GSM-20H10 Source Meter

Cooper Liu

Outline

- Introduce Source Meters (SMU)
- Main Features
- Applications of SMU

Introduce Source Meters (SMU)

- Main functions and features
 - Four-quadrant power supply and DMM function
 - Low power supply wattage, high voltage/current resolution
 - Measuring voltage/low current/resistance (high resolution)
 - High measuring speed requirement

• Main functions and features

Source I, Measure V, I, $\boldsymbol{\Omega}$

Source V, Measure I, V, $\boldsymbol{\Omega}$

DUT

• Type of power supply

- Advantages over Power Supply + DMM
 - Saves space
 - Simplifies the wiring connection

Measure voltage by power supply and DMM

- Advantages over Power Supply + DMM
 - Saves space
 - Simplifies the wiring connection
 - No need to re-wire in between voltage meter and current meter

Measure voltage by power supply and DMM

- Name:
 - System SourceMeter[®] (Tek/Keithley Trademark Reg.)
 - Precision Source / Measure Units (Keysight used often)
 - Source Meter
 - DC Voltage/Current Source/Monitor
 - SMU

Main Features

Main Features

Source:

- Maximum output ±210V, ±1.05A, 22W
- Built-in 4 sequence output modes, up to 2500 points
- OVP /OTP Protection Function

Meter:

- 0.012% basic measure accuracy with 6½-digit resolution
- Variable Sampling Speed
- SDM (Source Delay Measure) cycle
- 2-, 4-, and 6-wire remote V-source and measure sensing
- Variable Display Digits
- Built-in Limit function
- Built-in 5 calculation functions

Others:

- Standard SCPI command, Provide Interface: RS-232, USBTMC, LAN, GPIB (Optional)
- 4.3" TFT LCD, Digital Number Keypad
- Built-in RTC Clock

Main Features - Source

- Maximum output: ±210V/±1.05A/22W
 - ± 21V up to 1.05A
 - ± 210V up to 105mA
 - Max Power : 22W

Main Features - Source

- Built-in 4 sequence output modes, up to 2500 points
 - Linear Stair
 - Log Stair
 - SRC-MEM
 - Custom

Main Features - Source

• OVP /OTP Protection Function

• 0.012% basic measure accuracy with 6½-digit resolution

Voltage Range	±200.000mV	±2.00000V	±20.0000V	±200.000V
Measurement Resolution	1uV	10uV	100uV	1mV
Measurement Accuracy	±(0.012%+300uV)	±(0.012%+300uV)	±(0.015%+1.5mV)	±(0.015%+10mV)

• Variable Sampling speed (High/Normal/Medium/Fast/Other)

Sampling mode	Fast	Medium	Normal	High	Other
Speed, NPLC	0.01	0.1	1	10	User defined
Digit	3½	4½	5½	6½	Selectable

- SDM (Source Delay Measure) cycle
 - When the signal changes, the sampling delay can be programmed or edited or adjusted, which is useful for the circuit under test to stabilize before the measurement.

• 2, 4, and 6-wire remote V-source and measure sensing

6-wire

• Display digits (3.5/4.5/5.5/6.5) variable

Measure	60Hz REA	AR REM	CV	ARM T	RIG OVE	P ERI	₹ 41°C
+0.0	0058	30u/	4				
Vsrc +0	00.015 mV	,		Cmpl	105.	000	uA
Measure cu	rr-range: Auto			Spe	ed: High	10.00	PLC
Sync cmpl r	ange: Disable			Digit Rola	ts: 6.5 tiuo: Disab		
Guard: Cabl	e zome			Val	lue: +0.000	0000	
Source	Measure	Limit	Se	equence	TRIG		System

• Built-in Limit function, supports 11 groups of Limit tests (PASS/FAIL)

Limit	60Hz RE/	AR REM C	V ARM T	RIG OVP	ERR	41°C
Digout size: Mode: Gr Sorting Grading Auto clear Clear pa Clear de	16 bit ading fail: 0 : Immediate : Disable attern: 15 elay: 0.00010	1	Pass pattern: Source memo Location: 1	7 pry location I	: Next	
HW-Control: Fail mode: 1 CMPL patt	Disable In ern: 15	I	End of test mo	ode: EOT		
Digout	HW-Limits	SW-Limits	Pass	EOT-Mod	e C	ancel

