT_FOUND (if the specified unit was not found)
PICO_NOT_RESPONDING
PICO_MEMORY_FAIL
PICO_ANALOG_BOARD
PICO_CONFIG_FAIL_AWG
PICO_INITIALISE_FPGA

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 59

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.30 ps6000a0penUnitAsync - open unit without blocking

PICO_STATUS ps6000alpenUnitAsync

(
intl16_t * status,
int8_t * serial,
PICO_DEVICE_RESOLUTION resolution
)

This function opens a scope without blocking the calling thread. You can find out when it has finished by

periodically calling ps6000aOpenUnitProgress() until that function sets the complete flag to a non-zero
value.

Applicability
All modes

Arguments

* status, a status code:
0 if the open operation was disallowed because another open operation is in progress
1 if the open operation was successfully started

* serial, seeps60088alpenUnit().
resolution, the vertical resolution required.

Returns

PICO_OK
PICO_OPEN_OPERATION_IN_PROGRESS
PICO_OPERATION_FAILED

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 60

PicoScope 6000 Series (A API) Programmer's Guide

API functions

3.31 ps6000a0penUnitProgress - get status of opening a

unit
PICO_STATUS ps6008alOpenUnitProgress

(
int16_t * handle,
int16_t =* progressPercent,
int16_t * complete

)

This function checks on the progress of a request made to ps600@8aOpenUnitAsync () to open a scope.

Applicability
Use after ps60808a0penUnitAsync()

Arguments

* handle, seeps6000aOpenUnit().This handle is valid only if the function returns PICO_OK

* progressPercent, on exit, @ while the operation is in progress, 100 when the operation is complete.

* complete, setto1when the open operation has finished.

Returns

PICO_OK
PICO_NULL_PARAMETER
PICO_OPERATION_FAILED

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved.

61

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.32 ps6000aPingUnit - check if device is still connected

PICO_STATUS ps6000aPingUnit
(

int16_t handle
)

This function can be used to check that the already opened device is still connected to the USB port and
communication is successful.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6000alpenUnit ().

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION
PICO_BUSY
PICO_NOT_RESPONDING

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 62

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.33 ps6000aQueryMaxSegmentsBySamples - get
number of segments

PICO_STATUS ps6000aQueryMaxSegmentsBySamples
(

int16_t handle,

uint64_t nSamples,
uint32_t nChannelEnabled,
uinté64_t * nMaxSegments,
PICO_DEVICE_RESOLUTION resolution

)

This function returns the maximum number of memory segments available given the number of samples per
segment.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6008alpenUnit().

nSamples, the number of samples per segment.
nChannelEnabled, the number of channels enabled.

* nMaxSegments, on exit, the maximum number of segments that can be requested.
resolution, an enumerated type representing the hardware resolution.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_NO_SAMPLES_AVAILABLE
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_SEGMENT_OUT_OF _RANGE
PICO_TOO_MANY_SAMPLES

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 63

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.34 ps6000aQueryOutputEdgeDetect — check if output
edge detection is enabled

PICO_STATUS ps6000aQueryOutputEdgeDetect

(
int16_t handle,

int16_t * state

)
This function reports whether output edge detection mode is currently enabled. The default state is enabled.

To switch output edge detection mode on or off, use ps6088aSetOutputEdgeDetect. See that function
description for more details.

Applicability
All modes

Arguments
handle, the device identifier returned by ps608@aOpenUnit().

* state, on exit, the state of output edge detection:

0 =off
1 =on
Returns

PICO_OK or other code from PicoStatus.h

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 64

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.35 ps6000aRunBlock - start block mode capture

PICO_STATUS ps60068aRunBlock

(
int16_t handle,
uint64_t noOfPreTriggerSamples,
uint64_t noOfPostTriggerSamples,
uint32_t timebase,
double * timeIndisposedMs,
uint64_t segmentIndex,
ps6000aBlockReady 1pReady,
PICO_POINTER pParameter

)

This function starts collecting data in block mode. For a step-by-step guide to this process, see Using block
mode.

The number of samples is determined by noOfPreTriggerSamples and noOfPostTriggerSamples (see
below for details). The total number of samples must not be more than the size of the segment referred to by
segmentIndex.

Applicability
Block mode, rapid block mode

Arguments
handle, the device identifier returned by ps6000alpenUnit ().

noOfPreTriggerSamples, the numberof samples to return before the trigger event. If no trigger has been

set, then this argument is added to noOfPostTriggerSamples to give the maximum number of data points
(samples) to collect.

noOfPostTriggerSamples, the numberof samples to return after the trigger event. If no trigger event has
been set, then this argument is added to noOfPreTriggerSamples to give the maximum number of data

points to collect. If a trigger condition has been set, this specifies the number of data points to collect after a
trigger has fired, and the number of samples to be collected is:

noOfPreTriggerSamples + noOfPostTriggerSamples
timebase, anumberintherange 0to232-1. See the guide to calculating timebase values.

* timeIndisposedMs, on exit, the time in milliseconds that the scope will spend collecting samples. This
does not include any auto trigger timeout. If this pointer is null, nothing will be written here.

segmentIndex, zero-based, specifies which memory segment to use.

1pReady, apointertothe ps6888aBlockReady () callback function that the driver will call when the data
has been collected. To use the ps6888alsReady () polling method instead of a callback function, set this
pointerto NULL.

pParameter, avoid pointerthatis passedtothe ps6888aBlockReady() callback function. The callback
can use this pointer to return arbitrary data to the application.

Returns
PICO_OK
PICO_INVALID_HANDLE

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 65

PicoScope 6000 Series (A API) Programmer's Guide

API functions

PICO_USER_CALLBACK
PICO_SEGMENT_OUT_OF _RANGE
PICO_INVALID_CHANNEL
PICO_INVALID_TRIGGER_CHANNEL
PICO_INVALID_CONDITION_CHANNEL
PICO_TOO_MANY_SAMPLES
PICO_INVALID_TIMEBASE
PICO_NOT_RESPONDING
PICO_CONFIG_FAIL
PICO_INVALID_PARAMETER
PICO_NOT_RESPONDING
PICO_TRIGGER_ERROR
PICO_DRIVER_FUNCTION
PICO_EXTERNAL_FREQUENCY_INVALID
PICO_FW_FAIL

PICO_NOT_ENOUGH_SEGMENTS (in Bulk mode)
PICO_TRIGGER_AND_EXTERNAL_CLOCK_CLASH

PICO_PWQ_AND_EXTERNAL_CLOCK_CLASH
PICO_PULSE_WIDTH_QUALIFIER

PICO_SEGMENT_OUT_OF _RANGE (in Overlapped mode)
PICO_STARTINDEX_INVALID (in Overlapped mode)
PICO_INVALID_SAMPLERATIO (in Overlapped mode)

PICO_CONFIG_FAIL

PICO_SIGGEN_GATING_AUXIO_ENABLED (signal generatoris set to trigger on AUX input with incompatible

trigger type)

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved.

66

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.36 ps6000aRunStreaming - start streaming mode

capture

PICO_STATUS ps6008aRunStreaming

(
int16_t handle,
double * samplelnterval,
PICO_TIME_UNITS sampleIntervalTimeUnits
uint64_t maxPreTriggerSamples,
uint64_t maxPostTriggerSamples,
intl16_t autoStop,
uint64_t downSampleRatio,
PICO_RATIO_MODE downSampleRatioMode

)

This function tells the oscilloscope to start collecting data in streaming mode. The device can return either raw or
downsampled data to your application while streaming is in progress. Call

ps6000aGetStreaminglatestValues() toretrieve the data. See Using streaming mode for a step-by-step
guide to this process.

When a trigger is set, the total number of samples is the sum of maxPreTriggerSamples and

maxPostTriggerSamples.If autoStop is false then this will become the maximum number of samples
without downsampling.

When downsampled data is returned, the raw samples remain stored on the device. The maximum number of raw
samples that can be retrieved after streaming has stopped is (scope's memory size) / (resolution data size *
channels), where channels is the number of active channels rounded up to a power of 2.

Applicability
Streaming mode

Arguments
handle, the device identifier returned by ps6000aOpenUnit ().

* samplelInterval, on entry, the requested time interval between samples; on exit, the actual time interval
used

sampleIntervalTimeUnits, the unitof time used for sampleInterval. Use one of these values:
PICO_FS
PICO_PS
PICO_NS
PICO_US
PICO_MS
PICO_S

maxPreTriggerSamples, the maximum number of raw samples before a trigger event for each enabled
channel. If no trigger condition is set this argument is ignored.

maxPostTriggerSamples, the maximum number of raw samples after a trigger event for each enabled
channel. If no trigger condition is set, this argument states the maximum number of samples to be stored.

autoStop, aflagthat specifies if the streaming should stop when all of maxSamples have been captured.

downSampleRatio, downSampleRatioMode: seeps6000aGetValues().

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 67

PicoScope 6000 Series (A API) Programmer's Guide

API functions

Returns

PICO_OK

PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_NULL_PARAMETER
PICO_INVALID_PARAMETER
PICO_STREAMING_FAILED
PICO_NOT_RESPONDING
PICO_TRIGGER_ERROR
PICO_INVALID_SAMPLE_INTERVAL
PICO_INVALID_BUFFER
PICO_DRIVER_FUNCTION
PICO_EXTERNAL_FREQUENCY_INVALID
PICO_FW_FAIL

PICO_TRIGGER_AND_EXTERNAL_CLOCK_CLASH

PICO_PWQ_AND_EXTERNAL_CLOCK_CLASH
PICO_MEMORY

PICO_SIGGEN_GATING_AUXIO_ENABLED (signal generatoris set to trigger on AUX input with incompatible

trigger type)

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved.

