NO

Nisk
NIl
X-Series Signal Generators

06
/
81

Keysight

5 CXG
3/ 72B/73B EXG

3/32B/83B MXG

KEYSIGHT

EEEEEEEEEEEE

Programming
Guide

Notices

© Keysight Technologies, Inc.
2012-2019

No part of this manual may be
reproduced in any form or by any
means (including electronic storage
and retrieval or translation into a
foreign language) without prior
agreement and written consent from
Keysight Technologies, Inc. as
governed by United States and
international copyright laws.

Trademark Acknowledgments

Manual Part Number
N5180-90074

Edition

Edition 1, July 2019

Supersedes: February 2019
Printed in USA/Malaysia

Published by:

Keysight Technologies
1400 Fountaingrove Parkway
Santa Rosa, CA 95403

Warranty

THE MATERIAL CONTAINED IN THIS
DOCUMENT IS PROVIDED “AS IS,”
AND IS SUBJECT TO BEING
CHANGED, WITHOUT NOTICE, IN
FUTURE EDITIONS. FURTHER, TO
THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, KEYSIGHT
DISCLAIMS ALL WARRANTIES,
EITHER EXPRESS OR IMPLIED WITH
REGARD TO THIS MANUAL AND
ANY INFORMATION CONTAINED
HEREIN, INCLUDING BUT NOT
LIMITED TO THE IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.
KEYSIGHT SHALL NOT BE LIABLE
FOR ERRORS OR FOR INCIDENTAL
OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE
FURNISHING, USE, OR
PERFORMANCE OF THIS
DOCUMENT OR ANY INFORMATION
CONTAINED HEREIN. SHOULD
KEYSIGHT AND THE USER HAVE A
SEPARATE WRITTEN AGREEMENT
WITH WARRANTY TERMS

COVERING THE MATERIAL IN THIS
DOCUMENT THAT CONFLICT WITH
THESE TERMS, THE WARRANTY
TERMS IN THE SEPARATE
AGREEMENT WILL CONTROL.

Technology Licenses

The hardware and/or software
described in this document are
furnished under a license and may be
used or copied only in accordance
with the terms of such license.

U.S. Government Rights

The Software is “commercial
computer software,” as defined
by Federal Acquisition Regulation
(“FAR”) 2.101. Pursuant to FAR
12.212 and 27.405-3 and
Department of Defense FAR
Supplement (“DFARS”) 227.7202,
the U.S. government acquires
commercial computer software
under the same terms by which
the software is customarily
provided to the public.
Accordingly, Keysight provides
the Software to U.S. government
customers under its standard
commercial license, which is
embodied in its End User License
Agreement (EULA), a copy of
which can be found at
http://www.keysight.com/find/sweula
The license set forth in the EULA
represents the exclusive authority
by which the U.S. government
may use, modify, distribute, or
disclose the Software. The EULA
and the license set forth therein,
does not require or permit,
among other things, that
Keysight: (1) Furnish technical
information related to
commercial computer software
or commercial computer
software documentation that is
not customarily provided to the
public; or (2) Relinquish to, or
otherwise provide, the
government rights in excess of
these rights customarily provided
to the public to use, modify,
reproduce, release, perform,
display, or disclose commercial
computer software or
commercial computer software

documentation. No additional
government requirements
beyond those set forth in the
EULA shall apply, except to the
extent that those terms, rights, or
licenses are explicitly required
from all providers of commercial
computer software pursuant to
the FAR and the DFARS and are
set forth specifically in writing
elsewhere in the EULA. Keysight
shall be under no obligation to
update, revise or otherwise
modify the Software. With
respect to any technical data as
defined by FAR 2.101, pursuant
to FAR 12.211 and 27.404.2 and
DFARS 227.7102, the U.S.
government acquires no greater
than Limited Rights as defined in
FAR 27.401 or DFAR 227.7103-5
(c), as applicable in any technical
data.

Safety Notices

A CAUTION notice denotes a hazard. It
calls attention to an operating
procedure, practice, or the like that,
if not correctly performed or adhered
to, could result in damage to the
product or loss of important data. Do
not proceed beyond a CAUTION
notice until the indicated conditions
are fully understood and met.

A WARNING notice denotes a hazard.
It calls attention to an operating
procedure, practice, or the like that,
if not correctly performed or adhered
to, could result in personal injury or
death. Do not proceed beyond a
WARNING notice until the indicated
conditions are fully understood and
met.

Where to Find the Latest Information

Documentation is updated periodically. For the latest information about these products, including instrument software
upgrades, application information, and product information, browse to one of the following URLs, according to the name
of your product:

http://www.keysight.com/find/mxg

To receive the latest updates by email, subscribe to Keysight Email Updates at the following URL:
http://www.keysight.com/find/MyKeysight

Information on preventing instrument damage can be found at:

www.keysight.com/find/PreventinginstrumentRepair

ls your product software up-to-date?

Periodically, Keysight releases software updates to fix known defects and incorporate product enhancements. To search
for software updates for your product, go to the Keysight Technical Support website at:

http://www.keysight.com/find/techsupport

Contents

Table of Contents

1. Getting Started with Remote Operation

Programming and Software/Hardware Layers. 1-14
INerfaces. . . . 1-15
10 Libraries and Programming Languages.t 1-16
Keysight 10 Libraries SUITEo 1-16
Windows XP, 2000 Professional and Vista Business Keysight 10 Libraries 15.0 (and Newer). 1-17
Windows NT and Keysight 10 Libraries M (and Earlier) 1-19
Selecting 10 Libraries for GPIB o 1-21
Selecting 10 Libraries for LANo 1-21
Programming LanQUagES oottt 1-22
Using the Web Browser 1-23
Modifying the Signal Generator Configuration. 1-24
Enabling the Signal Generator Web Server 1-26
LAN Configuration System Defaulls 1-28
Displaying the LAN Configuration Summary 1-29
PrE B BN CES . o 1-30
Configuring the Display for Remote Command Setups. ... i i 1-30
Getting Key Help . . oo 1-30
TroubleSNOOTING . . oo 1-31
Error MESSAgES . . . oo 1-32
Error Message File. 1-32
Error Message TYPeSot 1-33

2. Using 10 Interfaces

UsiNg GPIB . . 2-36
Installing the GPIB Interface 2-36
SetUpthe GPIB INterface. o 2-38
Verify GPIB Functionality. 2-38
GPIB INterface TermS. . . o 2-39

GPIB Programming Interface Examples 2-40
Before Using the GPIB Examples 2-40
Interface Check using HP Basicand GPIB 2-40
Interface Check Using NI=488.2 and C++ o 2-41

Using LAN 2-42
Setting Up the LAN Interface o 2-43
Setting up Private LAN Lo 2-45
Verifying LAN Functionality.o 2-46
Using VXI=T T 2-50
Using Sockets LAN .o 2-51
Using Telnet LAN oo 2-52
UsiNg FTP o 2-56

USINg USB . o 2-58
Selecting 170 Libraries for USB 2-59
Setting Upthe USB Interface o 2-59

Contents

3. Programming Examples

Using the Programming Interface Examples 3-62
Programming Examples Development Environment 3-62
RUNNING CH+ Programs. . ..o e e e e 3-63
RunNning C# EXampleso 3-64
Running Basic Examples. 3-64
Running Java EXamples 3-65
Running MATLAB EXampleso 3-66
Running Perl EXampleso 3-66

USiNg GPIB . o 3-67
Installing the GPIB Interface Card 3-67

GPIB Programming Interface Examples. 3-68
Before Using the GPIB Examples 3-68
GPIB Function Statements (Command MESSages)t 3-68
Interface Check using HP Basicand GPIB 3-72
Interface Check Using NI-488.2 and C++. o 3-73
Interface Check for GPIB Using VISAand C. 3-75
Local Lockout Using HP Basicand GPIB 3-76
Local Lockout Using NI-488.2 and C++ . . oo oo 3-78
Queries Using HP Basicand GPIB 3-80
Queries Using NI-488.2 and Visual C++.o 3-82
Queries for GPIB Using VISAand C oo 3-85
Generatinga CW Signal Using VISA and C o 3-88
Generating an Externally Applied AC-Coupled FM Signal Using VISAand C.......... 3-91
Generating an Internal FM Signal Using VISAand C. 3-93
Generating a Step-Swept Signal Using VISAand C++ o 3-96
Generating a Swept Signal Using VISA and Visual C++ o 3-98
Saving and Recalling States Using VISAand C 3-101
Reading the Data Questionable Status Register Using VISAand C 3-104
Reading the Service Request Interrupt (SRQ) Using VISAand C 3-110

LAN Programming Interface Examples 3-115
VXI-TT Programming e e 3-115
VXI-11 Programming Using SICL and C++. . ..o 3-116
VXI-11 Programming Using VISA and C++ ... 3-118
Sockets LAN Programming and C 3-120
Queries for Lan Using Sockets o 3-124
Sockets LAN Programming Using Java 3-150
Sockets LAN Programming Using Perl. 3-153
TCP-IP (LAN) Programming Using Matlab 3-154

4. Programming the Status Register System

OVBIVIBW o oo 4-168
Overall Status Byte Register Systems 4-170
Status Register Bit Values 4-172
Example: Enable a Register 4-172
Example: Query a Register 4-172
Accessing Status Register Information 4-173

Contents

Determining What to Monitor. 4-173
Deciding How to MONItOr 4-173
Status Register SCPI Commandso 4-176
Status Byte Group.o 4-179
Status Byte Register 4-180
Service Request Enable Register 4-180
StatUS GroUPS . . . o 4-181
Standard Event Status Group 4-182
Standard Operation Status Group 4-184
Data Questionable Status Groupo 4-187
Data Questionable Power Status Group.o 4-190
Data Questionable Frequency Status Group 4-193
Data Questionable Calibration Status Group 4-196
Data Questionable BERT Status Group 4-199

5. Creating and Downloading Waveform Files

Overview of Downloading and Extracting Waveform Files, 5-204
Waveform Data Requirements 5-205
Understanding Waveform Data 5-206
Bits and Byteso 5-206
LSB and MSB (Bit Order).o e 5-207
Little Endian and Big Endian (Byte Order) 5-207
BYte SWaPPING. . oot 5-208
DAC INpUE ValUES. . . oo 5-209
2’s Complement Data Format. 5-211
land Q Interleavingo 5-212
Waveform STrUCtUre 5-214
File Header .. oo 5-214
Marker File. .o 5-214
O 5-216
AV O 5-216
Waveform Phase ContinuItyot 5-217
Phase Discontinuity, Distortion, and Spectral Regrowth 5-217
Avoiding Phase DiscontinUIties.t 5-218
.. 5-220
Memory ALOCatION 5-222
MEMOIY SIZE . o oo 5-224
Commands for Downloading and Extracting Waveform Data. o ... 5-225
Waveform Data Encryplion.o 5-225
File Transfer Methodso 5-226
SCPICommand Line STruCtUreo 5-227
Commands and File Paths for Downloading and Extracting Waveform Data....................... 5-227
FTP Procedureso 5-231
Creating Waveform Data 5-235
Code Algorithm . .. 5-235
Downloading Waveform Data. 5-241
Using Simulation Software 5-241

Contents

Using Advanced Programming Languages i 5-243
Loading, Playing, and Verifying a Downloaded Waveform 5-247
Loading a File from Non-=Volatile Memory 5-247
Playing the Waveform 5-247
Verifying the Waveform. 5-248
Building and Playing Waveform SequencCes. 5-248
Using the Download Utilities 5-250
Downloading E443xB Signal Generator Files 5-251
E443xB Data Format. . ..o 5-252
SCPICOMMAENGS 5-262
Programming Examples 5-253
C++ Programming Examples.o 5-254
MATLAB Programming EXampleso 5-284
Visual Basic Programming EXamples 5-301
HP Basic Programming Examples 5-308
Troubleshooting Waveform Files 5-317
Configuring the Pulse/RF Blanko 5-318

6. Creating and Downloading User-Data Files

OV IVIBW . o 6-320
Signal Generator MemMOTY . ..o 6-321
Memory ALLOCaLION 6-323
MeEMOTY SIZE . .o 6-324
Checking Available Memory 6-325
User File Data (Bit/Binary) Downloads. o 6-327
User File Bit Order (LSBand MSB) 6-328
Bit File Type Data oo 6-328
Binary File Type Data.o 6-331
User File Size. . .o 6-332
Determining Memory Usage for Custom User File Data 6-333
Downloading User Files 6-334
Commands for Bit File Downloads 6-338
Commands for Binary File Downloads 6-339
Selecting a Downloaded User File as the Data Source 6-341
Modulating and Activating the Carrier. 6-341
Modifying User File Data.o 6-341
Real-Time Custom High Data Rates 6-344
Pattern RAM (PRAM) Data Downloadsot 6-346
Understanding PRAM Files.o 6-346
PRAM File Size .. 6-349
SCPI Command for a List Format Download 6-351
SCPI Command for a Block Data Download 6-351
Selecting a Downloaded PRAM File as the Data Source. i 6-354
Modulating and Activating the Carrier. 6-356
Storing a PRAM File to Non-Volatile Memory and Restoring to Volatile Memory 6-356
Extracting a PRAM File 6-356
Modifying PRAM Fileso 6-358

Contents

FIR Filter Coefficient Downloads 6-360
Data RequIremMentso 6-360
Data Limitationso 6-360
Downloading FIR Filter Coefficient Data 6-361
Selecting a Downloaded User FIR Filter as the Active Filter 6-362

Using the Equalization Filter. o 6-364

Save and Recall Instrument State Files 6-365
Save and Recall SCPI Commands o 6-365
Save and Recall Programming Example Using VISAand C#. i 6-366

User Flatness Correction Downloads Using C++and VISA 6-379

Data Transfer Troubleshooting o 6-384
User File Download Problems. 6-384
PRAM Download Problems o 6-385
User FIR Filter Coefficient File Download Problems. o 6-387

Contents

10

Documentation Overview

Getting Started Guide ~ — Safety Information
- Receiving the Instrument

- Environmental & Electrical Requirements
- Basic Setup

- Accessories

- Operation Verification

- Regulatory Information

User's Guide - Signal Generator Overview
- Preferences & Enabling Options
- Basic Operation
- Optimize Performance
- Avionics VOR/ILS (Option N5180302B)
- Analog Modulation (Option UNT)
- Pulse Modulation (Options UNW or N5180320B)
- Basic Digital Operation—No BBG Option
- Basic Digital Operation (Options 653/655/656/657)
- Digital Signal Interface Module (Option 003 /004)
- Baseband Operating Mode—Primary, BERT, or N5102A
— BERT (Option N5180UN7B)
- Real-Time Noise—AWGN (Option N5180403B)
- Real-Time Phase Noise Impairments (Option N5180432B)
- Real-Time Fading (Option 660)
- Custom Digital Modulation (Option N5180431B)
- Multitone and Two-Tone Waveforms (Option N5180430B)
- Troubleshooting
- Working in a Secure Environment

Programming Guide - Getting Started with Remote Operation
- Using 10 Interfaces
- Programming Examples
- Programming the Status Register System
- Creating and Downloading Files
- Creating and Downloading User-Data Files

SCPI Reference — SCPI Basics
— Basic Function Commands

- System Commands

- Analog Modulation Commands

- Arb Commands

- Avionics VOR/ILS Commands

— Bit Error Rate Test (BERT) Commands

- Digital Signal Interface Module Commands
— Real-Time Cesmmands

11

Programming
Compatibility Guide

Service Guide

Error Messages Guide

Key Help?