Lir	nit	60Hz REA	R REM C	IV ARM TI	RIG OVP E	err 41°C
		Low	Lo_	fail H	igh	Hi_fail
L02:	Disable	-1.00000	0_ 15	+1	_000000_	15
L03:	Disable	-1.00000	0_ 15	+1	.000000_	15
L05:	Disable	-1.00000	0_ 15	+1	.000000_	15
L06:	Disable	-1.00000	0_ 15	+1	.000000_	15
L07:	Disable	-1.00000	0_ 15	+1	.000000_	15
L08:	Disable	-1.00000	0_ 15	+1	.000000_	15
L09:	Disable	-1.00000	0_ 15	+1	.000000_	15
L10:	Disable	-1.00000	0_ 15	+1	.000000_	15
L11:	Disable	-1.00000	0_ 15	+1	.000000_	15
L12:	Disable	-1.00000	0_ 15	+1	.000000_	15
Dig	gout	HW-Limits	SW-Limits	Pass	EOT-Mode	Cancel

- Built-in 5 calculation functions
 - Power, Power = V*I
 - Compensated Ohms, CompOhms = $\frac{(V2-V1)}{(I2-I1)}$

• Voltage Coefficient, Vceoff(%) =
$$\left[\frac{\Delta R}{\{R2 * \Delta V\}}\right] * 100\%$$

• Varistor Alpha, VarAlpha $\alpha = \frac{log(I2 \div I1)}{log(v2 \div V1)}$

• Percent Deviation, Dev =
$$\left[\frac{(X-Y)}{Y}\right] * 100\%$$

Measure	60Hz RE/	AR REM C	V ARM	TRIG OVE	P ERR 41°C
Type: Power	CompC	Dhms	Vceoff	VarAlpha	
CompOhms 11: +0.000 12: +0.000 Vceoff: V1: +0.000 V2: +0.000	(Vs/ls): 00A 00A 00V 00V		VarAlpha: 11: +0.0000 12: +0.0000 DEV: Ref value HI tol: 00. LO tol: 00	00A 00A : <mark>+0.0000000</mark> 10 % .10 %	I
Power	CompOhms	Vceoff	VarAlpha	DEV	Cancel

• Standard SCPI RS-232, USB-TMC, LAN, GPIB (Optional)

- 4.3" TFT LCD, Digital Number Keypad
 - With the large 4.3-inch screen, all measurement settings, parameters and results can be completely displayed on the screen: the digital number keypad provides users with a more friendly input method.

Keithley 2400 Dot-matrix display

- Built-in RTC clock
 - The built-in RTC Clock circuit allows users to record the time when storing the file, which is convenient fc data comparison or recording.

No.	Test classification	DUT
1	Semiconductor Device Characterization Test	Resistors, Diodes, BJT Transistors, MOSFET Transistors, SICs
2	Energy and Efficiency Characteristic Testing	LED, OLED Display, solar cell, battery, DC-DC converter
3	Sensor Characterization Test	Resistance characteristics, Hall effect
4	Organic Material Characterization Testing	E-ink, Printed electronics
5	Nanomaterial Characterization Testing	Graphene

		Microcircuit				
1	IC	IV test, I/O curves				
		Component				
1	Diode	Forward conduction voltage, forward current, reverse				
		breakdown voltage, reverse current				
2	BJT	IV test, characteristic curve				
3	MOSFET	IV test, characteristic curve				
4	IGBT	IV test, characteristic curve				
	Battery					
1	Lithium battery	IV test, charge-discharge scan curve				
2	Solar battery	IV test, discharge scan curve				
		Material				
1	Graphene	IV test, I/O curves				
2	Carbon nanotube	IV test, I/O curves				

- Diode characteristics test
- Solar cell V-I characteristics test
- MOSFET characteristics test
- Battery charging and discharging test
- Precise low resistance measurement
- High resistance measurement
- LED thermal resistance measurement

Diode, LED V-I characteristics test

• Forward bias test

Diode, LED V-I characteristics test

- Forward bias test
- Reverse bias test: leakage current, breakdown voltage

Solar cell V-I characteristics test

• Use SMU as load to obtain Isc, Voc, PMP (by VMP x IMP) and get efficiency by

 $Efficiency = \frac{Vmp \times Imp}{Voc \times Isc}$

MOSFET characteristics test

- Drain curves
- Threshold voltage
- Transconductance
- Gate leakage current
- Drain leakage Current
- Breakdown voltage

MOSFET – Drain Curve

The most popular characteristic while use a MOSFET

- 1. Use SMU1 to set Vgs, SMU2 to sweep Vds, measure Ids to get the curve
- 2. Set Vgsto other values, sweep Vds to obtain the different curves.

MOSFET – Gate Threshold Voltage, Vth

Vth is the gate to source voltage that appears when the minimum Ids flows from source to drain.

- 1. Set Vds to a particular value with SMU2, which the minimum IDS will occur.
- 2. Sweep Vgs with SMU1 until IDS reaches the specified value. The Vgs is Vth.