68

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.37 ps6000aSetChannelOff - disable one channel

PICO_STATUS ps6000aSetChannelOff

(
int16_t handle,
PICO_CHANNEL channel
)
This function switches an analog input channel off. It has the opposite function to
ps600@aSetChannelOn().
Applicability
All modes
Arguments

handle, the device identifier returned by ps600@aOpenUnit().

channel, see ps600808aSetChannelOn().

Returns

PICO_OK
PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 69

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.38 ps6000aSetChannelOn - enable and set options for

one channel

PICO_STATUS ps600B8aSetChannelOn

(
int16_t handle,
PICO_CHANNEL channel,
PICO_COUPLING coupling,
PICO_CONNECT_PROBE_RANGE range,
double analogueOffset,
PICO_BANDWIDTH_LIMITER bandwidth

)

This function switches an analog input channel on and specifies its input coupling type, voltage range, analog
offset and bandwidth limit. Some of the arguments within this function have model-specific values. Consult the
relevant section below according to the model you have.

To switch off again, use ps688@8aSetChannel0ff ().
For digital ports, see ps600@aSetDigitalPortOn().

Applicability
All modes

Arguments
handle, the device identifier returned by ps608@aOpenUnit().

channel, the channel to be configured. The values (subject to the number of channels on your oscilloscope
model) are:
PICO_CHANNEL_A, PICO_CHANNEL_B, PICO_CHANNEL_C, PICO_CHANNEL_D,
PICO_CHANNEL E, PICO_CHANNEL _F, PICO_CHANNEL G, PICO_CHANNEL H

coupling, the impedance and coupling type. The values supported are:

PICO_AC, 1 MQ impedance, AC coupling. The channel accepts input frequencies from about 1 hertz up to
its maximum -3 dB analog bandwidth.

PICO_DC, 1 MQ impedance, DC coupling. The scope accepts all input frequencies from zero (DC) up to its
maximum -3 dB analog bandwidth.

PICO_DC_500HM, 50 Q impedance, DC coupling. The higher-voltage input ranges may not be available in this
mode - consult data sheet.

range, the input voltage range:
PICO_16MV: +10mV
PICO_26MV: +20mV
PICO_56MV: 50mV
PICO_108MV: +100 mV
PICO_288MV: +200 mV
PICO_508MV: 500 mV

PICO_1V: 1V
PICO 2V: 2V
PICO 5V: 5V

PICO_10V: 10V *
PICO _20V: 20V *

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 70

PicoScope 6000 Series (A API) Programmer's Guide API functions

* not available when coupling = PICO_DC_56R
analogueOffset, avoltage to add to the input channel before digitization.

bandwidth, the bandwidth limiter setting:
PICO_BW_FULL: the scope's full specified bandwidth
PICO_BW_20MHZ: -3 dB bandwidth limited to 20 MHz
PICO_BW_200MHZ: -3 dB bandwidth limited to 200 MHz (for scopes with 750 MHz bandwidth and above)

Returns

PICO_OK

PICO_USER_CALLBACK
PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL
PICO_INVALID_VOLTAGE_RANGE
PICO_INVALID_COUPLING
PICO_COUPLING_NOT_SUPPORTED
PICO_INVALID_ANALOGUE_OFFSET
PICO_INVALID_BANDWIDTH
PICO_BANDWIDTH_NOT_SUPPORTED
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 71

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.39 ps6000aSetDataBuffer - provide location of data
buffer

PICO_STATUS ps6000aSetDataBuffer

(
int16_t handle,
PICO_CHANNEL channel,
PICO_POINTER buffer,
int32_t nSamples,
PICO_DATA_TYPE dataType,
uint64_t waveform,
PICO_RATIO_MODE downSampleRatioMode,
PICO_ACTION action

)

This function tells the driver where to store the data, either unprocessed or downsampled, that will be returned
after the next call to one of the GetValues functions. The function allows you to specify only a single buffer, so
for aggregation mode, which requires two buffers, you must call ps60@0aSetDataBuffers() instead.

The buffer persists between captures until it is replaced with another buffer orbuffer is set to NULL. The
buffer can be replaced at any time between calls to ps6000aGetValues().

You must allocate memory for the buffer before calling this function.

Applicability
Block, rapid block and streaming modes. All downsampling modes except aggregation.

Arguments
handle, the device identifier returned by ps6000alpenUnit ().

channel, the channel you want to use with the buffer.
buffer, the location of the buffer.
nSamples, the length of the buffer array.

dataType, the data type that you wish to use for the sample values:
PICO_INTS8_T, 8-bit signed integer
PICO_INT16_T, 16-bit signed integer
PICO_INT32_T, 32-bitsigned integer
PICO_UINT32_T, 32-bitunsigned integer
PICO_INT64_T, 64-bit signedinteger

waveform, the segmentindex.

downSampleRatioMode, the downsampling mode. See ps68808aGetValues() forthe available modes,
but note that a single call to ps600@0aSetDataBuffer () can only associate one buffer with one
downsampling mode. If you intend to call ps600@aGetValues () with more than one downsampling mode

activated, then you must call ps608@808aSetDataBuffer() several times to associate a separate buffer with
each downsampling mode.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 72

PicoScope 6000 Series (A API) Programmer's Guide API functions

action, the methodto use when creating the buffer. The buffers are added to a unique list for the channel,
data type and segment. Therefore you must use PICO_CLEAR_ALL to remove all buffers already written.
PICO_ACTION values can be ORed together to allow clearing and adding in one call.

Returns

PICO_OK

PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL
PICO_RATIO_MODE_NOT_SUPPORTED
PICO_DRIVER_FUNCTION
PICO_INVALID_PARAMETER

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 73

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.40 ps6000aSetDataBuffers - provide locations of both
data buffers

PICO_STATUS ps6000aSetDataBuffers

(
int16_t handle,
PICO_CHANNEL channel,
PICO_POINTER bufferMax,
PICO_POINTER bufferMin,
int32_t nSamples,
PICO_DATA_TYPE dataType,
uint64_t waveform,
PICO_RATIO_MODE downSampleRatioMode,
PICO_ACTION action

)

This function tells the driver the location of one or two buffers for receiving data. You need to allocate memory for
the buffers before calling this function. If you do not need two buffers, because you are not using aggregate

mode, then you can optionally use ps688@aSetDataBuffer () instead.

Applicability
Block and streaming modes with aggregation.

Arguments
handle, the device identifier returned by ps600@aOpenUnit().

channel, the channel for which you want to set the buffers.

* bufferMax, abufferto receive the maximum data values in aggregation mode, or the non-aggregated
values otherwise.

* bufferMin, abufferto receive the minimum aggregated data values. Not used in other downsampling
modes.

nSamples,
dataType,
waveform, seeps60B0aSetDataBuffer().

downSampleRatioMode, the downsampling mode. See ps68808aGetValues() forthe available modes,
but note that a single call to ps6888aSetDataBuffer () can only associate one buffer with one
downsampling mode. If you intend to call ps68@8@8aGetValues () with more than one downsampling mode

activated, then you must call ps600@aSetDataBuffer () several times to associate a separate buffer with
each downsampling mode.

action, seeps6@B@aSetDataBuffer

Returns

PICO_OK

PICO_INVALID_HANDLE
PICO_INVALID_CHANNEL
PICO_RATIO_MODE_NOT_SUPPORTED
PICO_DRIVER_FUNCTION
PICO_INVALID_PARAMETER

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 74

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.41 ps6000aSetDeviceResolution — set the hardware

resolution
PICO_STATUS ps6000aSetDeviceResolution
(
int16_t handle,
PICO DEVICE RESOLUTION resolution
)

This function sets the sampling resolution of the device. At 10-bit and higher resolutions, the maximum capture
buffer length is half that of 8-bit mode. When using 12-bit resolution only 2 channels can be enabled to capture
data.

When you change the device resolution, the driver discards all previously captured data.

After changing the resolution and before calling ps6888aRunBlock () or ps608@8aRunStreaming(), call
ps60080aSetChannelOn() to set up the input channels.

Applicability
All modes.

Arguments
handle, the device identifier returned by ps608@aOpenUnit().

resolution, determines the resolution of the device when opened, the available values are one of the
PICO DEVICE RESOLUTION.

Returns
PICO_INVALID_DEVICE_RESOLUTION if resolution is out of range.

3.41.1 PICO_DEVICE_RESOLUTION enumerated type

typedef enum enPicoDeviceResolution

{

PICO_DR_8BIT = 9,
PICO_DR_12BIT = 1,
PICO_DR_10BIT = 10,

} PICO_DEVICE_RESOLUTION;

These values specify the resolution of the sampling hardware in the oscilloscope. Each mode divides the input
voltage range into a number of levels as listed below.

Applicability
Calls tops600@aSetDeviceResolution() etc.

Values

PICO_DR_8BIT — 8-bit resolution (256 levels)
PICO_DR_10BIT - 10-bit resolution (1024 levels)
PICO_DR_12BIT - 12-bit resolution (4096 levels)

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 75

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.42 ps6000aSetDigitalPortOff — switch off digital inputs

PICO_STATUS ps6000aSetDigitalPortOff
(

int16_t handle,
PICO_CHANNEL port

)

This function switches off one or more digital ports.

Applicability
Block and streaming modes with aggregation.