Provides a listing of SCPI commands and programming codes for
signal generator models that are supported by the Keysight EXG
and MXG X- Series signal generators.

Troubleshooting

Replaceable Parts

Assembly Replacement
Post-Repair Procedures

Safety and Regulatory Information
Instrument History

Error Messages

Error Message Format
Error Message Type
List of Error Messages

Key function description
Related SCPI commands

a. Press the Help key, and then the key for which you wish help.

12

Keysight Technologies
X-Series Signal Generators

Programming Guide

1 Getting Started with Remote Operation

Keysight does not recommend going backwards in firmware versions
(loading older firmware versions into newer instruments) as
hardware/firmware conflicts can result.

— Programming and Software/Hardware Layers on page 14

— Interfaces on page 15

— 10 Libraries and Programming Languages on page 16

— Using the Web Browser on page 23

— Preferences on page 30

— Error Messages on page 32

KEYSIGHT

TECHNOLOGIES

13

Getting Started with Remote Operation
Programming and Software/Hardware Layers

Programming and Software/Hardware Layers

Keysight X-Series signal generators support the following interfaces:
Table 1-1

Instrument Interfaces Supported

Keysight N51xxB GPIB, LAN, and USB 2.0
EXG/MXG

Use these interfaces, in combination with 10 libraries and programming
languages, to remotely control a signal generator. Figure 1-1 uses GPIB as an
example of the relationships between the interface, IO libraries, programming
language, and signal generator.

Figure 1-1 Software/Hardware Layers

Programming Language:
C/C++, Visual BASIC, LabView, VEE, etc.

VISA
: National Instruments
Keysight VISA VISA
. National Instruments
Keysight S1CL N1-488.2 Library
Keysight GPIB NI PCI-GPIB
Interface Card Interface Card

Signal Generator

14 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Interfaces
Table 1-2

Getting Started with Remote Operation
Interfaces

GPIB

GPIB is used extensively when a dedicated computer is available for remate control of
each instrument or system. Data transfer is fast because GPIB handles information in bytes
with data transfer rates of up to 8 MBps. GPIB is physically restricted by the location and
distance between the instrument/system and the computer; cables are limited to an
average length of two meters per device with a total length of 20 meters.

For more information on configuring the signal generator to communicate over the GPIB,
refer to “Using GPIB” on page 36.

LAN

Data transfer using the LAN is fast as the LAN handles packets of data. The single cable
distance between a computer and the signal generator is limited to 100 meters
(100Base-T and 10Base-T).

The following protocols can be used to communicate with the signal generator over the
LAN:

— VXI-11 (recommended)
— Sockets

— TELNET

— FTP

The Keysight N5TxxB EXG/MXG supports LXI Class C functionality. For more information
on the LXI standards, refer to http://www.lxistandard.org/home.

For more information on configuring the signal generator to communicate over the LAN,
refer to “Using LAN” on page 42.

USsB

— The rear panel Type-B or Mini-B b-pin connector is a device USB and can
be used to connect a controller for remote operation.

— The Type-A front panel connector is a host USB and can be used to
connect a mouse, a keyboard, or a USB 1.1/2.0 flash drive.

USB 2.0’s 64 MBps communication speed is faster than GPIB for data transfers >1 KB;
however, longer latency makes small USB transfers slower and less efficient than GPIB.
For additional information, refer to the Keysight SICL or VISA User’s Guide.)

For more information on connecting the signal generator to the USB, refer to the
“Keysight 10 Libraries Suite” on page 16 and the Keysight Connection Expert in the
Keysight 10 Libraries Help.

For more information on configuring the signal generator to communicate over the USB,
refer to “Using USB” on page 58.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

15

Getting Started with Remote Operation
|0 Libraries and Programming Languages

|0 Libraries and Programming Languages

16

The 10 libraries is a collection of functions used by a programming language to
send instrument commands and receive instrument data. Before you can
communicate and control the signal generator, you must have an |0 library
installed on your computer. The Keysight 10 libraries are included on an
Automation-Ready CD with your signal generator and Keysight GPIB interface
board, or they can be downloaded from the Keysight website:
http://www.keysight.com.

To learn about using 10 libraries with Windows XP or newer operating
systems, refer to the Keysight 10 Libraries Suite’s help located on the
Automation-Ready CD that ships with your signal generator. Other sources
of this information, can be found with the Keysight GPIB interface board’s
CD, or downloaded from the Keysight website: http://www.keysight.com.

To better understand setting up Windows XP operating systems and
newer, using PC LAN port settings, refer to Chapter 2.

Keysight IO Libraries Suite

The Keysight 10 Libraries Suite replaces earlier versions of the Keysight 10
Libraries. Keysight 10 Libraries Suite does not support Windows NT. If you are

using the Windows NT platform, you must use Keysight IO Libraries version M
or earlier.

The USB interface requires Keysight 10 Libraries Suite 14.1 or newer. For
more information on connecting instruments using USB, refer to the
Keysight Connection Expert in the Keysight IO Libraries Help.

The signal generator ships with an Automation-Ready CD that contains the
Keysight 10 Libraries Suite 14.0 for users who use Windows 98 and
Windows ME. These older systems are no longer supported in Keysight 10
Libraries Suite version 14.1 and higher.

Once the libraries are loaded, you can use the Keysight Connection Expert,
Interactive 10, or VISA Assistant to configure and communicate with the signal

generator over different 10 interfaces. Follow instructions in the setup wizard to
install the libraries.

Before setting the LAN interface, the signal generator must be configured
for VXI-11 SCPI. Refer to “Configuring the VXI-11 Service” on page 43.

Refer to the Keysight |0 Libraries Suite Help documentation for details about
this software.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
|0 Libraries and Programming Languages

Windows XP, 2000 Professional and Vista Business Keysight 10
Libraries 15.0 (and Newer)

Windows NT is not supported on Keysight 10 Libraries 14.0 and newer.

For additional information on older versions of Keysight |0 libraries, refer
to the Keysight Connection Expert in the Keysight IO Libraries Help. The
Keysight 10 libraries are included with your signal generator or Keysight
GPIB interface board, or they can be downloaded from the Keysight
website: http://www.keysight.com.

VISA Assistant

VISA is an industry standard |0 library API. It allows the user to send SCP!I
commands to instruments and to read instrument data in a variety of formats.
Refer to the VISA Assistant Help menu and the Keysight VISA User’s Manual
(available on Keysight’s website) for more information.

VISA Configuration (Automatic)
1. Run the VISA Assistant program:

Start > All Programs > Keysight 10 Libraries Suite > Keysight Connection
Expert > Tools > Visa Assistant >.

2. Click on the interface you want to use for sending commands to the signal
generator.

3. Click the Formatted 1/0 tab.
4. Select SCPI in the Instr. Lang. section.

You can enter SCPI commands in the text box and send the command using
the viPrintf button.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 17

18

Getting Started with Remote Operation
|0 Libraries and Programming Languages

Using VISA Configuration (Manual)

Use the Keysight 10 Libraries Suite 15.0 to perform the following steps to use
the Connection Expert and VISA to manually configure an interface.

1. Run the Keysight Connection Expert program: Start > All Programs >
Keysight 10 Libraries Suite > Keysight Connection Expert >.

On the tool bar select the Add Interface button.
Click LAN Interface in the Available interface types text box.
Click the ADD button.

g & W N

Verify that the Auto (automatically detect protocol) bubble is checked.
Click O.K. to use the default settings.

Click LAN(TCPIPO) in the Instrument 1/0 on this PC text box.
On the tool bar select the Add Instrument button.
Click the Add Address button in the Add LAN Instruments window.

© ® N O

Enter the hostname of the instrument or select the Use IP Address check
box and enter the IP address.

10.Click OK.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
|0 Libraries and Programming Languages

Windows NT and Keysight IO Libraries M (and Earlier)

Windows NT is not supported on Keysight 10 Libraries 14.0 and newer.

The following sections are specific to Keysight 10 Libraries versions M and
earlier and apply only to the Windows NT platform.

For additional information on older versions of Keysight |0 libraries, refer
to the Keysight Connection Expert in the Keysight 10 Libraries Help. The
Keysight 10 libraries are included with your signal generator or Keysight
GPIB interface board, or they can be downloaded from the Keysight
website: http://www.keysight.com.

Using |0 Config for Computer-to-Instrument Communication with VISA
(Automatic or Manually)

After installing the Keysight 10 Libraries version M or earlier, you can configure
the interfaces available on your computer by using the |0 Config program. This
program can setup the interfaces that you want to use to control the signal
generator. The following steps set up the interfaces.

1. Install GPIB interface boards before running 10 Config.

You can also connect GPIB instruments using the Keysight 82357A
USB/GPIB Interface Converter, which eliminates the need for a GPIB card.
For more information, go to http://www.keysight.com/find/gpib.

2. Run the 10 Config program. The program automatically identifies available
interfaces.

3. Click on the interface type you want to configure, such as GPIB, in the
Available Interface Types text box.

4. Click the Configure button. Set the Default Protocol to AUTO.
5. Click OK to use the default settings.
6. Click OK to exit the 10 Config program.

VISA Assistant

VISA is an industry standard |0 library API. It allows the user to send SCP!I
commands to instruments and to read instrument data in a variety of formats.
You can use the VISA Assistant, available with the Keysight 10 Libraries
versions M and earlier, to send commands to the signal generator. If the
interface you want to use does not appear in the VISA Assistant then you must
manually configure the interface. See the Manual VISA Configuration section
below. Refer to the VISA Assistant Help menu and the Keysight VISA User’s
Manual (available on Keysight's website) for more information.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 19

20

Getting Started with Remote Operation
|0 Libraries and Programming Languages

VISA Configuration (Automatic)

1.
2.

3.
4,

Run the VISA Assistant program.

Click on the interface you want to use for sending commands to the signal
generator.

Click the Formatted 1/0 tab.
Select SCPI in the Instr. Lang. section.

You can enter SCPI commands in the text box and send the command using
the viPrintf button.

VISA Configuration (Manual)

Perform the following steps to use 10 Config and VISA to manually configure an
interface.

1.

Run the 10 Config Program.

2. Click on GPIB in the Available Interface Types text box.

w0

© ® N O g &

Click the Configure button. Set the Default Protocol to AUTO and then
click OK to use the default settings.

Click on GPIBO in the Configured Interfaces text box.
Click Edit...

Click the Edit VISA Config... button.

Click the Add device button.

Enter the GPIB address of the signal generator.

Click the OK button in this form and all other forms to exit the 10 Config
program.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
|0 Libraries and Programming Languages

Selecting 10 Libraries for GPIB

The 10 libraries are included with the GPIB interface card, and can be
downloaded from the National Instruments website or the Keysight website.
See also, “l0 Libraries and Programming Languages” on page 16 for
information on 10 libraries. The following is a discussion on these libraries.

Because of the potential for portability problems, running Keysight SICL
without the VISA overlay is not recommended by Keysight Technologies.

VISA

SICL

NI-488.2

VISAis an |0 library used to develop 10 applications and
instrument drivers that comply with industry standards.
It is recommended that the VISA library be used for

programming the signal generator. The NI-VISA™ and
Keysight VISA libraries are similar implementations of
VISA and have the same commands, syntax, and
functions. The differences are in the lower level |0
libraries; NI-488.2 and SICL respectively. It is best to
use the Keysight VISA library with the Keysight GPIB
interface card or NI-VISA with the NI PCI-GPIB interface
card.

Keysight SICL can be used without the VISA overlay.
The SICL functions can be called from a program.
However, if this method is used, executable programs
will not be portable to other hardware platforms. For
example, a program using SICL functions will not run on
a computer with NI libraries (PCI-GPIB interface card).

NI-488.2 can be used without the VISA overlay. The
NI-488.2 functions can be called from a program.
However, if this method is used, executable programs
will not be portable to other hardware platforms. For
example, a program using NI-488.2 functions will not
run on a computer with Keysight SICL (Keysight GPIB
interface card).

Selecting 10 Libraries for LAN

The TELNET and FTP protocols do not require 10 libraries to be installed on
your computer. However, to write programs to control your signal generator,
an 10 library must be installed on your computer and the computer configured
for instrument control using the LAN interface.

The Keysight 10 libraries Suite is available on the Automation-Ready CD, which
was shipped with your signal generator. The libraries can also be downloaded
from the Keysight website. The following is a discussion on these libraries.

NI-VISA is a registered trademark of National Instruments Corporation.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 21

22

Getting Started with Remote Operation
|0 Libraries and Programming Languages

Keysight VISA VISAis an |0 library used to develop 10 applications and
instrument drivers that comply with industry standards.
Use the Keysight VISA library for programming the
signal generator over the LAN interface.

SICL Keysight SICL is a lower level library that is installed
along with Keysight VISA.

Programming Languages

Along with Standard Commands for Programming Instructions (SCPI) and 10
library functions, you use a programming language to remotely control the
signal generator. Common programming languages include:

— C/C++

— C#

MATLAB® (MATLAB is a registered trademark of The MathWorks.)

— HP Basic

— LabView

— Java™ (Java is a U.S. trademark of Sun Microsystems, Inc.)

— Visual Basic® (Visual Basic is a registered trademark of Microsoft
Corporation.)

— PERL

— Keysight VEE

For examples, using some of these languages, refer to Chapter 3.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
Using the Web Browser

Using the Web Browser

The following example for accessing the Web-Enabled X-Series web page
uses the newly shipped instrument’s predetermined default hostname
(a-<instrument model number>-<last 5 digits of the instrument serial
number>).

The procedure that follows assumes the signal generator is running
firmware A.01.20 or later.

Web-Enabled SCPI command capability is not available for versions of
Internet Explorer >7.0. (The SCPI Tel net softkey is inactive for these
versions.) To use the Telnet SCPI, refer to the figure on page 24.

For more information on LAN Connectivity, refer to the Keysight
Connectivity Guide (E2094-90009) or to the LAN Connectivity FAQs for
details on using the instrument over LAN.

The instrument can be accessed through a standard web browser, when it is
connected to the LAN. To access through the web browser, enter the
instrument IP address or the hostname as the URL in your browser. Refer to
Figure 1-2, “The Signal Generator Web Service” on page 24.