MOSFET – Transconductance, gm

gm represents the signal gain of a MOSFET.

- 1. Set the constant voltage Vds with SMU2.
- 2. Sweep Vgs with SMU1 and measure Ids SMU2 current meter.

MOSFET – Gate leakage current, Igss

Igss is the current between the gate and source at $V_{DS} = 0$.

- 1. Short Drain and Source
- 2. Sweep Vgs over the desired range, measure the current.

MOSFET – Drain leakage current

Idss is the current between the drain and source at $V_{GS} = 0$.

- 1. Short Gate and Source
- 2. Sweep Vds and monitor the leakage current of Drain-Source

MOSFET – Drain Source Breakdown voltage, BVdss

When Vgs=0, BVdss causes a significant Ids to flow.

- 1. Short Gate and Source.
- 2. Increase Vds until Ids starts to flow and reaches the specified value, at which point Vds is measured.

Battery charging test

- SMU as voltage and current source
- SMU voltage > Battery voltage
- Current flows from SMU to battery

Battery discharging test

- SMU as a load
- SMU voltage < Battery voltage
- Current flows from battery to SMU

Low resistance measurement

• Example: conductor resistance measurement.

Wire Resistance Chart (20°C) Diameter Diameter Resistance Resistance Gauge (AWG) (in) (mm) (Ω/ft) (Ω/m) 28 0.0126 5.29 17.35 0.3211 0.0113 0.2859 6.92 22.69 29 0.0100 29.30 30 0.2546 8.83 31 0.0089 0.2268 10.01 32.85 32 0.0080 0.2019 13.29 43.60 33 0.0071 0.1798 19.21 63.01 0.0063 0.1601 24.69 81.00 34 35 0.0056 0.1426 27.76 91.07 36 0.0050 0.1270 35.00 114.84

Insulation resistance measurement

• Example: Cable insulation resistance measurement.

LED – Thermal resistance measurement

- 1. Set LED sample temperature at Tj. SMU outputs a small current Is.
- 2. SMU outputs pulse current Im. Measure voltage and record as Vm.
- 3. Alter output to DC current. Tune the LED temperature to stabilize voltage to Vm.

LED – Thermal resistance measurement

- 1. Set LED sample temperature at Tj. SMU outputs a small current Is.
- 2. SMU outputs pulse current Im. Measure voltage and record as Vm.
- 3. Alter output to DC current. Tune the LED temperature to stabilize voltage to Vm.

Successful Story in Taiwan

LIV Test System (with Tempoint Corp. in TW)

• LIV (Light-Current-Voltage)

Material Test (Plated Sheet)

• IV (Current-Voltage)

Note: This type of test will also be used to test other materials that require exposure.

Four-Point Probe Sheet Resistance Measurement

System Features:

- User-friendly and intuitive software interface
- Precisely measure the thin film resistance of the DUT
- Constant current measurement. Single-point measurement or multi-point scanning can be selected
- When the thickness of the film is known, the bulk resistivity and conductivity are calculated at the same time
- Adopt .CSV file storage format, which is convenient for users to process data
- Compatible with Keithley 2400-SMU GSM-20H10. It can also be customized with various SMUs and micro- and high-resistance meters according to user needs.

					1		-		-
4	Sample	Thickne	ss	Probe S	pacing Te	st Method	Swe	ep Steps	Test
G	eometry	280.0	00 nm	0.1	16 cm S	veep	20	.000m 🐴	ST0
Sł	nape Square	Side Ler	ngth 10 cm			urrent L00.000m A	40 60 80	.000m = .000m _	Clear
8	Sample Shape	Wafer Size (cm)	Thiskness (nm)	Spacing of Probe (cm)	Sheet Resistance (Ω/Sq)	Bulk Resistivity (Ω-cm)	Conductivity (S/cm)	Voltage (V)	Current (A)
1	Square	10.00	280.00	0.16	13.95	390.694u	2.560k	308.026m	100.001
2	Square	10.00	280.00	0.16	13.969	391.137u	2.557k	61.659m	19.995
3	Square	10.00	280.00	0.16	13.968	391.117u	2.557k	123.343m	40.000
	Square	10.00	280.00	0.16	13.969	391.132u	2.557k	185.024m	60.001
4		10.00	280.00	0.16	13.972	2 391.221u	2.556k	246.753m	80.001
4	Square	10.00		a loss to a	1207/	201 226.	25554	308 525m	100 002
4 5 6	Square Square	10.00	280.00	0.16	13.970	591.520u	2.3330	300.323111	100.002

UVLED V-I characteristics test (by Tom)

Battery discharging test

Battery discharging test (Department of Earth Sciences of NCU)