Arguments
handle, the device identifier returned by ps6008aOpenUnit ().

port, seeps60@@aSetDigitalPortOn().

Returns

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 76

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.43 ps6000aSetDigitalPortOn — set up and enable digital

inputs
PICO_STATUS ps6600aSetDigitalPortOn
(
int16_t handle,
PICO_CHANNEL port,
int16_t * logicThresholdLevel,
int16_t logicThresholdLevellength,
PICO_DIGITAL_PORT_HYSTERESIS hysteresis
)

This function switches on one or more digital ports and sets the logic thresholds.

Refer to the data sheet for the fastest sampling rates available with different combinations of analog and digital

inputs. In most cases the fastest rates will be obtained by disabling all analog channels. When all analog
channels are disabled you must also select 8-bit resolution to allow the digital inputs to operate alone.

Applicability
Block and streaming modes with aggregation.

Arguments
handle, the device identifier returned by ps6000alpenUnit ().

port, identifies the MSO port:
PICO_DIGITAL_PORTO = 128 (Digital 1 port: digital channels 1D0-1D7)
PICO_DIGITAL_PORT1 = 129 (Digital 2 port: digital channels 2D0-2D7)

* logicThresholdLevel, on entry, alist of threshold voltages, one for each port pin, used to distinguish
the 0 and 1 states. Range: —32 767 (-5 V) t0 32 767 (+5 V).

logicThresholdLevellength, the numberof itemsinthe logicThresholdLevel list.

hysteresis, the hysteresis to apply to all channels in the port:
PICO_VERY_HIGH_400MV
PICO_HIGH_2606MV
PICO_NORMAL_1066MV
PICO_LOW_506MV

Returns

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved.

77

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.44 ps6000aSetNoOfCaptures - modify rapid block
mode

PICO_STATUS ps6000aSetNoOfCaptures

(
int16_t handle,

uint64_t nCaptures

)

This function sets the number of captures to be collected in one run of rapid block mode. If you do not call this
function before a run, the driver will capture only one waveform.

Applicability
Rapid block mode

Arguments
handle, the device identifier returned by ps600@aOpenUnit().

nCaptures, the number of waveforms to capture in one run.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_INVALID_PARAMETER
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 78

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.45 ps6000aSetOutputEdgeDetect — change triggering
behavior

PICO_STATUS ps6000aSetOutputEdgeDetect

(
int16_t handle,

intl16_t state

)

This function enables or disables output edge detection mode for the logic trigger. Output edge detection is
enabled by default and should be left enabled for normal operation.

The oscilloscope normally triggers only when the output of the trigger logic function changes state. For example,
if the function is "A high AND B high", the oscilloscope triggers when A is high and B changes from low to high,

but does not repeatedly trigger when A and B remain high. Calling ps6000aSetOutputEdgeDetect () with

state = 0 changes this behavior so that the oscilloscope triggers continually while the logic trigger function
evaluates to TRUE.

To find out whether output edge detection is enabled, use ps60008aQueryQutputEdgeDetect ().

Applicability
Rapid block mode

Arguments
handle, the device identifier returned by ps608@aOpenUnit().

state, the desired state of output edge detection:

0 = off
1 = on
Returns

PICO_OK or other code from PicoStatus.h

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 79

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.46 ps6000aSetPulseWidthQualifierConditions - specify
how to combine channels

PICO_STATUS ps6000aSetPulseWidthQualifierConditions

(
int16_t handle,
PICO CONDITION * conditions,
int16_t nConditions,
PICO_ACTION action

)

This function is used to set conditions for the pulse width qualifier, which is an optional input to the triggering
condition.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6000aOpenUnit ().

* conditions, onentry, an array of structures specifiying the pulse width qualifier conditions. See
PICO_CONDITION.

nConditions, the number of structures inthe conditions array.

action, how to combine the array of conditions with existing pulse width qualifier conditions. See

ps6000aSetTriggerChannelConditions() forthe list of actions.

Returns
PICO_OK

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 80

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.47 ps6000aSetPulseWidthQualifierDirections - specify
threshold directions

PICO_STATUS ps6000aSetPulseWidthQualifierDirections

(
int16_t handle,
PICO_DIRECTION * directions,
int16_t nDirections
)

This function is used to set directions for the pulse width qualifier, which is an optional input to the triggering
condition.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6000alpenUnit ().

* directions, anarray of structures specifying the pulse width qualifier directions. See PICO_DIRECTION.

nDirections, the number of structuresinthe directions array.

Returns
PICO_OK

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 81

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.48 ps6000aSetPulseWidthQualifierProperties - specify
threshold logic

PICO_STATUS ps6000aSetPulseWidthQualifierProperties

(
int16_t handle,
uint32_t lower,
uint32_t upper,
PICO_PULSE_WIDTH_TYPE type

)

This function is used to set parameters for the pulse width qualifier, which is an optional input to the triggering
condition.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6000aOpenUnit ().

lower, the lower pulse width threshold.
upper, the upper pulse width threshold.

type, the pulse width qualifier type:
PICO_PW_TYPE_NONE = @, no pulse width qualifier required
PICO_PW_TYPE_LESS_THAN = 1, pulse width must be less than threshold
PICO_PW_TYPE_GREATER_THAN = 2, pulse width must be greater than threshold
PICO_PW_TYPE_IN_RANGE = 3, pulse width must be between two thresholds
PICO_PW_TYPE_OUT_OF_RANGE = 4, pulse width must not be between two thresholds

Returns
PICO_OK

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 82

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.49 ps6000aSetSimpleTrigger - set up triggering

PICO_STATUS ps6000aSetSimpleTrigger

(

int16_t handle,

int16_t enable,

PICO_CHANNEL source,

int16_t threshold,

PICO_THRESHOLD DIRECTION direction,

uinté4_t delay,

uint32_t autoTriggerMicroSeconds
)

This function simplifies arming the trigger. It supports only the LEVEL trigger types and does not allow more than
one channel to have a trigger applied to it. Any previous pulse width qualifier is canceled.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6008aOpenUnit().

enable :disable (0) or enable (1) the trigger.

source : the channel on which to trigger. This can be any of the input channels listed under

ps6000@aSetChannellOn()

threshold: the ADC count at which the trigger will fire.

direction: the direction in which the signal must move to cause a trigger. The following directions are
supported: ABOVE, BELOW, RISING, FALLING and RISING_OR_FALLING

delay : the time between the trigger occurring and the first sample being taken.
autoTriggerMicroSeconds : the number of microseconds the device will wait if no trigger occurs.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 83

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.50 ps6000aSetTriggerChannelConditions - set
triggering logic

PICO_STATUS ps6000aSetTriggerChannelConditions

(
int16_t handle,
PICO_CONDITION * conditions,
int16_t nConditions,
PICO_ACTION action

)

This function sets up trigger conditions on the scope's inputs. The trigger is defined by one or more
PICO_CONDITION structures that are then ORed together. Each structure is itself the AND of the states of one
or more of the inputs. This AND-OR logic allows you to create any possible Boolean function of the scope's
inputs.

If complex triggering is not required, use ps60@0aSetSimpleTrigger().

Applicability
All modes

Arguments
handle, the device identifier returned by ps6008aOpenUnit().

conditions, anarray of PICO_CONDITION structures specifying the conditions that should be applied to
each channel. In the simplest casg, the array consists of a single element. When there is more than one element,
the overall trigger condition is the logical OR of all the elements.

nConditions, the number of elements inthe conditions array. If nConditions is zero then triggering is
switched off.

action, specifies how toapplythe PICO_CONDITION array to any existing trigger conditions:
PICO_CLEAR_ALL = 0x00000001
PICO_ADD = 0x00000002

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_CONDITIONS
PICO_MEMORY_FAIL
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 84

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.50.1 PICO_CONDITION structure
A structure of this type is passedto ps60@808aSetTriggerChannelConditions() inthe conditions

argument to specify the trigger conditions, and is defined as follows:

typedef struct tPicoCondition
{
PICO_CHANNEL source;
PICO_TRIGGER_STATE condition;
} PICO_CONDITION

Each structure is the logical AND of the states of the scope's inputs. The

ps6000aSetTriggerChannelConditions() function can OR together a number of these structures to

produce the final trigger condition, which can be any possible Boolean function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements
source, the signal that forms an input to the trigger condition:
PICO_CHANNEL_A, PICO_CHANNEL_B, PICO_CHANNEL_C, PICO_CHANNEL_D,
PICO_CHANNEL_E, PICO_CHANNEL_F, PICO_CHANNEL_G, PICO_CHANNEL_H, one of the analog
input channels
PICO_PORTO, MSO port Digital 1 (channels 1D0-1D7)
PICO_PORT1, MSO port Digital 2 (channels 2D0-2D7)
PICO_TRIGGER_AUX, the AUXinput
PICO_PULSE_WIDTH_SOURCE, the output of the pulse width qualifier

condition, the type of condition that should be applied to each channel. Use these constants:
PICO_CONDITION_DONT_CARE
PICO_CONDITION_TRUE
PICO_CONDITION_FALSE

The channels that are setto PICO_CONDITION TRUE orPICO_CONDITION_ FALSE must all meet their
conditions simultaneously to produce a trigger. Channels setto PICO_CONDITION DONT_ CARE are ignored.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 85

PicoScope 6000 Series (A API) Programmer's Guide

API functions

3.51 ps6000aSetTriggerChannelDirections - set trigger

directions
PICO_STATUS ps6000aSetTriggerChannelDirections
(
int16_t handle,
PICO_DIRECTION * directions,
int16_t nDirections
)
This function sets the direction of the trigger for one or more channels.
Applicability
All modes
Arguments

handle, the device identifier returned by ps6000alpenUnit ().