The signal generator web page, shown at right and page 27, provides general
information on the signal generator, FTP access to files stored on the signal
generator, and a means to control the instrument using either a remote
front-panel interface or SCPI commands. The web page also has links to
Keysight’s products, support, manuals, and website. For additional information
on memory catalog access (file storing), and FTP, refer to the User’s Guide and
“” on page 220 and for FTP, see “Using FTP” on page 56 and “FTP Procedures”
on page 231.

The Web Server service is compatible with the Microsoft Internet Explorer (6.0
and newer) web browser and operating systems Windows 2000, Windows XP,
and newer. For more information on using the Web Server, refer to “Enabling

the Signal Generator Web Server” on page 26.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 23

Getting Started with Remote Operation
Using the Web Browser

Figure 1-2 The Signal Generator Web Service

- Agilent Technelogies Xk SeR=TI R =0 TRUET

Welcoms fa yeur ’
Web-Enabled MXG
Info

biaut this Was-Enabled MXD:

OO D111 E3LIERT31 237,333,334,
T IR ATE) 473500
RS LT [T

s kit thin, s

The Keysight N51xxB EXG/MXG supports LXI Class C functionality. For more information on

e the LXI standards, refer to http://www.lxistandard.org/home.
(Pasmwor s cunently defaut et

To operate the signal generator, click the
keys.

6.000 000 000 00 &= | -144.00 = Frea fut oot e
Fren: 000 00 GHz Incrs 10, 00000z g !

B
Fres OEfemt "
T oy e [
. it »
[
™2 NI

Fro CamnsLes)

NOTE: If you do not see this window,

check to see if the window is hidden behind your browser window or your web browser
settings are set to block pop-ups. To use this feature, you need to set your web browser to
allow pop-ups for your instrument’s IP address.

Remote SCPI commands requires the Telnet feature on the computer. The Telnet feature
is available from a variety of sources. Some software updates can block (break) this Telnet
connection (e.g. Internet Explorer 7). When using Internet Explorer as a browser, only
versions <Internet Explorer 7 enable the Web-Enabled SCPI feature.

Modifying the Signal Generator Configuration

NOTE Use Help with this Page for assistance with the Web-Enabled interface.

1. From the welcome page of the Web-Enabled interface, click View &
Modify Configuration to show the instrument’s currently assigned IP
address and other parameters.

24 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Figure 1-3

Getting Started with Remote Operation

Using the Web Browser

2. Enter the new settings and click Save.

3. Click Renew LAN Settings to cause the new settings to take effect.

View & Modify Configuration

Fle Ed Vew Fooiies

Tods W

Qo+ © (2 [E € Do drowms @3- % 5 - LI B

o |] ity e 162 D00C

Current Configuration of MXG

Wadly Cangpisian

Cusrandty In use

Mt Vou must cick *Save® before changes f0 parsmeters become effective. Farameters marked with an

okl Canfgumian

nal Generator

Configuring your MXG

nterick) alog requine that you cick ‘Renew LAN fore changes take effect,

(o) (o) (Pt) (e) ey
SnaLandastly | [StopLabicenity |

Parasnater

ALTG EAUTD CIDHCP CILAUTOUP CMANUAL

The fallowing 3 LAN parameters will be used if Canfig Type is MANUAL or if DHCF is unavailable

14892 54 50 naisars

mmzme0 ==
o LY =
seoe Cusssune Cuse e

R e

[o v TR AGIGLA IO

[hems e Y AiiEA

| mOMS Hostname: | ANEE2A 000 ANEELA 00001

s s e e
CEE - =

T T e oorr G
CETTE— o oxr oo
T o oorr G

o oorr oo

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
Using the Web Browser

Enabling the Signal Generator Web Server

[UIMIV :

Utility

I/0 ConfigM

Instrument.,
Adjustments

Displaur

Fower On/,
Freset

Instrument Infok

fore 1 of 2

26

Javascript or Active Scripts must be enabled to use the web front panel
controls.

1.

Turn on the Web server as shown below.

Keysight X-Series Web Server On

—

If necessary, toggle Web Server to
On.

I/0 Confio lUeb Services

LAH Services

FTE Serwer

GPIE Setuprk 0fF

License Manager
Se

LAN Setupe {=Iad
0ff HiEW

Heb Servicese
LAN Seryices, SCPI Servicese
Remote Language,
(5CPI)
Confirm

Confirm Chanoe
CInstrument
Will Reboot)

Proceed uith._ >

ORI (LEgizlizn Reconf iourat ion

For details on each key and for equivalent SCPI commands,
use the key help. Refer to “Getting Key Help” on page 30 and
the User’s Guide. For additional SCPI command information,
refer to the SCPI Command Reference.

. Launch the PC or workstation web browser.

. In the web browser address field, enter the signal generator’s IP address.

For example, http://101.101.101.101 (where 101.101.101.101 is the
signal generator’s IP address).

The IP (internet protocol) address can change depending on the LAN
configuration (see “Using LAN” on page 42).

. On the computer’s keyboard, press Enter. The web browser displays the

signal generator’s homepage.

. Click the Signal Generator Web Control menu button on the left of the

page. The LXI password box is displayed on the computer. Refer to the
Web-Enabled Help.

. Click Submit.
. The front panel web page displays.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Getting Started with Remote Operation

Using the Web Browser

NOTE If you are experiencing problems with opening the signal generator’s
remote front panel web page, verify that the pop-up blocker is turned off

on your web browser.

In some cases the Web-Enabled front panel may appear behind the main
browser window, so you must move the browser window to see the
Web-Enabled front panel.

To control the signal generator, either click the front panel keys or enter

SCPI commands.

FTP enables the transfer
of files between the
instrument and a
computer. The FTP
access button provides
drag-and-drop file
capability.

BT TR MK Signal Generstor

Web-Enabled MXG

==
e
——

The FTP access button opens a window that displays the signal
generator's memory catalog files.

\) \

2] ftp://141.121.91.244/ - Microsoft Internet Explorer |)|0'VIK(I by Agilent Technologies ., Inc
\

File Edit “iew Favorites Tools Help

& L & (¥ | PO seach [Foders | [FEE-

Address |(§ Frpjf141.121.91.2447

=2 2 @
Other BIoesy = ARET AREC EEG1 EEG BIN F
@8 Internet Explorer
&3 My Network Places =] (=] =] =] =]

MARKERS MVAREI MVARBD SECUREWAWE SEQ

WAVEFORM

Use the FTP window to drag and drop files from the FTP page to
your computer.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 27

Getting Started with Remote Operation
Using the Web Browser

LAN Configuration System Defaults

The instrument’s LAN configuration system information can be found on
the signal generator’s homepage and on the signal generator. Refer to
“Enabling the Signal Generator Web Server” on page 26 and to “Displaying
the LAN Configuration Summary” on page 29.

If the instrument has been restored to the factory defaults from the LAN Setup
menu the signal generator will revert to the values displayed in Table on page 2s.
Refer to “Displaying the LAN Configuration Summary” on page 29.

To reset the instrument LXI password to “agilent” and the LAN settings to their
factory default values, press the following key sequence on the signal
generator:

Utility > 1/0 Config > LAN Setup > Advanced Settings > More 2 of 2 >
Restore LAN Settings to Default Values > Confirm Restore LAN Settings to
Default Values

There are no SCPI commands associated with this LXI password factory
reset.

For more information, refer to the signal generator’'s Web Server Interface

Help.
Table 1-3 LAN Configuration Summary Values
Parameter Default

Signal Generator LAN Configuration Summary

Host nane: Keysight-<model number>-<last_5_chars_of_serial_number>
Config Type: AUTO

| P Address: 127.0.0.1

Connecti on O

Moni t ori ng:

Subnet : 255. 255. 255. 0

DNS Server Overri de: aof

Gat enay: 0.0.0.0

Dynani ¢ DNS Nami ng: 0]

RFC NETBI G5 Nami ng: O

DNS Server: 0.0.0.0

TCP Keep Alive: M

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
Using the Web Browser

Table 1-3 LAN Configuration Summary Values
Parameter Default
Domai n Nane: @ <empty>
TCP Keep Alive Timeout: 1800. 0 sec
Signal Generator Web Server Interface
Description: Keysi ght <nodel _nunber >(<seri al _nunber >)
SICL Interface Name®: gpi b0
Web Password: agi | ent

a. The Domain Name defaults to a null field.
b. This information is part of the “Advanced Information about this Web-Enabled
<signal generator model number>”

Displaying the LAN Configuration Summary

Confirm Restore Settings to Factory Defaults: Confirming this action configures the signal
generator to its original factory default settings. For information regarding those default
settings, refer to Table 1-3 on page 28.

Adv Settings ~
Dgng?\icc [hS
- = [0n |
1/0 Config LA Setu -
GPIEB Set Hostriame mOnS /ONS=5D
etLpy 4
- Confio Tupe
LAN Setupw tHManLE 1M
Utility > 10 Config ~—— LAN Services,| Manual Confio
Setup Settinas®
Femote Language Restore LAN
(SCPTI | — e Settings tok
Default Values
SCPI command:
Proceed With | ftore 1 of 2
) Reconfigurat.ion®
Not applicable

For details on each key and for equivalent SCPI commands (if applicable),
use the key help (described in the User’s Guide).

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
Preferences

Preferences

The following commonly-used manual command sections are included here:
“Configuring the Display for Remote Command Setups” on page 30
“Getting Key Help” on page 30

Configuring the Display for Remote Command Setups

[Utility ;

UEilit ___Display / — Display
T . Select Color
) Erightness Palettes
I/0 ConfigM 100 (Bright Color)
ol . . .
Select Update in Remote until On is
Screen Saver B Update in Remote ighli
ﬂé?ﬁé{#ﬁnﬁgg’ an o | *— highlighted.
Screen Saver ﬂctiuate’
i » > ode Secure Displa :
Displaue > ¢Light Onlg) play SCPI commands:

Power On/ Sggﬁgz:s?u%r: ‘\....’\-f :DISPlay:REMote ON|OFF|1|0

Freset™
:DISPlay:REMote?

Instrument Infom

— N S TTE R

For details on each key and for equivalent SCPI commands (if applicable), use the key help (described below and in the User’s Guide).

Getting Key Help
When you press the front-panel Help button:

m -«—— Help displays for the next key you press.

The “key help” includes a description of the key’s functionality and a list of equivalent SCPI
commands (if they exist). This feature is especially useful if you are building a SCPI program
based on front-panel key presses.

Use the cursor keys, Page Up, Page Down, and the RPG knob to scroll the help text. Then
press Cancel to close the help window or press any other key to close the help window and
execute that key.

For details on each key and for equivalent SCPI commands (if applicable), use the key help (described in User’s Guide).

30 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
Troubleshooting

Troubleshooting

In each section of this document, there is information that is related to
troubleshooting that topic, if applicable. Refer to those corresponding sections
in this document as well as to the User’s Guide, before using the diagnostics
mode referred to in the Service Guide and in the caution below.

All X-Series signal generators have a fail-safe and diagnostic mode that should only be used if all
other troubleshooting mentioned in this document has been attempted and failed. If the
diagnastic made is determined to be needed, refer to the Service Guide.

If the LAN Reset hardkey has been pressed and then the power is cycled on
the instrument, the web-server will be enabled after reboot.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 31

Getting Started with Remote Operation
Error Messages

Error Messages

32

If an error condition occurs in the signal generator, it is reported to both the
SCPI (remote interface) error queue and the front panel display error queue.
These two queues are viewed and managed separately; for information on the
front panel display error queue, refer to the User’s Guide.

For additional general information on troubleshooting problems with your
connections, refer to the Help in the Keysight 10 Libraries and
documentation.

When accessing error messages using the SCPI (remote interface) error queue,
the error numbers and the <error_description> portions of the error query
response are displayed on the host terminal.

Characteristic

SCPI Remote Interface Error Queue

Capacity (#errors)

30

Overflow Handling

Linear, first-in/first-out.
Replaces newest error with: - 350, Queue overfl ow

Viewing Entries?

Use SCPI query SYSTem ERRor [: NEXT] ?

Clearing the Queue®

Power up
Send a * CLS command
Read last item in the queue

Unresolved Errors®

Re-reported after queue is cleared.

No Errors

When the queue is empty (every error in the queue has been read, or the queue is cleared), the
following message appears in the queue:
+0, "No error"”

a. Using this SCPI command to read out the error messages clears the display of the ERR
annunciator and the error message at the bottom of the screen.

b. Executing the SCPI command * CLS clears the display of the ERRannunciator and the error
message at the bottom of the screen.

c. Errors that still exist after clearing the error queue. For example, unlock.

Error Message File

A complete list of error messages is provided in the file errormessages.pdf, on
the CD-ROM supplied with your instrument. In the error message list, an
explanation is generally included with each error to further clarify its meaning.
The error messages are listed numerically. In cases where there are multiple
listings for the same error number, the messages are in alphabetical order.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Getting Started with Remote Operation
Error Messages

Error Message Types

Events generate only one type of error. For example, an event that generates a
query error will not generate a device-specific, execution, or command error.

Query Errors (-499 to -400) indicate that the instrument’s output queue
control has detected a problem with the message exchange protocol described
in IEEE 488.2, Chapter 6. Errors in this class set the query error bit (bit 2) in the
event status register (IEEE 488.2, section 11.5.1). These errors correspond to
message exchange protocol errors described in IEEE 488.2, 6.5. In this case:

— Either an attempt is being made to read data from the output queue when
no output is either present or pending, or

— data in the output queue has been lost.

Device Specific Errors (-399 to -300, 201 to 703, and 800 to 810) indicate
that a device operation did not properly complete, possibly due to an abnormal
hardware or firmware condition. These codes are also used for self-test
response errors. Errors in this class set the device-specific error bit (bit 3) in the
event status register (IEEE 488.2, section 11.5.1).

The <error_message> string for a positive error is not defined by SCPI. A
positive error indicates that the instrument detected an error within the GPIB
system, within the instrument’s firmware or hardware, during the transfer of
block data, or during calibration.

Execution Errors (-299 to -200) indicate that an error has been detected by
the instrument’s execution control block. Errors in this class set the execution
error bit (bit 4) in the event status register (IEEE 488.2, section 11.5.1). In this
case:

— Either a <PROGRAM DATA> element following a header was evaluated by
the device as outside of its legal input range or is otherwise inconsistent
with the device’s capabilities, or

— avalid program message could not be properly executed due to some
device condition.

Execution errors are reported after rounding and expression evaluation
operations are completed. Rounding a numeric data element, for example, is
not reported as an execution error.