* directions, anarray of structures specifying the trigger direction for each channel. See

PICO_DIRECTION.
nDirections, the number of structures inthe directions array.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_INVALID_PARAMETER

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved.

86

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.51.1 PICO_DIRECTION structure
A structure of this type is passedto ps60808aSetTriggerChannelDirections() inthedirections

argument to specify the trigger directions, and is defined as follows:

typedef struct tPicoDirection

{
PICO_CHANNEL channel;
PICO_THRESHOLD_DIRECTION direction;
PICO_THRESHOLD_MODE thresholdMode;

} PICO_DIRECTION

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements
channel, the channel whose direction you want to set.

direction, the direction required for the channel.
thresholdMode, the type of threshold to use.

PICO_THRESHOLD_DIRECTION values:

Constant Trigger type Threshold Polarity
PICO_ABOVE = © Gated Upper Above
PICO_ABOVE_LOWER = 5 Gated Lower Above
PICO_BELOW = 1 Gated Upper Below
PICO_BELOW_LOWER = 6 Gated Lower Below
PICO_RISING = 2 Threshold Upper Rising
PICO_RISING_LOWER = 7 Threshold Lower Rising
PICO_FALLING = 3 Threshold Upper Falling
PICO_FALLING_LOWER = 8 Threshold Lower Falling
PICO_RISING_OR_FALLING = 4 Threshold Lower (for rising edge)

Upper (for falling edge)
PICO_INSIDE = @ Window-qualified Both Inside
PICO_QUTSIDE = 1 Window-qualified Both Outside
PICO_ENTER = 2 Window Both Entering
PICO_EXIT = 3 Window Both Leaving
PICO_ENTER_OR_EXIT = 4 Window Both Either entering or leaving
PICO_POSITIVE_RUNT = 9 Window-qualified Both Entering from below
PICO_NEGATIVE_RUNT Window-qualified Both Entering from above
PICO_LOGIC_LOWER = 1000 Logic Lower
PICO_LOGIC_UPPER = 1001 Logic Upper
PICO_NONE = 2 None None None
PICO_THRESHOLD_MODE values:
Constant Mode
PICO_LEVEL = © Active when input is above or below a single threshold
PICO_WINDOW = 1 Active when input is between two thresholds

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 87

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.52 ps6000aSetTriggerChannelProperties - set up
triggering

PICO_STATUS ps6000aSetTriggerChannelProperties

(
int16_t handle,
PICO_TRIGGER_CHANNEL_PROPERTIES * channelProperties
int16_t nChannelProperties
int16_t auxOutputEnable,
uint32_t autoTriggerMicroSeconds
)
This function is used to enable or disable triggering and set its parameters.
Applicability
All modes
Arguments

handle, the device identifier returned by ps6008aOpenUnit().

channelProperties, apointertoan array of TRIGGER_CHANNEL PROPERTIES structures describing the
requested properties. The array can contain a single element describing the properties of one channel, or a
number of elements describing several channels. If NULL is passed, triggering is switched off.

nChannelProperties, the size of the channelProperties array. If zero, triggering is switched off.
auxOutputEnable: notused

autoTriggerMicroSeconds, the time in microseconds for which the scope device will wait before
collecting data if no trigger event occurs. If this is set to zero, the scope device will wait indefinitely for a trigger.

Returns

PICO_OK

PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_TRIGGER_ERROR
PICO_MEMORY_FAIL
PICO_INVALID_TRIGGER_PROPERTY
PICO_DRIVER_FUNCTION
PICO_INVALID_PARAMETER

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 88

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.52.1 TRIGGER_CHANNEL_PROPERTIES structure
A structure of this type is passedto ps68@80aSetTriggerChannelProperties() inthe

channelProperties argument to specify the trigger mechanism, and is defined as follows:

typedef struct tTriggerChannelProperties

{
int16_t thresholdUpper;
uintl16_t thresholdUpperHysteresis;
int16_t thresholdLower;
uint16_t thresholdLowerHysteresis;

PICO_CHANNEL channel;
} PICO_TRIGGER_CHANNEL_PROPERTIES

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

There are two trigger thresholds called Upper and Lower. Each trigger type uses one or other of these

thresholds, or both, as specified in ps6000aSetTriggerChannelDirections (). Each trigger threshold has

its own hysteresis setting.

Elements

thresholdUpper, the upper threshold at which the trigger fires. It is scaled in 16-bit ADC counts at the
currently selected range for that channel. Use when "Upper" or "Both" is specified in

ps600@aSetTriggerChannelDirections().
hysteresisUpper, the distance by which the signal must fall below the upper threshold (for rising edge
triggers) or rise above the upper threshold (for falling edge triggers) in order to rearm the trigger for the next event.

Itis scaled in 16-bit counts.

thresholdLower, lowerthreshold (see thresholdUpper). Use when "Lower" or "Both" is specified in

ps600@BaSetTriggerChannelDirections().

hysteresisLower, lower threshold hysteresis (see hysteresisUpper).

channel, the channel to which the properties apply. This can be one of the input channels listed under

ps60080aSetChannelOn().

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 89

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.53 ps6000aSetTriggerDelay - set post-trigger delay

PICO_STATUS ps60@0aSetTriggerDelay
(

int16_t handle,

uint64_t delay

)

This function sets the post-trigger delay, which causes capture to start a defined time after the trigger event.

Applicability
Block and rapid block modes

Arguments
handle, the device identifier returned by ps6008aOpenUnit ().

delay, thetime between the trigger occurring and the first sample. For example, if delay=1080, the scope

would wait 100 sample periods before sampling. At a timebase of 5 GS/s, or 200 ps per sample (timebase=0),
the total delay would then be 100 x 200 ps = 20 ns.
Range: 0 to MAX_DELAY COUNT.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 90

PicoScope 6000 Series (A API) Programmer's Guide

API functions

3.54 ps6000aSetTriggerDigitalPortProperties - set port

directions
PICO_STATUS ps6000aSetTriggerDigitalPortProperties
(
int16_t handle,
PICO_CHANNEL port,
PICO_DIGITAL_CHANNEL_DIRECTIONS * directions,
int16_t nDirections
)
This function is used to enable or disable triggering and set its parameters.
Applicability
All modes
Arguments

handle, the device identifier returned by ps6008aOpenUnit ().

port, identifies the digital port on the oscilloscope:
PICO_PORT®O: Digital 1 port (channels 1D0-1D7)
PICO_PORT1: Digital 2 port (channels 2D0-2D7)

* directions, an array of structures specifying the channel directions.
nDirections, the numberof itemsinthe directions array.

Returns
PICO_OK

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved.

91

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.94.1 PICO_DIGITAL_CHANNEL_DIRECTIONS structure
Alist of structures of this type is passedto ps6000aSetTriggerDigitalPortProperties() inthe

directions argument to specify the digital channel trigger directions, and is defined as follows:

typedef struct tDigitalChannelDirections

{
PICO_PORT_DIGITAL_CHANNEL channel;

PICO_DIGITAL_DIRECTION direction;
} PICO_DIGITAL_CHANNEL_DIRECTIONS

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements
channel, identifies the digital channel from PICO_PORT_DIGITAL_CHANNEL® upto
PICO_PORT_DIGITAL_CHANNEL7.

direction, the trigger direction from the following list:

PICO_DIGITAL_DONT_CARE: channel has no effect on trigger
PICO_DIGITAL_DIRECTION_LOW: channel must be low to trigger
PICO_DIGITAL_DIRECTION_HIGH: channel must be high to trigger
PICO_DIGITAL_DIRECTION_RISING: channel must transition from low to high to trigger
PICO_DIGITAL_DIRECTION_FALLING: channel must transition from high to low to trigger

PICO_DIGITAL_DIRECTION_RISING_OR_FALLING: any transition on channel causes a trigger

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 92

PicoScope 6000 Series (A API) Programmer's Guide

API functions

3.55 ps6000aSigGenApply - set output parameters

PICO_STATUS ps6000aSigGenApply

(
int16_t handle,
int16_t sigGenEnabled,
int16_t sweepEnabled,
int16_t triggerEnabled,
int16_t automaticClockOptimisationEnabled,
int16_t overrideAutomaticClockAndPrescale,
double * frequency,
double * stopFrequency,
double * frequencyIncrement,
double * dwellTime
)
This function controls a number of parameters for the signal generator.
Applicability
All modes
Arguments

handle, the device identifier returned by ps6008aOpenUnit ().
sigGenEnabled, switches the signal generator on (1) or off (0).
sweepEnabled, switches sweep mode on (1) or off (0).

triggerEnabled, switches triggering on (1) or off (0).

automaticClockOptimisationEnabled, switches clock optimization on (1) or off (0).

overrideAutomaticClockAndPrescale, switches automatic clock and prescale override on or off:
0 = override off: ignore parameters set by ps60008aSigGenClockManual() and use the specified start

and stop frequencies.

1 = override on: use parameters set by ps6888aSigGenClockManual() and ignore the specified start and

stop frequencies.

* frequency, the signal generator frequency (or start frequency in sweep mode).

* stopFrequency, the signal generator frequency at the end of the sweep.
* frequencyIncrement, the frequency step size in sweep mode.
* dwellTime, the time in seconds between frequency steps in sweep mode.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION
PICO_NOT_RESPONDING

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved.

93

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.596 ps6000aSigGenClockManual - control signal
generator clock
PICO_STATUS ps60008aSigGenClockManual

(
int16_t handle,
double dacClockFrequency,
uint64_t prescaleRatio
)
This function allows direct control of the signal generator clock.
Applicability
All modes
Arguments

handle, the device identifier returned by ps6000alpenUnit ().
dacClockFrequency, the clock frequency of the DAC (digital-to-analog converter).

prescaleRatio, the ratio to program into the prescaler. The prescaler allows the precise generation of low
frequencies:
sample frequency =dacClockFrequency / prescaleRatio

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION
PICO_NOT_RESPONDING

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 94

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.57 ps6000aSigGenFilter - switch output filter on or off

PICO_STATUS ps6000aSigGenFilter

(
int16_t handle,

PICO_SIGGEN_FILTER_STATE filterState
)

This function controls the filter on the output of the signal generator. The filter can be used to remove unwanted
high-frequency synthesizer noise.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6000aOpenUnit ().

filterState, can be seton or off, or put in automatic mode.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_DRIVER_FUNCTION
PICO_NOT_RESPONDING

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 95

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.58 ps6000aSigGenFrequency - set output frequency

PICO_STATUS ps6000aSigGenFrequency

(
int16_t handle,
double frequencyHz
)
This function sets the frequency of the signal generator.
Applicability
All modes
Arguments

handle, the device identifier returned by ps6008aOpenUnit ().
frequencyHz, the desired frequency in hertz.

Returns
PICO_OK oracode fromPicoStatus.h

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 96

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.59 ps6000aSigGenFrequencyLimits - get limits in
sweep mode

PICO_STATUS ps6000aSigGenFrequencylLimits

(
int16_t handle,
PICO_WAVE_TYPE waveType,
uint64_t * numSamples,
double * startFrequency,
int16_t sweepEnabled,
double * manualDacClockFrequency,
uint64_t * manualPrescaleRatio,
double * maxStopFrequencyOut,
double * minFrequencyStepOut,
double * maxFrequencyStepOut,
double * minDwellTimeOut,
double * maxDwellTimeOut
)
This function queries the maximum and minimum values for the signal generator in frequency sweep mode.
Applicability
All models
Arguments

handle, the device identifier returned by ps6008aOpenUnit ().
waveType, the waveform that you intend to use.
* numSamples, for arbitrary waveforms only, the number of samples in the AWG buffer.

* startFrequency, forfixed-frequency mode, the desired frequency; for frequency sweep mode, the desired
start frequency.

sweepEnabled, whether sweep mode is required (1) or not required (0).

* manualDacClockFrequency, on exit, the clock frequency to be written to the DAC using

ps6000aSigGenClockManual().

* manualPrescaleRatio, on exit, the prescale ratio to be written to the DAC using

ps6000aSigGenClockManual ().

* maxStopFrequencyOut, on exit, the highest possible stop frequency for frequency sweep mode.
* minFrequencyStepOut, on exit, the smallest possible frequency step for frequency sweep mode.
* maxFrequencyStepOut, on exit, the largest possible frequency step for frequency sweep mode.
* minDwellTimeOut, on exit, the smallest possible dwell time for frequency sweep mode.

* maxDwellTimeOut, on exit, the largest possible dwell time for frequency sweep mode.

Returns
PICO_OK

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 97

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.60 ps6000aSigGenFrequencySweep - set signal
generator to frequency sweep mode

PICO_STATUS ps6000aSigGenFrequencySweep

(
int16_t handle,
double stopFrequencyHz,
double frequencyIncrement,
double dwellTimeSeconds,
PICO_SWEEP_TYPE sweepType

)

This function sets frequency sweep parameters for the signal generator. It assumes that you have previously

called ps6000aSigGenFrequency () to set the start frequency.

Applicability
Signal generator.

Arguments
handle, the device identifier returned by ps608@aOpenUnit().

stopFrequencyHz, the frequency in hertz at which the sweep should stop.

frequencyIncrement, the amount by which the frequency should change, in hertz, at each step of the
sweep.

dwellTimeSeconds, the time for which the generator should wait between frequency steps.

sweepType, the direction of the sweep, from the following list:
PICO_UP = @, tosweepfromstartFrequency uptostopFrequency andthen repeat.
PICO_DOWN = 1, tosweepfromstartFrequency downtostopFrequency andthen repeat.
PICO_UPDOWN = 2, tosweepfromstartFrequency uptostopFrequency, thendownto
startFrequency, and then repeat.
PICO_DOWNUP = 3, tosweepfromstartFrequency downtostopFrequency, thenupto
startFrequency, and then repeat.

Returns
PICO_OK oracode fromPicoStatus.h

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 98

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.61 ps6000aSigGenLimits - get signal generator

para meters
PICO_STATUS ps6000aSigGenLimits
(
int16_t handle,
PICO_SIGGEN_PARAMETER parameter,
double * minimumPermissibleValue,
double * maximumPermissibleValue,
double * step
)
This function queries the maximum and minimum allowable values for a given signal generator parameter.
Applicability
All models
Arguments

handle, the device identifier returned by ps6008aOpenUnit().

parameter, one of the following enumerated values:
PICO_SIGGEN_PARAM_OUTPUT_VOLTS = 0, the signal generator output voltage
PICO_SIGGEN_PARAM_SAMPLE 1, the value of a sample in the arbitrary waveform buffer
PICO_SIGGEN_PARAM_BUFFER_LENGTH 2, the length of the arbitrary waveform buffer,in samples

* minimumPermissibleValue, on exit, the minimum value
* maximumPermissibleValue, on exit, the maximum value
* step, on exit, the smallest increment in the parameter that will cause a change in the signal generator output.

Returns
PICO_OK

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 99

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.62 ps6000aSigGenPause - stop the signal generator

PICO_STATUS ps6000aSigGenPause
(

int16_t handle
)

This function stops the signal generator. The output will remain at a constant voltage until the generator is

restarted with ps600808aSigGenRestart().

Applicability
All modes

Arguments
handle, the device identifier returned by ps6008aOpenUnit ().

Returns
PICO_OK oracode fromPicoStatus.h

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 100

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.63 ps6000aSigGenPhase - set signal generator phase

PICO_STATUS ps6000aSigGenPhase
(

int16_t handle,
uint64_t deltaPhase

)

This function sets the phase of the signal generator. Phase is an angle relative to the moment when the signal
generator was last switched on.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6000aOpenUnit ().

deltaPhase, the desired phase in degrees.

Returns
PICO_OK oracode fromPicoStatus.h

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 101

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.64 ps6000aSigGenPhaseSweep - set signal generator
to sweep in phase

PICO_STATUS ps66008aSigGenPhaseSweep

(
int16_t handle,
uint64_t stopDeltaPhase,
uint64_t deltaPhaseIncrement,
uint64_t dwellCount,
PICO_SWEEP_TYPE sweepType

)

This function sets phase sweep parameters for the signal generator. It assumes that you have previously called
ps6000aSigGenPhase () to setthe start phase.

Applicability
All modes

Arguments
handle, the device identifier returned by ps608@aOpenUnit().

stopDeltaPhase, the phase in degrees at which the sweep should stop.

deltaPhaseIncrement, the amount by which the phase should change, in degrees, at each step of the
sweep.

dwellCount, the number of samples that the generator should wait between phase steps.

sweepType, the direction of the sweep, from the following list:
PICO_UP = @, tosweepfromdeltaPhase uptostopDeltaPhase and then repeat.
PICO_DOWN = 1, tosweepfromdeltaPhase downtostopDeltaPhase andthen repeat.
PICO_UPDOWN = 2, tosweepfromdeltaPhase uptostopDeltaPhase,thendowntodeltaPhase,
and then repeat.
PICO_DOWNUP = 3, tosweepfromdeltaPhase downtostopDeltaPhase,thenuptodeltaPhase,
and then repeat.

Returns
PICO_OK oracode fromPicoStatus.h

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 102

PicoScope 6000 Series (A API) Programmer's Guide

API functions

3.65 ps6000aSigGenRange - set signal generator output
voltages
PICO_STATUS ps6008aSigGenRange

(
int16_t handle

double peakToPeakVolts,
double offsetVolts

)

This function sets the amplitude (peak to peak measurement) and offset (voltage corresponding to data value of

zero) of the signal generator.

Applicability
All modes

Arguments

handle, the device identifier returned by ps6000alpenUnit ().

peakToPeakVolts, the si

gnal generator's peak-to-peak output range in volts (V).

offsetVolts, the signal generator's output offset in volts (V).

Returns
PICO_OK
PICO_INVALID_HANDLE

PICO_SIGGEN_TRIGGER_SOURCE

PICO_DRIVER_FUNCTION
PICO_NOT_RESPONDING

ps6000apg-1

Copyright © 2021 Pico Technology Ltd. All rights reserved.

103

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.66 ps6000aSigGenRestart - continue after pause

PICO_STATUS ps6000aSigGenRestart
(

int16_t handle

)

This function restarts the signal generator after it was paused with ps60800aSigGenPause().
Applicability
All modes

Arguments

handle, the device identifier returned by ps6008alpenUnit().