Command Errors (-199 to -100) indicate that the instrument’s parser
detected an IEEE 488.2 syntax error. Errors in this class set the command error
bit (bit 5) in the event status register (IEEE 488.2, section 11.5.1). In this case:

— Either an IEEE 488.2 syntax error has been detected by the parser (a
control-to-device message was received that is in violation of the IEEE
488.2 standard. Possible violations include a data element that violates
device listening formats or whose type is unacceptable to the device.), or

— an unrecognized header was received. These include incorrect
device-specific headers and incorrect or unimplemented IEEE 488.2
common commands.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 33

34

Getting Started with Remote Operation
Error Messages

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Keysight Technologies
X-Series Signal Generators

Programming Guide

2 Using 10 Interfaces

Using the programming examples with GPIB, LAN, and USB interfaces:
— Using GPIB on page 36
— Using LAN on page 42
— Using USB on page 58

KEYSIGHT

TECHNOLOGIES

35

Using 10 Interfaces
Using GPIB

Using GPIB

GPIB enables instruments to be connected together and controlled by a
computer. GPIB and its associated interface operations are defined in the
ANSI/IEEE Standard 488.1-1987 and ANSI/IEEE Standard 488.2-1992. See
the IEEE website, http://www.ieee.org, for details on these standards.

The following sections contain information for installing a GPIB interface card
or NI-GPIB interface card for your PC or UNIX-based system.

— “Installing the GPIB Interface” on page 36
— “Set Up the GPIB Interface” on page 38
— “Verify GPIB Functionality” on page 38

Installing the GPIB Interface

You can also connect GPIB instruments to a PC USB port using the
Keysight 82357A USB/GPIB Interface Converter, which eliminates the
need for a GPIB card. For more information, refer to the table on page 36 or
go to http://www.keysight.com/find/gpib.

A GPIB interface card can be installed in a computer. Two common GPIB
interface cards are the Keysight GPIB interface card and the National
Instruments (NI) PCI-GPIB card. Follow the interface card instructions for
installing and configuring the card. The following table provide lists on some of
the available interface cards. Also, see the Keysight website,
http://www.keysight.com for details on GPIB interface cards.

Interface Operating 10 Library Languages Backplane/ Max 10 Buffering
Type System BUS (kB/sec)

USB/GPIB Interface Converter for PC-Based Systems

Keysight Windows VISA/SICL | C/C++, Visual USB 2.0 850 Built-in
82357A 98(SE)/ME/ Basic, Keysight (1.7 compatible
Converter 2000/XP VEE, HP Basic for |)

Windows, NI

Labview

GPIB Interface Card for PC-Based Systems

Keysight Windows VISA/SICL | C/C++, Visual ISA/EISA, 750 Built-in
82341Cfor ISA | 95/98/NT Basic, Keysight 16 bit
bus computers | /2000 VEE, HP Basic for
Windows
Keysight Windows VISA/SICL | C/C++, Visual ISA/EISA, 750 Built-in
82341D 95 Basic, Keysight 16 bit
Plug&Play for VEE, HP Basic for
PC Windows

36 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Using 10 Interfaces

Using GPIB
Interface Operating 10 Library Languages Backplane/ Max 10 Buffering
Type System BUS (kB/sec)
USB/GPIB Interface Converter for PC-Based Systems
Keysight Windows VISA/SICL | C/C++, Visual PCI 32 bit 750 Built-in
82350Afor PCI | 95/98/NT Basic, Keysight
bus computers | /2000 VEE, HP Basic for
Windows
Keysight Windows VISA/SICL | C/C++, Visual PCI 32 bit > 900 Built-in
82350Bfor PCI | 98(SE)/ME/200 Basic, Keysight
bus computers | 0/XP VEE, HP Basic for
Windows
NI-GPIB Interface Card for PC-Based Systems
National Windows VISA C/C++, PCI 32 bit 1.5 MBps Built-in
Instruments 95/98/2000/ NI-4882 @ | Visual BASIC,
PCI-GPIB ME/NT LabView
National Windows VISA C/C++, PCI 32 bit 1.5 MBps Built-in
Instruments NT NI-488.2 Visual BASIC,
PCI-GPIB+ LabView
GPIB Interface Card for HP-UX Workstations
Keysight HP-UX 9., VISA/SICL | ANSIC, EISA 750 Built-in
E2071C HP-UX10.01 Keysight VEE,
HP BASIC, HP-
UX
Keysight HP-UX10.20 VISA/SICL | ANSIC, EISA 750 Built-in
E2071D Keysight VEE,
HP BASIC, HP-
UX
Keysight HP-UX10.20 VISA/SICL | ANSIC, PCI 750 Built-in
E2078A Keysight VEE,
HP BASIC, HP-
UX

a. NI-488.2 is a trademark of National Instruments Corporation.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

37

Using 10 Interfaces
Using GPIB

Set Up the GPIB Interface
Enter the GPIB address as shown in Figure 2-1.

Figure 2-1 Setting the GPIB Address
Utility SCPI commands:
:SYSTem:COMMunicate:GPIB:ADDRess <number>
- ¢ :8YSTem:COMMunicate:GPIB:ADDRess?
Utility I/0 Config G Enter
; — »
1/0 Configef—% GPIB Setupk EPIIS (ENREES > Enter
gégﬁggﬁgﬁggb LAK Setupe w
- Default address: 19 ,«-/ —
Displaup Le Sergégﬁgp Range: 0-30
Fouer an’ Femote Language
Preset (SCPIOM
Instrument. Infos W
"

For details on each key, use the key help. Refer to “Getting Key Help” on page 30 and the User’s Guide. For additional SCPI
command information, refer to the SCPI Command Reference.

Connect a GPIB interface cable between the signal generator and the
computer. (The following table lists cable part numbers.)

Model 10833A 10833B 10833C 10833D 10833F 10833G

Length 1 meter 2 meters 4 meters .5 meter 6 meters 8 meters

Verify GPIB Functionality

To verify GPIB functionality, use the VISA Assistant, available with the Keysight
|O Library or the Getting Started Wizard available with the National Instrument
IO Library. These utility programs enable you to communicate with the signal
generator and verify its operation over GPIB. For information and instructions
on running these programs, refer to the Help menu available in each utility.

If You Have Problems

1. Verify that the signal generator’s address matches the address declared in
the program (example programs in Chapter 3).

2. Remove all other instruments connected through GPIB and rerun the
program.

3. Verify that the GPIB card’s name or id number matches the GPIB name or
id number configured for your PC.

38 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Using 10 Interfaces
Using GPIB

GPIB Interface Terms

An instrument that is part of a GPIB network is categorized as a listener, talker,
or controller, depending on its current function in the network.

listener A listener is a device capable of receiving data or
commands from other instruments. Several instruments
in the GPIB network can be listeners simultaneously.

talker A talker is a device capable of transmitting data. To
avoid confusion, a GPIB system allows only one device
at a time to be an active talker.

controller A controller, typically a computer, can specify the talker
and listeners (including itself) for an information
transfer. Only one device at a time can be an active
controller.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 39

Using 10 Interfaces
GPIB Programming Interface Examples

GPIB Programming Interface Examples

40

The portions of the programming examples discussed in this section are
taken from the full text of these programs that can be found in Chapter 3,
“Programming Examples.”

— “Interface Check using HP Basic and GPIB” on page 40
— “Interface Check Using NI-488.2 and C++” on page 41

Before Using the GPIB Examples

If the Keysight GPIB interface card is used, the Keysight VISA library should be
installed along with Keysight SICL. If the National Instruments PCI-GPIB
interface card is used, the NI-VISA library along with the NI-488.2 library
should be installed. Refer to “Selecting IO Libraries for GPIB” on page 21 and
the documentation for your GPIB interface card for details.

HP Basic addresses the signal generator at 719. The GPIB card is addressed at
7 and the signal generator at 19. The GPIB address designator for other
libraries is typically GPIBO or GPIBT.

The following sections contain HP Basic and C++ lines of programming
removed from the programming interface examples in Chapter 3,
“Programming Examples.” these portions of programming demonstrate the
important features to consider when developing programming for use with the
GPIB interface.

Interface Check using HP Basic and GPIB

This portion of the example program “Interface Check using HP Basic and
GPIB” on page 40, causes the signal generator to perform an instrument reset.
The SCPI command * RST places the signal generator into a pre-defined state
and the remote annunciator (R) appears on the front panel display.

The following program example is available on the signal generator
Documentation CD-ROM as basicex1.txt. For the full text of this program, refer
to “Interface Check using HP Basic and GPIB” on page 72 or to the signal
generator’'s documentation CD-ROM.

160 Sig gen=719 ! Declares a variable to hold the signal
generator's address

170 LOCAL Sig_gen ! Places the signal generator into Local mode

180 CLEAR Sig gen ! Clears any pending data I/0 and resets the
parser

190 REMOTE 719 ! Puts the signal generator into remote mode
200 CLEAR SCREEN I Clears the controllers display
210 REMOTE 719

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Using 10 Interfaces
GPIB Programming Interface Examples

220 OUTPUT Sig_gen;"*RST" | Places the signal generator into a
defined state

Interface Check Using NI-488.2 and C++

This portion of the example program “Interface Check Using NI-488.2 and
C++" on page 41, uses the NI-488.2 library to verify that the GPIB connections
and interface are functional.

The following program example is available on the signal generator
Documentation CD-ROM as ni ex1. cpp. For the full text of this program, refer
to “Interface Check Using NI-488.2 and C++” on page 73 or to the signal
generator’s documentation CD-ROM.

#include "stdafx.h"
#include <iostream>
#include "windows.h"
#include "Decl-32.h"

using namespace std;

int GPIBO= 0; // Board handle

Addr4882_t Address[31]; // Declares an array of type Addr4882_t

int main(void)

int sig; // Declares a device descriptor
variable

sig = ibdev(@, 19, 0, 13, 1, 0); // Aquires a device descriptor

ibclr(sig); // Sends device clear message
to signal generator

ibwrt(sig, "*RST", 4); // Places the signal generator
into a defined state

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 47

Using LAN

42

Using 10 Interfaces
Using LAN

The signal generator can be remotely programmed through a 100Base-T LAN
interface or 10Base-T LAN interface and LAN-connected computer using one
of several LAN interface protocols. The LAN allows instruments to be
connected together and controlled by a LAN-based computer. LAN and its
associated interface operations are defined in the IEEE 802.2 standard. For
more information refer to http://www.ieee.org.

For more information on configuring your signal generator for LAN, refer to
the User’s Guide for your signal generator. You can also refer to
www.keysight.com and search on the FAQs: Hardware Configurations and
Installation.

The signal generator supports the following LAN interface protocols:

— VXI-11 (See page 50)

— Sockets LAN (See page 51)

— Telephone Network (TELNET) (See page 52)
— File Transfer Protocol (FTP) (See page 56)

— Xl

VXI-11 and sockets LAN are used for general programming using the LAN
interface, TELNET is used for interactive, one command at a time instrument
control, and FTP is for file transfer. LXI is used to communicate with multiple
instruments through LAN events using precision time protocols.

For more information on the LXI standards, refer to www.keysight.com/find/Ixi.

For more information on configuring the signal generator to communicate
over the LAN, refer to “Using VXI-11” on page 50.

The following sections contain information on selecting and connecting 10
libraries and LAN interface hardware that are required to remotely program the
signal generator through LAN to a LAN-based computer and combining those
choices with one of several possible LAN interface protocols.

— “Setting Up the LAN Interface” on page 43
— “Verifying LAN Functionality” on page 46

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Setting Up the LAN Interface

For LAN operation, the signal generator must be connected to the LAN, and an
IP address must be assigned to the signal generator either manually or by
using DHCP client service. Your system administrator can tell you which
method to use. (Most modern LAN networks use DHCP)

Verify that the signal generator is connected to the LAN using a 100Base-
T LAN or 10Base-T LAN cable.

Configuring the VXI-11 Service

To communicate with the signal generator over the LAN, you must enable the
VXI-11 SCPI service. Select VXI-11 until On is highlighted. (Default condition

is On.)
1/0 Config LAH Services SCPI Services /| [:onfirm
Utilit 10 Confi FTP Server Eon\g%rmtchangg
ility > onfi o Sockets SCRI nstrumen
Y g CRIBRSELIRY off off Will Reboot)
LAk Setups Heb ServicesH WHI-11 SCPI MA\
< off
LAN SeryiceS,. ! SOPT Servicesh
'/AA
M /
Femote Language
(SCPIIY
Proceed Hith
Reconfiguration’]

NOTE
For optimum performance, use a 100Base-T LAN cable to connect the signal generator to the LAN.

For details on each key or for a list of equivalent SCPI commands, use the front-panel key help. For information describing the
key help, refer to “Getting Key Help” on page 30 and the User’s Guide. For additional SCPI command information, refer to the

SCPI Command Reference.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 43

44

Using 10 Interfaces
Using LAN

Manual LAN Configuration

The Hostname softkey is only available when LAN Config Manual DHCP is set
to Manual.

To remotely access the signal generator from a different LAN subnet, you must
also enter the subnet mask and default gateway. See your system
administrator for more information.

Manual LAN Configuration Sequence

LAH 5 LAH ConFiﬁ 7
___1/0 Config Hostname Auto
(OHCP AAuto-TIP 2

GPIE Setup
Congda Tupe >
///%ﬁ;nual)' [HCT

Utility > 10 Config LAN Setups—
anual Config
i ¥ Auto-IF
LAN Services ///*(Settings
Setup?
Advanced
i » Manual
Remote Language Settings
il LSBT srtrn g
Proceed Hith Confirm
. ihy . . T2
Reconf iourat ion > Conf irm Change
(Instrument
Will Reboot)

Your hostname can be up to 20 characters long.

SCPI commands:
:SYSTem:COMMunicate:LAN:CONFig MANual
:SYSTem:COMMunicate:LAN:CONFig?

For details on each key, use the key help (described in User’s Guide). For additional SCPI command information, refer to the SCPI
Command Reference.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

DHCP LAN Configuration

If the DHCP server uses dynamic DNS to link the hostname with the assigned
IP address, the hostname may be used in place of the IP address. Otherwise,
the hostname is not usable.

AUTO (DHCP/Auto-IP) Configuration

DHCP and Auto-IP are used together to make automatic (AUTO) mode for IP
configuration. Automatic mode attempts DHCP first and then if that fails Auto-
IP is used to detect a private network. If neither is found, Manual is the final
choice.

If the DHCP server uses dynamic DNS to link the hostname with the assigned
IP address, the hostname may be used in place of the IP address. Otherwise,
the hostname is not usable.

Auto-IP provides automatic TCP/IP set-up for instruments on any manually
configured networks.

DHCP/Auto-IP LAN Configuration Sequence

AUTO (DHCP/Auto-IP): Request a new IP address in the following sequence: 1) from the DHCP (server-based LAN), 2) Auto-
IP (private network without a network administrator) or if neither is available, 3) Manual setting is selected.

DHCP (MXG-A models only): Request a new IP address from the DHCP server each power cycle.

Confirming this action configures the signal generator as a DHCP client. In DHCP mode, the signal generator will request a
new |P address from the DHCP server upon rebooting to determine the assigned IP address.

T/0 Config LAN Setu —_LAN Config
Auto
GPIE Setups Hastrams (DHCP /AULO-IF)
LAN Setups ED”. > OHCP
Utility > 10 Config
i Manual Config _
LAN Ser‘gégﬁg’ Settings Auto-IP
Remote Language Advanced, Manual
(SCPIIY Settings
Proceed With W -
W Reconfiguration®) — — — — T T Confirm
Confirm Chanoe
(Instrument
SCPI commands: Will Reboot)
:SYSTem:COMMunicate:LAN:CONFig DHCP|AUTO m

:SYSTem:COMMunicate:LAN:CONFig?

For details on each key, use the key help (described in User’s Guide). For additional SCPI command information, refer to the SCPI
Command Reference.

Setting up Private LAN

You can connect the Keysight X-Series signal generator directly to a PC using
a crossover cable. To do this, you should either choose to set IP addresses of
the PC and signal generator to differ only in the last digit (example: PC’s IP:
1.1.1.7 and Signal generator’s IP: 1.1.1.2); or you can use the DHCP feature or
Auto-IP feature if your PC supports them. For more information go to
www.keysight.com, and search on the Connectivity Guide (E2094-90009) or
use the Keysight Connection Expert’s Help to see the Connection Guide.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 45

Using 10 Interfaces
Using LAN

Verifying LAN Functionality

Verify the communications link between the computer and the signal
generator remote file server using the ping utility. Compare your ping response
to those described in “LAN Ping Responses” on page 46.

For additional information on troubleshooting your LAN connection, refer
to “If You Have Problems” on page 46 and to the Help in the Keysight 10
Libraries and documentation for LAN connections and problems.

From a UNIX workstation, type:

pi ng <hostnane or | P address> 64 10

where <host nane or | P address> isyourinstrument’s name or IP address,
64 is the packet size, and 10 is the number of packets transmitted. Type man
pi ng at the UNIX prompt for details on the ping command.

From the MS-DOS Command Prompt or Windows environment, type:
ping -n 10 <hostnare or | P address>

where <host name or | P address> is your instrument’s name or IP address
and 10 is the number of echo requests. Type pi ng at the command prompt for
details on the ping command.

In DHCP mode, if the DHCP server uses dynamic DNS to link the hostname
with the assigned IP address, the hostname may be used in place of the IP
address. Otherwise, the hostname is not usable and you must use the IP
address to communicate with the signal generator over the LAN.

If You Have Problems

If you are experiencing problems with the LAN connection on the signal
generator, verify the rear panel LAN connector green LED is on.

For additional information on troubleshooting your LAN connection, refer to
the Help in the Keysight IO Libraries and documentation for LAN connections
and problems.

LAN Ping Responses

Normal Response for UNIX A normal response to the ping command will be a total of 9 or 10 packets received with a

minimal average round-trip time. The minimal average will be different from network to
network. LAN traffic will cause the round-trip time to vary widely.

Normal Response for DOS or
Windows

A normal response to the ping command will be a total of 9 or 10 packets received if 10 echo
requests were specified.

46 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Using 10 Interfaces

Using LAN

Error Messages

If error messages appear, then check the command syntax before continuing with
troubleshooting. If the syntax is correct, resolve the error messages using your network
documentation or by consulting your network administrator.

If an unknown host error message appears, try using the IP address instead of the hostname.
Also, verify that the host name and IP address for the signal generator have been registered by
your IT administrator.

Check that the hostname and IP address are correctly entered in the node names database. To
do this, enter t he nsl ookup <host name> command from the command prompt.

No Response

If there is no response from a ping, no packets were received. Check that the typed address or
hostname matches the IP address or hostname assigned to the signal generator in the System
LAN Setup menu. For more information, refer to “DHCP/Auto-IP LAN Configuration
Sequence” on page 45.

Ping each node along the route between your workstation and the signal generator, starting
with your workstation. If a node doesn’t respond, contact your [T administrator.

If the signal generator still does not respond to ping, you should suspect a hardware problem.

— Check the signal generator LAN connector lights
— Verify the hostname is not being used with DHCP addressing

Intermittent Response

If you received 1 to 8 packets back, there maybe a problem with the network. In networks with
switches and bridges, the first few pings may be lost until these devices ‘learn’ the location of
hosts. Also, because the number of packets received depends on your network traffic and
integrity, the number might be different for your network. Problems of this nature are best
resolved by your IT department.

Using Interactive 10

Use the VISA Assistant utility available in the Keysight 10 Libraries Suite to
verify instrument communication over the LAN interface. Refer to the section
on the “lO Libraries and Programming Languages” on page 16 for more
information.

The Keysight IO Libraries Suite is supported on all platforms except Windows
NT. If you are using Windows NT, refer to the section below on using the VISA
Assistant to verify LAN communication. See the section on “Windows NT and
Keysight IO Libraries M (and Earlier)” on page 19 for more information.

The following sections are specific to Keysight 10 Libraries versions M and
earlier and apply only to the Windows NT platform.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 47

Using 10 Interfaces
Using LAN

Using VISA Assistant

Use the VISA Assistant, available with the Keysight 10 Library versions M and
earlier, to communicate with the signal generator over the LAN interface.
However, you must manually configure the VISA LAN client. Refer to the Help
menu for instructions on configuring and running the VISA Assistant program.

Run the 10 Config program.

Click on TCPIPO in the Available Interface Types text box.

Click the Configure button. Then Click OK to use the default settings.
Click on TCPIPO in the Configured Interfaces text box.

Click Edit...

Click the Edit VISA Config... button.

Click the Add device button.

© N O a bk wubdh =

Enter the TCPIP address of the signal generator. Leave the Device text box
empty.

9. Click the OK button in this form and all subsequent forms to exit the 10
Config program.

If You Have Problems

1. Verify the signal generator’s IP address is valid and that no other
instrument is using the IP address.

2. Switch between manual LAN configuration and DHCP using the front
panel LAN Config softkey and run the ping program using the different IP
addresses.

For Keysight |0 Libraries versions M and earlier, you must manually
configure the VISA LAN client in the 10 Config program if you want to use
the VISA Assistant to verify LAN configuration. Refer to the 10 Libraries
Installation Guide for information on configuring IO interfaces. The 10
Config program interface is shown in Figure 2-3 on page 51.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Figure 2-2 |0 Config Form (Windows NT)

Agilent I0 Libraries Configuration - I0 Config

*R5-232 COM Ports

WISA LaN Client (2.0, ESS10)
*82350 PCI GPIB Card
82341 154 GPIB Card

82357 USE to GPIB

WISA LaN Client (2.0, ESS10)
GPIB %<l Command Module
“LAM Client [LAM Instruments]
*USE Instruments

WISA LaN Client for USE
*E8491 [EEE-1394 to il
LAM Server [PC as Server]

Check to see that the Default Protocol is set to Automatic.
1. Run the 10 Config program.

2. Click on TCPIP in the Configured Interfaces text box. If there is no TCPIPO
in the box, follow the steps shown in the section “Using VISA Assistant” on
page 48.

3. Click the Edit button.
4. Click the radio button for AUTO (automatically detect protocol).
5. Click OK, OK to end the |0 Config program.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 49

Using 10 Interfaces
Using LAN

Using VXI-11

The signal generator supports the LAN interface protocol described in the VXI-
11 standard. VXI-11 is an instrument control protocol based on Open Network
Computing/Remote Procedure Call (ONC/RPC) interfaces running over
TCP/IP. It is intended to provide GPIB capabilities such as SRQ (Service
Request), status byte reading, and DCAS (Device Clear State) over a LAN
interface. This protocol is a good choice for migrating from GPIB to LAN as it
has full Keysight VISA/SICL support.

It is recommended that the VXI-11 protocol be used for instrument
communication over the LAN interface.

Configuring for VXI-11

The Keysight |0 library has a program, 10 Config, that is used to setup the
computer/signal generator interface for the VXI-11 protocol. Download the
latest version of the Keysight |0 library from the Keysight website. Refer to the
Keysight |10 library user manual, documentation, and Help menu for
information on running the 10 Config program and configuring the VXI-11
interface.

Use the 10 Config program to configure the LAN client. Once the computer is
configured for a LAN client, you can use the VXI-11 protocol and the VISA
library to send SCPI commands to the signal generator over the LAN interface.
Example programs for this protocol are included in “LAN Programming
Interface Examples” on page 115 of this programming guide.

To communicate with the signal generator over the LAN interface you
must enable the VXI-11 SCPI service. For more information, refer to
“DHCP/Auto-IP LAN Configuration Sequence” on page 45.

If you are using the Windows NT platform, refer to “Windows NT and
Keysight |0 Libraries M (and Earlier)” on page 19 for information on using
Keysight 10 Libraries versions M or earlier to configure the interface.

For Keysight 10 library version J.01.0100, the “Identify devices at run-
time” check box must be unchecked. Refer to Figure 2-3.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Figure 2-3

Using 10 Interfaces
Using LAN

Show Devices Form (Keysight 10 Library version J.01.0100)

Show Devices E3 |
B . . . H D K
[~ ddentify devices at run-time:
‘ : Cancel
Devices present on interface GPIBT:
Add device

Remove device

Auto Add devices

Using Sockets LAN

Users with Windows XP operating systems and newer can use this section
to better understand how to use the signal generator with port settings.
For more information, refer to the help software of the 10 libraries being
used.

Sockets LAN is a method used to communicate with the signal generator over
the LAN interface using the Transmission Control Protocol/Internet Protocol
(TCP/IP). A socket is a fundamental technology used for computer networking
and allows applications to communicate using standard mechanisms built into
network hardware and operating systems. The method accesses a port on the
signal generator from which bidirectional communication with a network
computer can be established.

Sockets LAN can be described as an internet address that combines Internet
Protocol (IP) with a device port number and represents a single connection
between two pieces of software. The socket can be accessed using code
libraries packaged with the computer operating system. Two common versions
of socket libraries are the Berkeley Sockets Library for UNIX systems and
Winsock for Microsoft operating systems.

Your signal generator implements a sockets Applications Programming
Interface (API) that is compatible with Berkeley socket for UNIX systems, and
Winsock for Microsoft systems. The signal generator is also compatible with
other standard sockets APIs. The signal generator can be controlled using SCPI
commands that are output to a socket connection established in your program.

Before you can use sockets LAN, you must select the signal generator’s
sockets port number to use:

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 51

Using 10 Interfaces
Using LAN

— Standard mode. Available on port 5025. Use this port for simple
programming.
— TELNET mode. The telnet SCPI service is available on port 5024.

The default telnet port is 5024. Telnet port 5023 is still available for
backwards compatibility. Refer to the SCPI Command Reference.

An example using sockets LAN is given in “LAN Programming Interface
Examples” on page 115 of this programming guide.

Using Telnet LAN

Telnet provides a means of communicating with the signal generator over the
LAN. The Telnet client, run on a LAN connected computer, will create a login
session on the signal generator. A connection, established between computer
and signal generator, generates a user interface display screen with SCPI >
prompts on the command line.

Using the Telnet protocol to send commands to the signal generator is similar
to communicating with the signal generator over GPIB. You establish a
connection with the signal generator and then send or receive information
using SCPI commands. Communication is interactive: one command at a time.

Some systems use a command prompt style interface for the Telnet client.
Refer to the Figure 2-6 on page 54 for an example of this interface.

For Windows XP and newer, use this section to better understand how to
use the signal generator with port settings. For more information, refer to
the help software of the 10 libraries being used.

For Windows 7, Telnet functionality is disabled by default. To enable
Telnet, got to Start > Control Panel > Programs and Features > Turn
Windows features on or off and select the Telnet Client checkbox. Click
OK and restart your PC.
The following telnet LAN connections are discussed:
— “Using Telnet On a PC With a Host/Port Setting Menu GUI” on page 53
— “Using Telnet On a PC With a Command Prompt Interface” on page 53
— “The Standard UNIX Telnet Command” on page 54

A Telnet example is provided in “Unix Telnet Example” on page 56.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Using Telnet On a PC With a Host/Port Setting Menu GUI

1.
2.

Figure 2-4

Launch either the Start Menu’s Command Prompt or Run utility.

Type Tel net and press the Enter key (Command Prompt) or click OK
(Run utility). The Telnet connection screen will be displayed.

Click on the Connect menu then select Remote System. A connection
form is displayed. See Figure 2-4.

Enter the hostname, port number, and TermType then click Connect.

— Host Name-signal generator’s IP address or hostname
— Port-5024
— Term Type—vt100

. At the SCPI > prompt, enter SCPI commands. Refer to Figure 2-5 on

page 53.

. To signal device clear, press Ctrl-C.

Select Exit from the Connect menu to end the Telnet session.

Connect Form (Keysight |0 Library version J.01.0100)

Host Name: ||nstrument name _-j
Port: 5024 =

TermType: (Y[-]
Connect | Cancel |

Figure 2-5 Telnet Window

IP

M Telnet - pvipl HE B
Connect Edt Temna Heb

Agilent Technologies, ES254A SH-USOOOBOOOL

Firmware: Har 28 2001 11:23:18

Hostname: BOBIpT

: 008 _AeD.0D.0b0

SCPI> =IDH?

Agilent Technologies, EB254A, USE0000004, C.01.00
SCPI> =RST

SCPT> POW:AHPL -1@ dbm

SCPI> POW?

-1.AARBAAABE DO

sce1> i

Using Telnet On a PC With a Command Prompt Interface

1.

Launch either the Start Menu’s Command Prompt or Run utility.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 53

Figure 2-6

b4

Using 10 Interfaces
Using LAN

2. Type Tel net and press the Enter key (Command Prompt) or click OK
(Run utility). The Telnet client screen will be displayed. See Figure 2-6 on
page 54.

3. Type open at the prompt and then press the Enter key. The prompt will
change to (t 0).

4. Atthe (t o) prompt, enter the signal generator’s IP address followed by a
space and 5024, which is the Telnet port associated with the signal
generator.

5. At the SCPI > prompt, enter SCPI commands.
6. To escape from the SCPI> session type Ctrl -] .
7. Type qui t at the prompt to end the Telnet session.

Telnet Command Prompt Window
BN Command Prompt - telnet ARG X

llelcome to Microsoft Telnet Client

Ezcape Character iz 'CTRL+1’

Microsoft Telnet>

The Standard UNIX Telnet Command

Synopsis
t el net [host [port]]

Description

This command is used to communicate with another host using the Telnet
protocol. When the command t el net is invoked with host or port
arguments, a connection is opened to the host, and

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

input is sent from the user to the host.