Returns
PICO_OK oracode fromPicoStatus.h

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 104

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.67 ps6000aSigGenSoftwareTriggerControl - set
software triggering

PICO_STATUS ps6000aSigGenSoftwareTriggerControl

(
int16_t handle,
PICO_SIGGEN_TRIG_TYPE triggerState
)
This function sets the trigger type (edge or level) and polarity for software triggering of the signal generator.
Applicability
All modes
Arguments

handle, the device identifier returned by ps608@aOpenUnit().

triggerState,
PICO_SIGGEN_RISING = 0, rising edge trigger
PICO_SIGGEN_FALLING = 1, falling edge trigger
PICO_SIGGEN_GATE_HIGH = 2, trigger when high
PICO_SIGGEN_GATE_LOW = 3, trigger whenlow

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_SIGGEN_TRIGGER_SOURCE
PICO_DRIVER_FUNCTION
PICO_NOT_RESPONDING

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 105

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.68 ps6000aSigGenTrigger - choose the trigger event

PICO_STATUS ps6000aSigGenTrigger

(
int16_t handle,
PICO_SIGGEN_TRIG_TYPE triggerType,
PICO_SIGGEN_TRIG_SOURCE triggerSource,
uint64_t cycles,
uint64_t autoTriggerPicoSeconds
)

This function sets up triggering for the signal generator. This feature causes the signal generator to start and
stop under the control of a signal or event.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6000alpenUnit ().

triggerType, whether an edge trigger (starts on a specified edge) or a gated trigger (runs while trigger is in
the specified state).

triggerSource, the signal used as a trigger.

cycles, the number of waveform cycles to generate after the trigger edge or after entering the active trigger
state. Set to zero to make the signal generator run indefinitely.

autoTriggerPicoSeconds, the length of time in picoseconds (ps) to wait for a trigger before starting the
signal generator. Set to zero to make the signal generator wait indefinitely for a trigger.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_SIGGEN_TRIGGER_SOURCE
PICO_DRIVER_FUNCTION
PICO_NOT_RESPONDING

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 106

PicoScope 6000 Series (A API) Programmer's Guide

API functions

3.69 ps6000aSigGenWaveform - choose signal generator

waveform

PICO_STATUS ps60008aSigGenWaveform
(

int16_t handle,

PICO_WAVE_TYPE waveType,

int16_t * buffer,

uint64_t bufferLength

)

This function specifies which waveform the signal generator will produce.
Applicability
All modes
Arguments

handle, the device identifier returned by ps6008aOpenUnit ().

waveType, specifies the type of waveform to generate.

* buffer, anarray of sample values to be used by the arbitrary waveform generator (AWG). Used only when

waveType = PICO_ARBITRARY.

bufferLength, the number of samples in the buffer array. Used only when waveType

PICO_ARBITRARY.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_SIGGEN_TRIGGER_SOURCE
PICO_DRIVER_FUNCTION
PICO_NOT_RESPONDING

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved.

107

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.70 ps6000aSigGenWaveformDutyCycle - set duty cycle

PICO_STATUS ps6000aSigGenWaveformDutyCycle
(

int16_t handle,
double dutyCyclePercent

)

This function sets the duty cycle of the signal generator waveform in square wave and triangle wave modes.

The duty cycle of a pulse waveform is defined as the time spent in the high state divided by the period. Set to 50%
to obtain a square wave.

Applicability
Square wave and triangle wave outputs only.

Arguments
handle, the device identifier returned by ps6000alpenUnit ().

dutyCyclePercent, the percentage duty cycle of the waveform from 0.0 to 100.0.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_SIGGEN_TRIGGER_SOURCE
PICO_DRIVER_FUNCTION
PICO_NOT_RESPONDING

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 108

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.71 ps6000aStartFirmwareUpdate - update the device
firmware

PICO_STATUS ps6@00aStartFirmwareUpdate

(
int16_t handle,

PicoUpdateFirmwareProgress progress

)

This function updates the device's firmware (the embedded instructions stored in nonvolatile memory in the
device). Updates may fix bugs or add new features.

Applicability
All modes

Arguments
handle, the device identifier returned by ps600@aOpenUnit().

progress, auser-supplied function that receives callbacks when the status of the update changes. See

PicoUpdateFirmwareProgress().

Returns

PICO_OK
PICO_HANDLE_INVALID
PICO_USER_CALLBACK
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 109

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.72 ps6000aStop - stop sampling

PICO_STATUS ps6000aStop
(

int16_t handle
)

This function stops the scope device from sampling data.

When running the device in streaming mode, always call this function after the end of a capture to ensure that the
scope is ready for the next capture.

When running the device in block mode or rapid block mode, you can call this function to interrupt data capture.
If this function is called before a trigger event occurs, the oscilloscope may not contain valid data.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6000aOpenUnit ().

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 110

PicoScope 6000 Series (A API) Programmer's Guide API functions

3.73 ps6000aTriggerWithinPreTriggerSamples - switch
feature on or off

PICO_STATUS ps6000aTriggerWithinPreTriggerSamples

(
int16_t handle,

PICO_TRIGGER_WITHIN_PRE_TRIGGER state
)

This function controls a special triggering feature.

Applicability
All modes

Arguments
handle, the device identifier returned by ps608@aOpenUnit().

state, 0toenable, 1todisable.

Returns

PICO_OK
PICO_INVALID_HANDLE
PICO_USER_CALLBACK
PICO_DRIVER_FUNCTION

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 111

PicoScope 6000 Series (A API) Programmer's Guide Callbacks

4 Callbacks

4.1 ps6000aBlockReady - indicate when block-mode
data ready

typedef void (CALLBACK *ps60@86aBlockReady)
(

int16_t handle,

PICO_STATUS status,

PICO_POINTER pParameter

)

This callback function is part of your application. You register it with the PicoScope 6000E Series driver using
ps60800aRunBlock () and the driver calls it back when block-mode data is ready. You can then download the

data using the ps60@808aGetValues () function.

Applicability
Block mode only

Arguments
handle, the device identifier returned by ps6008aOpenUnit().

status, indicates whether an error occurred during collection of the data.

pParameter, apointerpassedfromps6808aRunBlock (). Your callback function can write to this location
to send any data, such as a status flag, back to your application.

Returns
nothing

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 112

PicoScope 6000 Series (A API) Programmer's Guide Callbacks

4.2 ps6000aDataReady - indicate when post-collection
data ready

typedef void *ps60@0aDataReady

(
int16_t handle,
PICO STATUS status,
uint64_t noOfSamples,
int16_t overflow,
PICO_POINTER pParameter

)

This is a callback function that you write to collect data from the driver. You supply a pointer to the function when
you call ps600@aGetValuesAsync() and the driver calls your function back when the data is ready.

Applicability
All modes

Arguments
handle, the device identifier returned by ps608@aOpenUnit().

status, aPICO_STATUS code returned by the driver.
noOfSamples, the number of samples collected.

overflow, asetof flags thatindicates whether an overvoltage has occurred and on which channels. It is a bit
field with bit 0 representing Channel A.

pParameter, avoid pointer passed fromps60080aGetValuesAsync (). The callback function can write to
this location to send any data, such as a status flag, back to the application. The data type is defined by the
application programmer.

Returns
nothing

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 113

PicoScope 6000 Series (A API) Programmer's Guide Callbacks

4.3 PicoUpdateFirmwareProgress - get status of
firmware update

typedef void (CALLBACK * PicoUpdateFirmwareProgress)
(

int16_t handle,

uintié_t progress

)

You should write this callback function and register it with the driver using
ps6@@BaStartFirmwareUpdate (). The driver calls it back when the firmware update status changes.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6000alpenUnit ().

progress, aprogress indicator.

Returns
nothing

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 114

PicoScope 6000 Series (A API) Programmer's Guide Callbacks

4.4 PicoProbelnteractions() — callback for PicoConnect
probe events

typedef void (PREF4 *PicoProbeInteractions)

(
int16_t handle,
PICO_STATUS status,
PICO_USER _PROBE _INTERACTIONS * probes,
uint32_t nProbes
)

This callback function handles notifications of probe changes on scope devices that support Pico intelligent
probes.

If you wish to use this feature, you must create this function as part of your application. You register it with the
ps6000a driver using ps6000aSetProbeInteractionCallback () and the driver calls it back whenever a
probe generates an error. See Handling PicoConnect probe interactions for more information on this process.

Applicability
All modes

Arguments
handle, the device identifier returned by ps6000alpenUnit ().

status, indicates success or failure. If multiple errors have occurred, the most general error is returned here.
Probe-specific errors are returned in the status field of the relevant elements of the probes array.

probes, on entry, pointerto an array of PICO_USER_PROBE_TINTERACTIONS structures.
nProbes, the number of elements in the probes array.