Options and Parameters

The command t el net operates in character-at-a-time or line-by-line mode.
In line-by-line mode, typed text is echoed to the screen. When the line is
completed (by pressing the Enter key), the text line is sent to host . In
character-at-a-time mode, text is echoed to the screen and sent to host as it
is typed. At the UNIX prompt, type man t el net to view the options and
parameters available with the t el net command.

If your Telnet connection is in line-by-line mode, there is no local echo.
This means you cannot see the characters you are typing until you press
the Enter key. To remedy this, change your Telnet connection to
character-by-character mode. Escape out of Telnet, and at the t el net >
prompt, type node char . If this does not work, consult your Telnet
program's documentation.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 55

Using 10 Interfaces
Using LAN

Unix Telnet Example

To connect to the instrument with host name nyl nst r ument and port number
5024, enter the following command on the command line: t el net
nyl nstrunent 5024.

When you connect to the signal generator, the UNIX window will display a
welcome message and a SCPI command prompt. The instrument is now ready
to accept your SCPI commands. As you type SCPI commands, query results
appear on the next line. When you are done, break the Telnet connection using
an escape character. For example, G rl -] ,where the control key and the] are
pressed at the same time. The following example shows Telnet commands:

$ telnet myinstrument 5024

Trying....

Connected to signal generator

Escape character is ‘*]°.

Keysight Technologies, N51xx SN-US0©0000001
Firmware:

Hostname: your instrument

IP XXX, XX.XXX . XXX

SCPI>

Using FTP

FTP allows users to transfer files between the signal generator and any
computer connected to the LAN. For example, you can use FTP to download
instrument screen images to a computer. When logged onto the signal
generator with the FTP command, the signal generator’s file structure can be
accessed. Figure 2-7 shows the FTP interface and lists the directories in the
signal generator’s user level directory.

File access is limited to the signal generator’s / user directory.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Using 10 Interfaces
Using LAN

Figure 2-7 FTP Screen

7% Command Prompt - ftp 000.000.00.000
=C> Copyrights 1985-1996 Microsoft Corp.

C:\=fip 000.000.00.000

connected to 000.000.00.000.

220- Agilent Technologies. E8254A SN-LIS00000004
220- Firmware: Mar.28.2001 11:23:18

220- Hostname: 0001p1

220- 1P : 000.000.00.000

220- FTP server =Version 1.0> readyw.

User <000.000.00.000:<none=>>:

331 Password required

Password:

230 Successful login

ftp= Is

200 Port command successful.

150 Opening data connection.

USER

226 Transfer complete.

35 bytes received in 0.00 seconds <35000.00 Kbytes/sec>
ftp> _

ce917a

The following steps outline a sample FTP session from the MS-DOS Command
Prompt:

1. On the PC click Start > Programs > Command Prompt.
2. At the command prompt enter:
ftp <P address > or < host nare >
3. At the user name prompt, press enter.
4. At the password prompt, press enter.

You are now in the signal generator’s user directory. Typing hel p at the
command prompt will show you the FTP commands that are available on
your system.

5. Type qui t or bye to end your FTP session.

6. Type exi t toend the command prompt session.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 57

Using USB

58

Using 10 Interfaces
Using USB

USB cables are not industrial graded and potentially allows data loss in
noisy environments.

USB cables do not have a latching mechanism and the cables can be
pulled out of the PC or instrument relatively easily.

The maximum length for USB cables is 30 m, including the use of inline
repeaters.

The USB 2.0 interface supports USBTMC or USBTMC-USB488
specifications.

For more information on connecting instruments to the USB, refer to the
Keysight Connection Expert in the Keysight IO Libraries Help.

USB 2.0 connectors can be used to communicate with the signal generator.
N51xxB EXG/MXG signal generators are equipped with a Type-B rear panel
connector (device USB). Use a Type-A to Mini-USB 5 pin cable to connect the
signal generator to the computer (Refer to “Setting Up the USB Interface” on
page 59). Connect the Type-A front panel connector (host USB) can be used
to connect a mouse, a keyboard, or a USB 1.1/2.0 flash drive (USB media).
(Refer to the User’s Guide.) ARB waveform encryption of proprietary
information is supported. Many functions provided by GPIB, including GET,
non-SCPI remote languages, and remote mode are available using the USB
interface.

For a list of compatible flash drives to use with the USB external interface.
Refer to http://www.keysight.com/find/mxg.

Do not use the front panel USB (Type-A) connector to connect to a
computer.

The following sections contain information on selecting and connecting 1/0
libraries and the USB interface that are required to remotely program the signal
generator through the computer and combining those choices with one of
several possible USB interface protocols.

— “Selecting I/0 Libraries for USB” on page 59
— “Setting Up the USB Interface” on page 59
— “Verifying USB Functionality” on page 60

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Using 10 Interfaces
Using USB

Selecting 170 Libraries for USB

The Keysight X-Series USB interface requires Keysight 10 Libraries Suite
14.1 or newer to run properly. For more information on connecting
instruments to the USB, refer to the Keysight Connection Expert in the
Keysight 10 Libraries Help.

The 1/0 libraries can be downloaded from the National Instrument website,
http://www.ni.com, or Keysight's website, http://www.keysight.com. The
following is a discussion on these libraries.

|70 applications such as IVI-COM or VXlplug&play can be used in place of
VISA.

VISA VISAis an I/0 library used to develop I/0 applications
and instrument drivers that comply with industry
standards. It is recommended that the VISA library be
used for programming the signal generator. The NI-
VISA and Keysight VISA libraries are similar
implementations of VISA and have the same
commands, syntax, and functions. The differences are in
the lower level I/0O libraries used to communicate over
the USB; NI-488.2 and SICL respectively.

NI-488.2 NI-488.2 1/0 libraries can be used to develop
applications for the USB interface. See National
Instrument’s website for information on NI-488.2.

SICL Keysight SICL can be used to develop applications for
the USB interface. See Keysight's website for
information on SICL.

Because of the potential for portability problems, running Keysight SICL
without the VISA overlay is not recommended by Keysight Technologies.

Setting Up the USB Interface

Rear Panel Interface (Mini-B 5 pin)

To use USB, connect the USB cable (Refer to Table 2-1, “USB
Interface Cable,” on page 60, for USB cable information.) between the
computer and the signal generator’s rear panel Mini-B 5-pin USB connector.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 59

Using 10 Interfaces

Using USB
Table 2-1 USB Interface Cable
Quantity Description Keysight Part Number
1 USB cable Mini-B b pin to Type-A 82357-61601

Front Panel USB (Type-A)
For details on using the front panel USB (Type-A) and the front panel USB
Media operation, refer to the User’s Guide.

Verifying USB Functionality

Mini-B 5 Pin Rear Panel Connector

For information on verifying your Mini-B 5 pin USB (rear panel)
functionality, refer to the Keysight Connection Expert in the Keysight |10
Libraries Help. The Keysight 10 libraries are included with your signal
generator or Keysight GPIB interface board, or they can be downloaded
from the Keysight website: http://www.keysight.com.

Type-A Front Panel USB Connector

For details on using the front panel USB (Type-A) and the front panel USB
Media operation, refer to the User’s Guide.

60 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Keysight Technologies
X-Series Signal Generators

Programming Guide

3 Programming Examples

— Using the Programming Interface Examples on page 62
— GPIB Programming Interface Examples on page 68

— LAN Programming Interface Examples on page 115

KEYSIGHT

TECHNOLOGIES

61

Programming Examples
Using the Programming Interface Examples

Using the Programming Interface Examples

62

The programming examples for remote control of the signal generator use the
GPIB and LAN interfaces and demonstrate instrument control using different
IO libraries and programming languages. Many of the example programs in this
chapter are interactive; the user will be prompted to perform certain actions or
verify signal generator operation or functionality. Example programs are
written in the following languages:

HP Basic C#

C/C++ Microsoft Visual Basic 6.0
Java MATLAB

Perl

These example programs are also available on the signal generator
Documentation CD-ROM, enabling you to cut and paste the examples into a
text editor.

The example programs set the signal generator into remote. Press the
Keysight MXG Local/Esc/Cancel key to revert to manual operation.

To have the signal generator’s front panel update with changes caused by
remote operations, enable the signal generator’s Update in Remote function.

The Update in Remote function will slow test execution. For faster test
execution, disable the Update in Remote function. For more information,
refer to or “Configuring the Display for Remote Command Setups” on
page 30.

Programming Examples Development Environment

The C/C++ examples were written using an IBM-compatible personal
computer (PC), configured as follows:

— Pentium processor (Pentium is a registered trademark of Intel Corporation.)

— Windows NT 4.0 operating system or later

— C/C++ programming language with the Microsoft Visual C++ 6.0 IDE

— National Instruments PCI-GPIB interface card or Keysight GPIB interface
card

— National Instruments VISA Library or Keysight VISA library

— LAN interface card

The HP Basic examples were run on a UNIX 700 series workstation.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
Using the Programming Interface Examples

Running C++ Programs

When using Microsoft Visual C++ 6.0 to run the example programs, include the
following files in your project.

When using the VISA library:

— add the visa32.lib file to the Resource Files
— add the visa.h file to the Header Files

When using the NI-488.2 library:

— add the GPIB-32.0BJ file to the Resource Files
— add the windows.h file to the Header Files
— add the Deci-32.h file to the Header Files

For information on the NI-488.2 library and file requirements refer to the
National Instrument website. For information on the VISA library see the
Keysight website or National Instrument’s website.

To communicate with the signal generator over the LAN interface you
must enable the VXI-11 SCPI service. For more information, refer to
“DHCP/Auto-IP LAN Configuration Sequence” on page 45.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 63

Programming Examples
Using the Programming Interface Examples

C/C++ Examples

— “Interface Check for GPIB Using VISA and C” on page 75

— “Local Lockout Using NI-488.2 and C++” on page 78

— “Queries Using NI-488.2 and Visual C++" on page 82

— “Queries for GPIB Using VISA and C” on page 85

— “Generating a CW Signal Using VISA and C” on page 88

— “Generating an Externally Applied AC-Coupled FM Signal Using VISA and
C” on page 91

— “Generating an Internal FM Signal Using VISA and C” on page 93

— “Generating a Step-Swept Signal Using VISA and C++” on page 96

— “Reading the Data Questionable Status Register Using VISA and C” on
page 104

— “Reading the Service Request Interrupt (SRQ) Using VISA and C” on
page 110

— “VXI-11 Programming Using SICL and C++” on page 116

— “VXI-11 Programming Using VISA and C++” on page 118

— “Sockets LAN Programming and C” on page 120

Running C# Examples

To run the example program State_Files.cs on page 367, you must have the
NET framework installed on your computer. You must also have the Keysight
|O Libraries installed on your computer. The .NET framework can be
downloaded from the Microsoft website. For more information on running C#
programs using .NET framework, see Chapter 6.

To communicate with the signal generator over the LAN interface you
must enable the VXI-11 SCPI service. For more information, refer to
“Configuring the VXI-11 Service” on page 43.

Running Basic Examples

64

The BASIC programming interface examples provided in this chapter use either
HP Basic or Visual Basic 6.0 languages.

Visual Basic 6.0 Programming Examples

To run the example programs written in Visual Basic 6.0 you must include
references to the |0 Libraries. For more information on VISA and IO libraries,
refer to the Keysight VISA User’s Manual, available on Keysight's website:
http://www.keysight.com. In the Visual Basic IDE (Integrated Development
Environment) go to Project-References and place a check mark on the
following references:

— Keysight VISA COM Resource Manager 1.0
— VISA COM 1.0 Type Library

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
Using the Programming Interface Examples

If you want to use VISA functions such as viWrite, then you must add the
visa32.bas module to your Visual Basic project.

The signal generator’s VXI-11 SCPI service must be on before you can run the
Download Visual Basic 6.0 programming example.

To communicate with the signal generator over the LAN interface you
must enable the VXI-11 SCPI service. For more information, refer to
“Configuring the VXI-11 Service” on page 43.

You can start a new Standard EXE project and add the required references.
Once the required references are included, you can copy the example programs
into your project and add a command button to For i that will call the
program.

The example Visual Basic 6.0 programs are available on the signal generator
Documentation CD-ROM, enabling you to cut and paste the examples into
your project.

Visual Basic Examples

The Visual Basic examples enable the use of waveform files and are located in
Chapter 5.

— “Creating I/Q Data—Little Endian Order” on page 301
— “Downloading I/Q Data” on page 304

HP Basic Examples

— “Interface Check using HP Basic and GPIB” on page 72
— “Local Lockout Using HP Basic and GPIB” on page 76
— “Queries Using HP Basic and GPIB” on page 80

Running Java Examples

The Java program “Sockets LAN Programming Using Java” on page 150,
connects to the signal generator through sockets LAN. This program requires
Java version 1.1 or later be installed on your PC. For more information on
sockets LAN programming with Java, refer to “Sockets LAN Programming
Using Java” on page 150.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 65

Programming Examples
Using the Programming Interface Examples

Running MATLAB Examples

For information regarding programming examples and files required to create
and play waveform files, refer to Chapter 5.

To communicate with the signal generator over the LAN interface you must enable the VXI-11
NOTE SCPI service. For more information, refer to “Configuring the VXI-11 Service” on
page 43.

Running Perl Examples

The Perl example “Sockets LAN Programming Using Perl” on page 153, uses
PERL script to control the signal generator over the sockets LAN interface.

66 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Using GPIB

Programming Examples
Using GPIB

GPIB enables instruments to be connected together and controlled by a
computer. GPIB and its associated interface operations are defined in the
ANSI/IEEE Standard 488.1-1987 and ANSI/IEEE Standard 488.2-1992. See the
IEEE website, http://www.ieee.org, for details on these standards.

The following sections contain information for installing a GPIB interface card
or NI-GPIB interface card for your PC or UNIX-based system.

— “Installing the GPIB Interface Card” on page 67

For more information on setting up a GPIB interface card or NI-GPIB interface
card, refer to:

— “Set Up the GPIB Interface” on page 38
— “Verify GPIB Functionality” on page 38
You can also connect GPIB instruments to a PC USB port using the Keysight 82357A USB/GPIB

Interface Converter, which eliminates the need for a GPIB card. For more information, go to
http://www.keysight.com/find/gpib.

Installing the GPIB Interface Card

Refer to “Installing the GPIB Interface” on page 36.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 67

Programming Examples
GPIB Programming Interface Examples

GPIB Programming Interface Examples

68

“Interface Check using HP Basic and GPIB” on page 72

“Interface Check Using NI-488.2 and C++” on page 73

“Interface Check for GPIB Using VISA and C” on page 75

“Local Lockout Using HP Basic and GPIB” on page 76

“Local Lockout Using NI-488.2 and C++” on page 78

“Queries Using HP Basic and GPIB” on page 80

“Queries Using NI-488.2 and Visual C++” on page 82

“Queries for GPIB Using VISA and C” on page 85

“Generating a CW Signal Using VISA and C” on page 88

“Generating an Externally Applied AC-Coupled FM Signal Using VISA and
C” on page 91

“Generating an Internal FM Signal Using VISA and C” on page 93
“Generating a Step-Swept Signal Using VISA and C++” on page 96
“Generating a Swept Signal Using VISA and Visual C++” on page 98
“Saving and Recalling States Using VISA and C” on page 101
“Reading the Data Questionable Status Register Using VISA and C” on
page 104

“Reading the Service Request Interrupt (SRQ) Using VISA and C” on
page 110

Before Using the GPIB Examples

HP Basic addresses the signal generator at 719. The GPIB card is addressed at
7 and the signal generator at 19. The GPIB address designator for other
libraries is typically GPIBO or GPIBT.

GPIB Function Statements (Command Messages)

Function statements are the basis for GPIB programming and instrument
control. These function statements, combined with SCPI, provide management
and data communication for the GPIB interface and the signal generator.

This section describes functions used by different IO libraries. For more
information, refer to the NI-488.2 Function Reference Manual for Windows,
Keysight Standard Instrument Control Library reference manual, and Microsoft
Visual C++ 6.0 documentation.

Abort Function

The HP Basic function ABCRT and the other listed |0 library functions terminate
listener/talker activity on the GPIB and prepare the signal generator to receive
a new command from the computer. Typically, this is an initialization command
used to place the GPIB in a known starting condition.

Library

Function Statement Initialization Command

HP Basic

The ABORT function stops all GPIB activity. 10 ABORT 7

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

Library Function Statement Initialization Command

VISA Library | In VISA, the viTerminate command requests a VISA session to | vi Ter m nat e
terminate normal execution of an asynchronous operation. The | (paraneter |ist)
parameter list describes the session and job id.

NI-488.2 The NI-488.2 library function aborts any asynchronous read, i bst op(int ud)
write, or command operation that is in progress. The
parameter ud is the interface or device descriptor.

SICL The Keysight SICL function aborts any command currently iabort (id)
executing with the session i d. This function is supported with
C/C++on Windows 3.1 and Series 700 HP-UX.

Remote Function

The HP Basic function REMOTE and the other listed 10 library functions change
the signal generator from local operation to remote operation. In remote
operation, the front panel keys are disabled except for the Local key and the
line power switch. Pressing the Local key restores manual operation.

Library Function Statement Initialization Command

HP Basic The REMOTE 719 function disables the front panel 10 REMOTE 719
operation of all keys with the exception of the Local key.

VISA Library | The VISA library, at this time, does not have a similar N/A
command.

NI-488.2 The NI-488.2 library function asserts the Remote Enable Enabl eRenot e
(REN) GPIB line. All devices listed in the parameter listare put | (paranmeter |ist)
into a listen-active state although no indication is generated
by the signal generator. The parameter list describes the
interface or device descriptor.

SICL The Keysight SICL function puts an instrument, identified by irenote (id)
the i d parameter, into remote mode and disables the front
panel keys. Pressing the Local key on the signal generator
front panel restores manual operation. The parameter id is the
session identifier.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 69

Programming Examples
GPIB Programming Interface Examples

Local Lockout Function

The HP Basic function LOCAL LOCKQUT and the other listed IO library functions
disable the front panel keys including the Local key. With the Local key
disabled, only the controller (or a hard reset of line power) can restore local

control.

Library

Function Statement

Initialization Command

HP Basic

The LOCAL LOCKQUT function disables all front-panel
signal generator keys. Return to local control can occur only
by cycling power on the instrument, when the LOCAL
command is sent or if the Preset key is pressed.

10 LOCAL LOCKOUT
719

VISA Library

The VISA library, at this time, does not have a similar
command.

N/A

NI-488.2

The LOCAL LOCKQOUT function disables all front-panel
signal generator keys. Return to local control can occur only
by cycling power on the instrument, when the LOCAL
command is sent or if the Preset key is pressed.

Set RALS (par anet er
l'ist)

SICL

The Keysight SICL igpibllo prevents function prevents user
access to front panel keys operation. The function puts an
instrument, identified by the i d parameter, into remote mode
with local lockout. The parameter i d is the session identifier
and instrument address list.

igpibllo (id)

Local Function

The HP Basic function LOCAL and the other listed functions return the signal
generator to local control with a fully enabled front panel.

Library

Function Statement

Initialization Command

HP Basic

The LOCAL 719 function returns the signal generator to
manual operation, allowing access to the signal generator’s
front panel keys.

10 LOCAL 719

VISA Library

The VISA library, at this time, does not have a similar
command.

N/A

NI-488.2

The NI-488.2 library function places the interface in local
mode and allows operation of the signal generator’s front
panel keys. The ud parameter in the parameter list is the
interface or device descriptor.

i bloc (int ud)

SICL

The Keysight SICL function puts the signal generator into
Local operation; enabling front panel key operation. The i d
parameter identifies the session.

iloc (id)

70

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

Clear Function

The HP Basic function CLEAR and the other listed 10 library functions clear the

signal generator.

Library

Function Statement

Initialization Command

HP Basic

The CLEAR 719 function halts all pending
output-parameter operations, resets the parser (interpreter of
programming codes) and prepares for a new programming
code, stops any sweep in progress, and turns off continuous
sweep.

10 CLEAR 719

VISA Library

The VISA library uses the viClear function. This function
performs an IEEE 488.1 clear of the signal generator.

vi O ear (Vi Session
Vi)

NI-488.2

The NI-488.2 library function sends the GPIB Selected Device
Clear (SDC) message to the device described by ud.

ibclr (int ud)

SICL

The Keysight SICL function clears a device or interface. The
function also discards data in both the read and write
formatted |0 buffers. The i d parameter identifies the session.

iclear (id)

Output Function

The HP Basic 10 function QUTPUT and the other listed 10 library functions put
the signal generator into a listen mode and prepare it to receive ASCI| data,

typically SCPI commands.

Library

Function Statement

Initialization Command

HP Basic

The function OUTPUT 719 puts the signal generator into
remote mode, makes it a listener, and prepares it to receive
data.

10 QUTPUT 719

VISA Library

The VISA library uses the above function and associated
parameter list to output data. This function formats according
to the format string and sends data to the device. The
parameter list describes the session id and data to send.

vi Printf
(paraneter list)

NI-488.2

The NI-488.2 library function addresses the GPIB and writes
data to the signal generator. The parameter list includes the
instrument address, session id, and the data to send.

i bwt (paraneter
list)

SICL

The Keysight SICL function converts data using the format
string. The format string specifies how the argument is
converted before it is output. The function sends the
characters in the format string directly to the instrument. The
parameter list includes the instrument address, data buffer to
write, and so forth.

iprintf (paraneter
l'ist)

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

71

72

Programming Examples
GPIB Programming Interface Examples

Enter Function

The HP Basic function ENTER reads formatted data from the signal generator.
Other 10 libraries use similar functions to read data from the signal generator.

Library Function Statement Initialization Command
HP Basic The function ENTER 719 puts the signal generator into 10 ENTER 719;
remote mode, makes it a talker, and assigns data or status
information to a designated variable.
VISA Library | The VISA library uses the viScanf function and an associated vi Scanf (paraneter
parameter list to receive data. This function receives data from | i st)
the instrument, formats it using the format string, and stores
the data in the argument list. The parameter list includes the
session id and string argument.
NI-488.2 The NI-488.2 library function addresses the GPIB, reads data | i brd (paraneter
bytes from the signal generator, and stores the data into a list)
specified buffer. The parameter list includes the instrument
address and session id.
SICL The Keysight SICL function reads formatted data, convertsit, | i scanf (paramneter

and stores the results into the argument list. The conversion is
done using conversion rules for the format string. The
parameter list includes the instrument address, formatted
data to read, and so forth.

list)

Interface Check using HP Basic and GPIB

This simple program causes the signal generator to perform an instrument
reset. The SCPI command * RST places the signal generator into a pre-defined
state and the remote annunciator (R) appears on the front panel display.

The following program example is available on the signal generator

Documentation CD-ROM as basi cex1. t xt .

10

| 5k ok sk ok ok ok ok ok ok ok sk ok ok oK oK oK ok 3k 3k ok ok oK oK oK ok ok 3k ok o oK oK oK ok ok sk ok o oK oK oK ok 3k 3k ok ok oK oK oK ok ok ok o o oK oK oK ok ok ok ok o K oK K ok K

20 !
30 ! PROGRAM NAME: basicexl.txt
40 !

50 ! PROGRAM DESCRIPTION: This program verifies that the GPIB

connections and

60 ! interface are functional.

70 !

80 ! Connect a controller to the signal generator using a GPIB

cable.

90 !

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

100 !

110 I CLEAR and RESET the controller and type in the following
commands and then

120 I RUN the program:

130 !

140
!**
150 !

160 Sig gen=719 ! Declares a variable to hold the signal

generator's address
170 LOCAL Sig gen ! Places the signal generator into Local mode
180 CLEAR Sig gen ! Clears any pending data I/0 and resets the

parser
190 REMOTE 719 I Puts the signal generator into remote mode
200 CLEAR SCREEN ! Clears the controllers display

210 REMOTE 719

220 OUTPUT Sig gen;"*RST" | Places the signal generator into a
defined state

230 PRINT "The signal generator should now be in REMOTE."
240 PRINT

250 PRINT "Verify that the remote [R] annunciator is on. Press the
“Local' key, "

260 PRINT "on the front panel to return the signal generator to
local control.”

270 PRINT
280 PRINT "Press RUN to start again."”
290 END ! Program ends

Interface Check Using NI-488.2 and C++

This example uses the NI-488.2 library to verify that the GPIB connections and
interface are functional. Launch Microsoft Visual C++ 6.0, add the required
files, and enter the following code into your .cpp source file.

The following program example is available on the signal generator
Documentation CD-ROM as ni ex1. cpp.

/7

ok oK oK oK ok ok ko oK oK oK oK ok ok ok o K oK oK ok ok ok ok o oK oK oK oK ok sk ok o oK oK oK ok ok ko o oK oK oK ok ok ko o oK oK oK ok ok ok ok ok oK oK K ok ok ok ok kK K

//
// PROGRAM NAME: niexl.cpp

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 73

74

Programming Examples
GPIB Programming Interface Examples

/7

// PROGRAM DESCRIPTION: This program verifies that the GPIB
connections and

// interface are functional.

/7

// Connect a GPIB cable from the PC GPIB card to the signal
generator

// Enter the following code into the source .cpp file and execute
the program

/7
/7

EET]

#include "stdafx.h"
#include <iostream>
#include "windows.h"
#include "Decl-32.h"

using namespace std;

int GPIBO= 0; // Board handle
Addr4882_t Address[31]; // Declares an array of type Addr4882_t

int main(void)

int sig; // Declares a device descriptor
variable

sig = ibdev(e, 19, @, 13, 1, 0); // Aquires a device descriptor

ibclr(sig); // Sends device clear message
to signal generator

ibwrt(sig, "*RST", 4); // Places the signal generator
into a defined state

// Print data to the output window

cout << "The signal generator should now be in REMOTE. The
remote indicator"<<endl;

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

cout <<"annunciator R should appear on the signal generator
display"<<endl;

return 0;

Interface Check for GPIB Using VISA and C

This program uses VISA library functions and the C language to communicate
with the signal generator. The program verifies that the GPIB connections and
interface are functional. Launch Microsoft Visual C++ 6.0, add the required
files, and enter the following code into your .cpp source file. vi saex1. cpp
performs the following functions:

— verifies the GPIB connections and interface are functional
— switches the signal generator into remote operation mode

The following program example is available on the signal generator
Documentation CD-ROM as vi saex1. cpp.

//***
// PROGRAM NAME:visaexl.cpp

//

// PROGRAM DESCRIPTION:This example program verifies that the GPIB
connections and

// and interface are functional.
// Turn signal generator power off then on and then run the program

/7

//***

#include <visa.h>

#include <stdio.h>
#include "StdAfx.h"
#include <stdlib.h>

void main ()

{

ViSession defaultRM, vi; // Declares a variable of type
ViSession

// for instrument communication

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 75

76

Programming Examples
GPIB Programming Interface Examples

ViStatus viStatus = 0;

// Opens a session to the GPIB
device

// at address 19
viStatus=viOpenDefaultRM(&defaultRM);

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI NULL, VI NULL,
&vi);

if(viStatus){

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");

exit(9);}

viPrintf(vi, "*RST\n"); // initializes signal generator
// prints to the output window

printf("The signal generator should now be in REMOTE. The remote
indicator\n");

printf("annunciator R should appear on the signal generator
display\n");

printf("\n");

viClose(vi); // closes session

viClose(defaultRM); // closes default session

Local Lockout Using HP Basic and GPIB

This example demonstrates the Local Lockout function. Local Lockout disables
the front panel signal generator keys. basi cex2. t xt performs the following
functions:

— resets instrument
— places signal generator into local
— places signal generator into remote

The following program example is available on the signal generator
Documentation CD-ROM as basi cex2. t xt .

10

IEETE]

20 !

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

30 ! PROGRAM NAME: basicex2.txt

40 !

50 ! PROGRAM DESCRIPTION: In REMOTE mode, access to the signal
generators

60 ! functional front panel keys are

disabled except for

70 ! the Local and Contrast keys. The LOCAL
LOCKOUT

80 ! command will disable the Local key.
90 ! The LOCAL command, executed from the
controller, is then

100 ! the only way to return the signal
generator to front panel,

110 ! Local, control.

120

1 3% sk sk ke skske sk sk sk sk sk ok ok sk ok sk sk ok skok ko skok sk sk sk sk ko skosk sk sk skok sk sk stk ok skok sk sk sk sk skok ko ok ok skok ok
130 Sig gen=719 ! Declares a variable to hold signal
generator address

140 CLEAR Sig_gen | Resets signal generator parser and clears
any output

150 LOCAL Sig gen I Places the signal generator in local mode
160 REMOTE Sig_gen ! Places the signal generator in remote mode
1706 CLEAR SCREEN ! Clears the controllers display

180 OUTPUT Sig gen;"*RST" I Places the signal generator in a

defined state
190 I The following print statements are user prompts
200 PRINT "The signal generator should now be in remote."