Returns
nothing

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 115

PicoScope 6000 Series (A API) Programmer's Guide Callbacks

4.41 PICO_USER_PROBE_INTERACTIONS structure

A structure of this type is passedtothe PicoProbeInteractions() callback function. It is defined as
follows:

typedef struct tPicoUserProbelInteractions

{
uinti6_t connected;
PICO_CHANNEL channel;
uinti6_t enabled;
PicoConnectProbe probeName;
uint8_t requiresPower_;
uint8_t isPowered_;
PICO_STATUS status_;
PICO_CONNECT_PROBE_RANGE probeOff;
PICO_CONNECT_PROBE_RANGE rangeFirst_;
PICO_CONNECT_PROBE_RANGE rangelLast_;
PICO_CONNECT_PROBE_RANGE rangeCurrent_;
PICO_COUPLING couplingFirst_;
PICO_COUPLING couplinglLast_;
PICO_COUPLING couplingCurrent_;

PICO_BANDWIDTH_LIMITER_FLAGS filterFlags_;
PICO_BANDWIDTH_LIMITER_FLAGS filterCurrent_;

PICO_BANDWIDTH_LIMITER defaultFilter_;
} PICO_USER_PROBE_INTERACTIONS;

Elements

connected, indicates whether the probe is connected or not. The driver saves information on disconnected
probes in case they are reconnected, in which case it reapplies the previous settings.

channel, the scope channel to which the probe is connected.

enabled, indicates whether the probe is switched on or off.

probeName, identifies the type of probe from the PICO_CONNECT _PROBE enumerated list.
requiresPower_, indicates whether the probe draws power from the scope.
isPowered_, indicates whether the probe is receiving power.

status_, a status code indicating success or failure. See PicoStatus. h for definitions.

probeOff, the range in use when the probe was last switched off.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 116

PicoScope 6000 Series (A API) Programmer's Guide

Callbacks

rangeFirst_, the first applicable range in the PICO_CONNECT_PROBE _RANGE enumerated list.

rangelLast_, the last applicable range in the PICO_CONNECT_PROBE _RANGE enumerated list.
rangeCurrent_, the range currently in use.

couplingFirst_, the first applicable coupling type in the PS4000A_COUPLING list.
couplinglLast_, the last applicable coupling type in the PS4000A_COUPLING list.
couplingCurrent_, the coupling type currently in use.

filterFlags_, a bit field indicating which bandwidth limiter options are available.
filterCurrent_, the bandwidth limiter option currently selected.

defaultFilter_, the default bandwidth limiter option for this type of probe.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved.

117

PicoScope 6000 Series (A API) Programmer's Guide

Callbacks

4.5 PicoAWGOverrangelnteractions

typedef void (PREF5 *PicoAWGOverrangeInteractions)

(

int16_t handle,
PICO_STATUS status

)

This callback function handles notifications of AWG overrange events.

If you wish to use this feature, create this function as part of your application. Register it with the ps6000a driver
using ps6000aSetAWGOverrangeInteractionCallback () and the driver calls it back whenever the

external reference input changes its status.

Applicability
When arbitrary waveform generator is in use.

Arguments
handle, the device identifier returned by ps6008aOpenUnit().
status, a statuscode fromPicoStatus.h.

Returns
nothing

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved.

118

PicoScope 6000 Series (A API) Programmer's Guide Reference

5 Reference
5.1 Numeric data types

Here is a list of the numeric data types used in the ps6000a API:

Type Bits Signed or unsigned?
int16_t 16 signed

uint16_t 16 unsigned

enum 32 enumerated
int32_t 32 signed

uint32_t 32 unsigned

float 32 signed (IEEE 754)
double 64 signed (IEEE 754)
int64_t 64 signed

uint64_t 64 unsigned

5.2 Enumerated types and constants

The enumerated types and constants used in the PicoScope 6000E Series API driver are defined in the file
ps6000aApi.h, whichis included in the SDK. We recommend that you refer to these constants by name
unless your programming language allows only numerical values.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 119

PicoScope 6000 Series (A API) Programmer's Guide Reference

5.3 Driver status codes

Every function in the ps6000a driver returns a driver status code from the list of PICO_STATUS values in the file

PicoStatus.h, whichis included in the Pico Technology SDK. Not all codes in PicoStatus. h apply to the
PicoScope 6000E Series.

5.4 Glossary

Callback. A mechanism that the PicoScope 6000 driver uses to communicate asynchronously with your
application. At design time, you add a function (a callback function) to your application to deal with captured data.
At run time, when you request captured data from the driver, you also pass it a pointer to your function. The driver
then returns control to your application, allowing it to perform other tasks until the data is ready. When this
happens, the driver calls your function in a new thread to signal that the data is ready. It is then up to your function
to communicate this fact to the rest of your application.

Driver. A program that controls a piece of hardware. The driver for the PicoScope 6000E Series oscilloscopes is
supplied in the form of 32-bit and 64-bit Windows DLLs called ps6000a.d11. These are used by your
application to control the oscilloscope.

PicoScope 6000E Series. A range of PC Oscilloscopes from Pico Technology, all with a maximum sampling rate
of 5 GS/s. Sampling resolutions range from 8 to 12 bits and capture memory sizes from 1 to 4 GS.

PRBS (pseudo-random binary sequence). A fixed, repeating sequence of binary digits that appears random when
analyzed over a time shorter than the repeat period. The waveform swings between two values: logic high (binary
1) and logic low (binary 0).

USB 2.0. The second generation of USB (universal serial bus) interface. The port supports a data transfer rate of
up to 480 megabits per second.

USB 3.0. AUSB 3.0 port uses signaling speeds of up to 5 gigabits per second and is backwards-compatible with
USB 2.0.

ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 120

PicoScope 6000 Series (A API) Programmer's Guide Index
IndeX PORTO, PORTT 10
ports 10
Digital ports
enabling 77
A settingup 76,77
AC coupling 70 switching off 76
ADC limits 31 Disk space 7
Aggregation 20,47 Distribution 47
Analog offset 70 Downsampling 46
Analog offset limits 32 modes 47
API function calls 25 Driver 7
Averaging 47 status codes 120
AWG
overrange 118 E
Enumerated types 119
B Enumerating oscilloscopes 29
Bandwidth limiter 70
Block mode 11,12 F
asynchronouscall 14 Firmware update
callback 112 get progress 114
polling status 54 .
] Firmware updates
running 65 apply 109
using 14 Function calls 25
Functions
C PicoAWGOverrangelnteractions 118
Callback function PicoProbelnteractions 115
AWG overrage 118 PicoUpdateFirmwareProgress 114
block mode 112 ps6000aBlockReady 112
firmware update 114 ps6000aChannelCombinationsStateless 26
fordata 113 ps6000aCheckForUpdate 27
probe interactions 115 ps6000aCloseUnit 28
Channels ps6000aDataReady 113
disabling 69 ps6000aEnumerateUnits 29
enabling 70 ps6000aFlashLed 30
get available combinations 26 ps6000aGetAdcLimits 31
settings 70 ps6000aGetAnalogueOffsetLimits 32
Closing units 28 ps6000aGetDeviceResolution 33
Constants 119 ps6000aGetMaximumAvailableMemory 34
Coupling type, setting 70 ps6000aGetMinimumTimebaseStateless 35
ps6000aGetNoOfCaptures 36
ps6000aGetNoOfProcessedCaptures 37
D ps6000aGetStreaminglLatestValues 38
Data acquisition 20 ps6000aGetTimebase 41
Data buffers ps6000aGetTriggerinfo 42
declaring 72 ps6000aGetTriggerTimeOffset 44
declaring, aggregation mode 74 ps6000aGetUnitinfo 45
DC coupling 70 ps6000aGetValues 46
Decimation 47 ps6000aGetValuesAsync 48
Digital channels ps6000aGetValuesBulk 49
data 10 ps6000aGetValuesBulkAsync 50
ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 121

PicoScope 6000 Series (A API) Programmer's Guide

Index

Functions

ps6000aGetValuesOverlapped 51
ps6000aGetValuesTriggerTimeOffsetBulk 53
ps6000alsReady 54
ps6000aMaximumValue 9
ps6000aMemorySegments 55
ps6000aMemorySegmentsBySamples 56
ps6000aMinimumValue 9
ps6000aNearestSamplelntervalStateless 57
ps6000aNoOfStreamingValues 58
ps6000a0penUnit 59
ps6000aOpenUnitAsync 60
ps6000aOpenUnitProgress 61
ps6000aPingUnit 62
ps6000aQueryMaxSegmentsBySamples 63
ps6000aQueryOutputEdgeDetect 64
ps6000aRunBlock 65
ps6000aRunStreaming 67
ps6000aSetChannel 9
ps6000aSetChannelOff 69
ps6000aSetChannelOn 70
ps6000aSetDataBuffer 72
ps6000aSetDataBuffers 74
ps6000aSetDeviceResolution 75
ps6000aSetDigitalPortOff 76
ps6000aSetDigitalPortOn 77
ps6000aSetNoOfCaptures 78
ps6000aSetOutputEdgeDetect 79
ps6000aSetPulseWidthQualifierConditions 80
ps6000aSetPulseWidthQualifierDirections 81
ps6000aSetPulseWidthQualifierProperties 82
ps6000aSetSimpleTrigger 83
ps6000aSetTriggerChannelConditions 84
ps6000aSetTriggerChannelDirections 86
ps6000aSetTriggerChannelProperties 88
ps6000aSetTriggerDelay 90
ps6000aSetTriggerDigitalPortProperties 91
ps6000aSigGenApply 93
ps6000aSigGenClockManual 94
ps6000aSigGenFilter 95
ps6000aSigGenFrequency 96
ps6000aSigGenFrequencyLimits 97
ps6000aSigGenFrequencySweep 98
ps6000aSigGenLimits 99
ps6000aSigGenPause 100
ps6000aSigGenPhase 101
ps6000aSigGenPhaseSweep 102
ps6000aSigGenRange 103
ps6000aSigGenRestart 104
ps6000aSigGenSoftwareTriggerControl 105
ps6000aSigGenTrigger 106

ps6000aSigGenWaveform 107
ps6000aSigGenWaveformDutyCycle 108
ps6000aStartFirmwareUpdate 109
ps6000aStop 110
ps6000aTriggerWithinPreTriggerSamples 111

H

Hysteresis 87,89

Information, reading from units 45
Input range, selecting 70
Intelligent probes 24

detecting 115

L

LED
flashing 30

M

Memory

maximum available 34
Memory in scope 12
Memory segments 55, 56
Microsoft Windows 7
Multi-unit operation 23

N

Numeric data types 119

O

Opening a unit 59
checking progress 61
without blocking 60
Operating system 7
Output edge detection 64,79
Overflow flag 39

P

PICO_CONDITION structure 85
PICO_DEVICE_RESOLUTION enumerated type 75
PICO_DIGITAL_.CHANNEL_DIRECTIONS structure 92
PICO_STATUS enum type 120
PICO_STREAMING_DATAL_INFO structure 39
PICO_STREAMING_DATA_TRIGGER_INFO structure 40
PICO_TIME_UNITS constant 44

PICO_TRIGGER_INFO structure 43

ps6000apg-1

Copyright © 2021 Pico Technology Ltd. All rights reserved. 122

PicoScope 6000 Series (A API) Programmer's Guide Index
PICO_USER_PROBE_INTERACTIONS structure 116 waveform 107
picopp.inf 7 Software license conditions 6
picopp.sys 7 Status codes 120
PicoScope 6000 Series 5 Stopping sampling 110
PicoScope software 7 Streaming mode 12,20
Probe interactions 24 getting number of samples 58
Probes retrieving data 38
interactions structure 116 running 67
Processor 7 using 21
PS6000_LEVEL constant 87,89 Synchronising units 23
PS6000_TRIGGER_CHANNEL_PROPERTIES structure 87, System memory 7
89 System requirements 7
PS6000_WINDOW constant 87,89
T
R Threshold voltage 11
Rapid block mode 15 Timebase 22
setting number of captures 78 calculating 41
US"Tg 15 get minimum 35
Resolution 75 Trademarks 6
Retrievipg data 46,48 Trigger 11
rapid block mode 49 channel properties 88
rapid block mode with callback 50 conditions 84, 85
rapid block mode, deferred 51 delay 90
stored 22 digital port properties 91
streaming mode 38 directions 86
Retrieving times external 9
rapid block mode 53 get information 42,43
pulse width qualifier conditions 80
S pulse width qualifier directions 81
Sample interval pulse width qualifier properties 82
get nearest 57 settingup 83
Sampling rate time offset 44
maximum 12 Triggering
Scaling 9 within pre-trigger samples 111
Segments
get maximum number 63 U
Serial numbers 29 Updates
Signal generator 14 check for 27
clock setting 94 USB 7
duty cycle 108 hub 23
filter 95,96,98,101
frequency limits 97
pause 100 V
phase sweep 102 Voltagerange 9
query parameter limits 99 Voltage ranges
range 103 selecting 70
restart 104
setup 93
software trigger 105
trigger 106
ps6000apg-1 Copyright © 2021 Pico Technology Ltd. All rights reserved. 123

UK headquarters:

Pico Technology

James House

Colmworth Business Park
St. Neots

Cambridgeshire

PE19 8YP

United Kingdom

Tel: +44 (0) 1480 396 395

sales@picotech.com
support@picotech.com

www.picotech.com

ps6000apg-1

US regional office:

Pico Technology

320 N Glenwood Blvd
Tyler

TX 75702

USA

Tel: +1 800 591 2796

sales@picotech.com
support@picotech.com

Copyright © 2021 Pico Technology Ltd. All rights reserved.

Asia-Pacific regional
office:

Pico Technology

Room 2252, 22/F, Centro
568 Hengfeng Road
Zhabei District
Shanghai 200070

PR China

Tel: +86 21 2226-5152

pico.asia-pacific@picotech.com

	Introduction
	Welcome
	Software license conditions
	Trademarks

	Programming overview
	System requirements
	Driver
	Voltage ranges
	MSO digital data
	Triggering
	Sampling modes
	Block mode
	Using block mode
	Asynchronous calls in block mode

	Rapid block mode
	Using rapid block mode
	Rapid block mode example 1: no aggregation
	Rapid block mode example 2: using aggregation

	Streaming mode
	Using streaming mode

	Retrieving stored data

	Timebases
	Combining several oscilloscopes
	Handling intelligent probe interactions

	API functions
	ps6000aChannelCombinationsStateless - get possible channel combinations
	ps6000aCheckForUpdate - is firmware update available?
	ps6000aCloseUnit - close a scope device
	ps6000aEnumerateUnits - get a list of unopened units
	ps6000aFlashLed - flash the front-panel LED
	ps6000aGetAdcLimits - get min and max sample values
	ps6000aGetAnalogueOffsetLimits - get analog offset information
	ps6000aGetDeviceResolution – retrieve the device resolution
	ps6000aGetMaximumAvailableMemory - depending on hardware resolution
	ps6000aGetMinimumTimebaseStateless - find fastest available timebase
	ps6000aGetNoOfCaptures - query how many captures made
	ps6000aGetNoOfProcessedCaptures - query how many captures processed
	ps6000aGetStreamingLatestValues - read streaming data
	PICO_STREAMING_DATA_INFO
	PICO_STREAMING_DATA_TRIGGER_INFO

	ps6000aGetTimebase - get available timebases
	ps6000aGetTriggerInfo - get trigger timing information
	PICO_TRIGGER_INFO

	ps6000aGetTriggerTimeOffset - get timing corrections
	ps6000aGetUnitInfo - get information about device
	ps6000aGetValues - get block mode data
	Downsampling modes

	ps6000aGetValuesAsync - read data without blocking
	ps6000aGetValuesBulk - read multiple segments
	ps6000aGetValuesBulkAsync - read multiple segments without blocking
	ps6000aGetValuesOverlapped - get rapid block data
	Using GetValuesOverlapped()

	ps6000aGetValuesTriggerTimeOffsetBulk - get trigger time offsets for multiple segments
	ps6000aIsReady - get status of block capture
	ps6000aMemorySegments - set number of memory segments
	ps6000aMemorySegmentsBySamples - set size of memory segments
	ps6000aNearestSampleIntervalStateless - get nearest sampling interval
	ps6000aNoOfStreamingValues - get number of captured samples
	ps6000aOpenUnit - open a scope device
	ps6000aOpenUnitAsync - open unit without blocking
	ps6000aOpenUnitProgress - get status of opening a unit
	ps6000aPingUnit - check if device is still connected
	ps6000aQueryMaxSegmentsBySamples - get number of segments
	ps6000aQueryOutputEdgeDetect – check if output edge detection is enabled
	ps6000aRunBlock - start block mode capture
	ps6000aRunStreaming - start streaming mode capture
	ps6000aSetChannelOff - disable one channel
	ps6000aSetChannelOn - enable and set options for one channel
	ps6000aSetDataBuffer - provide location of data buffer
	ps6000aSetDataBuffers - provide locations of both data buffers
	ps6000aSetDeviceResolution – set the hardware resolution
	PICO_DEVICE_RESOLUTION enumerated type

	ps6000aSetDigitalPortOff – switch off digital inputs
	ps6000aSetDigitalPortOn – set up and enable digital inputs
	ps6000aSetNoOfCaptures - modify rapid block mode
	ps6000aSetOutputEdgeDetect – change triggering behavior
	ps6000aSetPulseWidthQualifierConditions - specify how to combine channels
	ps6000aSetPulseWidthQualifierDirections - specify threshold directions
	ps6000aSetPulseWidthQualifierProperties - specify threshold logic
	ps6000aSetSimpleTrigger - set up triggering
	ps6000aSetTriggerChannelConditions - set triggering logic
	PICO_CONDITION structure

	ps6000aSetTriggerChannelDirections - set trigger directions
	PICO_DIRECTION structure

	ps6000aSetTriggerChannelProperties - set up triggering
	TRIGGER_CHANNEL_PROPERTIES structure

	ps6000aSetTriggerDelay - set post-trigger delay
	ps6000aSetTriggerDigitalPortProperties - set port directions
	PICO_DIGITAL_CHANNEL_DIRECTIONS structure

	ps6000aSigGenApply - set output parameters
	ps6000aSigGenClockManual - control signal generator clock
	ps6000aSigGenFilter - switch output filter on or off
	ps6000aSigGenFrequency - set output frequency
	ps6000aSigGenFrequencyLimits - get limits in sweep mode
	ps6000aSigGenFrequencySweep - set signal generator to frequency sweep mode
	ps6000aSigGenLimits - get signal generator parameters
	ps6000aSigGenPause - stop the signal generator
	ps6000aSigGenPhase - set signal generator phase
	ps6000aSigGenPhaseSweep - set signal generator to sweep in phase
	ps6000aSigGenRange - set signal generator output voltages
	ps6000aSigGenRestart - continue after pause
	ps6000aSigGenSoftwareTriggerControl - set software triggering
	ps6000aSigGenTrigger - choose the trigger event
	ps6000aSigGenWaveform - choose signal generator waveform
	ps6000aSigGenWaveformDutyCycle - set duty cycle
	ps6000aStartFirmwareUpdate - update the device firmware
	ps6000aStop - stop sampling
	ps6000aTriggerWithinPreTriggerSamples - switch feature on or off

	Callbacks
	ps6000aBlockReady - indicate when block-mode data ready
	ps6000aDataReady - indicate when post-collection data ready
	PicoUpdateFirmwareProgress - get status of firmware update
	PicoProbeInteractions() – callback for PicoConnect probe events
	PICO_USER_PROBE_INTERACTIONS structure

	PicoAWGOverrangeInteractions

	Reference
	Numeric data types
	Enumerated types and constants
	Driver status codes
	Glossary