210 PRINT "Verify that the 'R' and 'L' annunciators are visable"

220 PRINT ".......... Press Continue"

230 PAUSE

240 LOCAL LOCKOUT 7 ! Puts the signal generator in LOCAL LOCKOUT
mode

250 PRINT I Prints user prompt messages

260 PRINT "Signal generator should now be in LOCAL LOCKOUT mode."
270 PRINT

280 PRINT "Verify that all keys including "Local' (except Contrast
keys) have no effect."

290 PRINT

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 77

78

Programming Examples
GPIB Programming Interface Examples

300 PRINT ".......... Press Continue"

310 PAUSE

320 PRINT

330 LOCAL 7 I Returns signal generator to Local control
340 I The following print statements are user prompts

350 PRINT "Signal generator should now be in Local mode."
360 PRINT

370 PRINT "Verify that the signal generator's front-panel keyboard
is functional."

380 PRINT
390 PRINT "To re-start this program press RUN."
400 END

Local Lockout Using NI-488.2 and C++

This example uses the NI-488.2 library to set the signal generator local lockout
mode. Launch Microsoft Visual C++ 6.0, add the required files, and enter the
following code into your .cpp source file. ni ex2. cpp performs the following
functions:

— all front panel keys, except the contrast key

— places the signal generator into remote

— prompts the user to verify the signal generator is in remote
— places the signal generator into local

The following program example is available on the signal generator
Documentation CD-ROM as ni ex2. cpp.

/7

EET]

// PROGRAM NAME: niex2.cpp

//

// PROGRAM DESCRIPTION: This program will place the signal generator
into

// LOCAL LOCKOUT mode. All front panel keys, except the Contrast
key, will be disabled.

// The local command, 'ibloc(sig)' executed via program code, is the
only way to

// return the signal generator to front panel, Local, control.

//

3k 3k 5k ok ok 5k ok >k ok ok >k ok ok ok ok ok ok sk >k >k ok >k >k ok ok >k ok ok ok ok >k >k ok >k >k ok ok >k 5k ok ok ok >k sk ok >k >k ok >k >k ok >k >k ok >k >k ok >k >k ok >k >k ok >k kok ok

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

#include "stdafx.h"
#include <iostream>
#include "windows.h"
#include "Decl-32.h"
using namespace std;
int GPIB@O= 0; // Board handle

Addr4882_t Address[31]; // Declares a variable of
type Addr4882_t

int main()

int sig; // Declares variable to hold
interface descriptor

sig = ibdev(@, 19, 0, 13, 1, 9); // Opens and initialize a
device descriptor

ibclr(sig); // Sends GPIB Selected Device
Clear (SDC) message

ibwrt(sig, "*RST", 4); // Places signal generator
in a defined state

cout << "The signal generator should now be in REMOTE. The
remote mode R "<<endl;

cout <<"annunciator should appear on the signal generator
display."<<endl;

cout <<"Press Enter to continue"<<endl;

cin.ignore(10000,'\n'");

SendIFC(GPIBO); // Resets the GPIB interface

Address[0]=19; // Signal generator's address

Address[1]=NOADDR; // Signifies end element in
array. Defined in //
DECL-32.H

SetRWLS(GPIBO, Address); // Places device in Remote

with Lockout State.

cout<< "The signal generator should now be in LOCAL LOCKOUT.
Verify that all keys"<<endl;

cout<< "including the 'Local' key are disabled (Contrast keys
are not affected)"<<endl;

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 79

80

Programming Examples
GPIB Programming Interface Examples

cout <<"Press Enter to continue"<<endl;
cin.ignore(10000,'\n'");

ibloc(sig); // Returns signal generator
to local control

cout<<endl;
cout <<"The signal generator should now be in local mode\n";

return 0;}

}

Queries Using HP Basic and GPIB

This example demonstrates signal generator query commands. The signal
generator can be queried for conditions and setup parameters. Query
commands are identified by the question mark as in the identify command
*| DN? basi cex3.txt perforns the follow ng functions:

— clears the signal generator

— queries the signal generator’s settings

The following program example is available on the signal generator
Documentation CD-ROM as basi cex3. t xt .

10

IEELEEEEETE]

20 !
30 ! PROGRAM NAME: basicex3.txt
40 !

50 I PROGRAM DESCRIPTION: 1In this example, query commands are
used with response

60 | data formats.
70 !

80 ! CLEAR and RESET the controller and RUN the following
program:

90 !
100

| >k 3k 3k 3k 3k ok 3k >k >k 5k 5k 5k 3k 3k >k >k 3k 3k 3k 3k 3k 3k >k >k 5k 3k 3k 3k 3k 3k >k 3k 5k 5k 3k 3k 3k 3k >k >k 3k 5k sk 3k 3k >k 3k >k 3k 3k 3k 3k ok >k >k ok ok ok ok ok k kR kok ok

110 !

120 DIM A$[1e],C$[100],D$[10] ! Declares variables to hold
string response data

130 INTEGER B | Declares variable to hold integer
response data

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

140 Sig gen=719 | Declares variable to hold signal
generator address

150 LOCAL Sig gen ! Puts signal generator in Local
mode

160 CLEAR Sig gen ! Resets parser and clears any
pending output

1706 CLEAR SCREEN I Clears the controller’s display
180 OUTPUT Sig_gen;"*RST" ! Puts signal generator into a
defined state

196 OUTPUT Sig_gen;"FREQ:CW?" ! Querys the signal generator CW
frequency setting

200 ENTER Sig_gen;F ! Enter the CW frequency setting
210 I Print frequency setting to the controller display

220 PRINT "Present source CW frequency is: ";F/1.E+6;"MHz"

230 PRINT

240 OUTPUT Sig_gen;"POW:AMPL?" | Querys the signal generator
power level

250 ENTER Sig gen;W ! Enter the power level

260 I Print power level to the controller display

270 PRINT "Current power setting is: ";W;"dBM"
280 PRINT

290 OUTPUT Sig gen;"FREQ:MODE?" ! Querys the signal generator for
frequency mode

300 ENTER Sig gen;A$! Enter in the mode: CW, Fixed or
List
310 I Print frequency mode to the controller display

320 PRINT "Source's frequency mode is: ";A$

330 PRINT

346 OUTPUT Sig_gen;"OUTP OFF" ! Turns signal generator RF state
off

350 OUTPUT Sig_gen;"OUTP?" I Querys the operating state of the
signal generator

360 ENTER Sig_gen;B ! Enter in the state (@ for off)
370 I Print the on/off state of the signal generator to the

controller display
380 IF B>@ THEN

390 PRINT "Signal Generator output is: on
400 ELSE

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 81

82

Programming Examples
GPIB Programming Interface Examples

410 PRINT "Signal Generator output is: off"

420 END IF

430 OUTPUT Sig_gen;"*IDN?" ! Querys for signal generator ID
440 ENTER Sig gen;C$! Enter in the signal generator ID
450 I Print the signal generator ID to the controller display

460 PRINT

470 PRINT "This signal generator is a ";C$

480 PRINT
490 ! The next command is a query for the signal generator's GPIB
address

500 OUTPUT Sig gen;"SYST:COMM:GPIB:ADDR?"

510 ENTER Sig_gen;D$! Enter in the signal generator's
address
520 ! Print the signal generator's GPIB address to the controllers
display

530 PRINT "The GPIB address is ";D$

540 PRINT

550 I Print user prompts to the controller's display

560 PRINT "The signal generator is now under local control”
570 PRINT "or Press RUN to start again.”

580 END

Queries Using NI-488.2 and Visual C++

This example uses the NI-488.2 library to query different instrument states and
conditions. Launch Microsoft Visual C++ 6.0, add the required files, and enter
the following code into your .cpp source file. ni ex3. cpp performs the
following functions:

— resets the signal generator
— queries the signal generator for various settings
— reads the various settings

The following program example is available on the signal generator
Documentation CD-ROM as ni ex3. cpp.

//***
// PROGRAM NAME: niex3.cpp
//

// PROGRAM DESCRIPTION: This example demonstrates the use of query
commands.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

/7

// The signal generator can be queried for conditions and instrument
states.

// These commands are of the type "*IDN?" where the question mark
indicates

// a query.
//

//***

#include "stdafx.h"
#include <iostream>
#include "windows.h"
#include "Decl-32.h"

using namespace std;

int GPIBO= Q; // Board handle
Addr4882_t Address[31]; // Declare a variable of type
Addr48s2_t
int main()
{

int sig; // Declares variable to hold

interface descriptor
int num;

char rdval[100]; // Declares variable to read
instrument responses

sig = ibdev(@, 19, 0, 13, 1, @); // Open and initialize a device
descriptor

ibloc(sig); // Places the signal generator in
local mode

ibclr(sig); // Sends Selected Device Clear(SDC)
message
ibwrt(sig, "*RST", 4); // Places signal generator in a

defined state
ibwrt(sig, ":FREQuency:CW?",14); // Querys the CW frequency

ibrd(sig, rdval,100); // Reads in the response into
rdval

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 83

84

Programming Examples
GPIB Programming Interface Examples

rdval[ibcntl] = '\@'; // Null character indicating end
of array

cout<<"Source CW frequency is "<<rdVal; // Print frequency of
signal generator

cout<<"Press any key to continue"<<endl;

cin.ignore(10000, '\n");

ibwrt(sig, "POW:AMPL?",10); // Querys the signal generator

ibrd(sig, rdval,100); // Reads the signal generator
power level

rdval[ibcntl] = '\@'; // Null character indicating end
of array

// Prints signal generator power
level

cout<<"Source power (dBm) is : "<<rdVal;
cout<<"Press any key to continue"<<endl;
cin.ignore(10000, '\n');

ibwrt(sig, ":FREQ:MODE?",11); // Querys source frequency mode

ibrd(sig, rdval,100); // Enters in the source frequency
mode

rdval[ibcntl] = '\@'; // Null character indicating end
of array

cout<<"Source frequency mode is "<<rdVal; // Print source
frequency mode

cout<<"Press any key to continue"<<endl;

cin.ignore(10000, '\n');

ibwrt(sig, "OUTP OFF",12); // Turns off RF source

ibwrt(sig, "OUTP?",5); // Querys the on/off state of the
instrument

ibrd(sig,rdval,2); // Enter in the source state

rdvVal[ibcntl] = '\@';
num = (int (rdval[@]) -('©"));
if (num > 0){

cout<<"Source RF state is : On"<<endl;
telse{

cout<<"Source RF state is : Off"<<endl;}
cout<<endl;

ibwrt(sig, "*IDN?",5); // Querys the instrument ID

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

ibrd(sig, rdval,100); // Reads the source ID

rdval[ibcntl] = '\@'; // Null character indicating end
of array

cout<<"Source ID is : "<<rdVal; // Prints the source ID

cout<<"Press any key to continue"<<endl;
cin.ignore(10000, '\n');
ibwrt(sig, "SYST:COMM:GPIB:ADDR?",20); //Querys source address

ibrd(sig, rdval,100); // Reads the source address
rdval[ibcntl] = "\0@'; // Null character indicates end of
array

// Prints the signal generator
address

cout<<"Source GPIB address is : "<<rdVal;
cout<<endl;

cout<<"Press the 'Local' key to return the signal generator to

LOCAL control”<<endl; cout<<endl;
return 0;
}

Queries for GPIB Using VISA and C

This example uses VISA library functions to query different instrument states
and conditions. Launch Microsoft Visual C++ 6.0, add the required files, and
enter the following code into your .cpp source file. vi saex3. cpp performs the
following functions:

— verifies the GPIB connections and interface are functional

— resets the signal generator

— queries the instrument (CW frequency, power level, frequency mode, and
RF state)

— reads responses into the rdBuffer (CW frequency, power level, and
frequency mode)

— turns signal generator RF state off

— verifies RF state off

The following program example is available on the signal generator
Documentation CD-ROM as vi saex3. cpp.

//***

// PROGRAM FILE NAME:visaex3.cpp

/7

// PROGRAM DESCRIPTION:This example demonstrates the use of query
commands. The signal

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 85

Programming Examples
GPIB Programming Interface Examples

// generator can be queried for conditions and instrument states.
These commands are of

// the type "*IDN?"; the question mark indicates a query.
//

//***

#include <visa.h>

#include "StdAfx.h"
#include <iostream>
#include <conio.h>
#include <stdlib.h>

using namespace std;

void main ()

{
ViSession defaultRM, vi; // Declares variables of type
ViSession
// for instrument communication
ViStatus viStatus = 0; // Declares a variable of type
ViStatus
// for GPIB verifications
char rdBuffer [256]; // Declares variable to hold string
data
int num; // Declares variable to hold integer
data
// Initialize the VISA system
viStatus=viOpenDefaultRM(&defaultRM);
// Open session to GPIB device at
address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL,
&vi);

if(viStatus){ // If problems, then prompt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");

printf("\n");

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

exit(@);}
viPrintf(vi, "*RST\n"); // Resets signal generator
viPrintf(vi, "FREQ:CW?\n"); // Querys the CW frequency
viScanf(vi, "%t", rdBuffer); // Reads response into rdBuffer

// Prints the source frequency
printf("Source CW frequency is : %s\n", rdBuffer);
printf("Press any key to continue\n");

printf("\n"); // Prints new line character to
the display

getch();
viPrintf(vi, "POW:AMPL?\n"); // Querys the power level

viScanf(vi, "%t", rdBuffer); // Reads the response into
rdBuffer

// Prints the source power level
printf("Source power (dBm) is : %s\n", rdBuffer);
printf("Press any key to continue\n");

printf("\n"); // Prints new line character to
the display

getch();

viPrintf(vi, "FREQ:MODE?\n"); // Querys the frequency mode

viScanf(vi, "%t", rdBuffer); // Reads the response into
rdBuffer

// Prints the source freq mode
printf("Source frequency mode is : %s\n", rdBuffer);

printf("Press any key to continue\n");

printf("\n"); // Prints new line character to
the display

getch();

viPrintf(vi, "OUTP OFF\n"); // Turns source RF state off

viPrintf(vi, "OUTP?\n"); // Querys the signal generator's
RF state

viScanf(vi, "%1i", &num); // Reads the response (integer
value)

// Prints the on/off RF state
if (num > 0) {

printf("Source RF state is : on\n");

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 87

88

Programming Examples
GPIB Programming Interface Examples

}else{
printf("Source RF state is : off\n");
}
// Close the sessions
viClose(vi);

viClose(defaultRM);

Generating a CW Signal Using VISA and C

This example uses VISA library functions to control the signal generator. The
signal generator is set for a CW frequency of 500 kHz and a power level of —2.3
dBm. Launch

Microsoft Visual C++ 6.0, add the required files, and enter the code into your
.cpp source file. vi saex4. cpp performs the following functions:

— verifies the GPIB connections and interface are functional

— resets the signal generator

— queries the instrument (CW frequency, power level, frequency mode, and
RF state)

— reads responses into the rdBuffer (CW frequency, power level, and
frequency mode)

— turns signal generator RF state off

— verifies RF state off

The following program example is available on the signal generator
Documentation CD-ROM as vi saex4. cpp.

//***
// PROGRAM FILE NAME: visaex4.cpp

/7

// PROGRAM DESCRIPTION: This example demonstrates query commands.
The signal generator

// frequency and power level.

// The RF state of the signal generator is turn on and then the state
is queried. The

// response will indicate that the RF state is on. The RF state is
then turned off and

// queried. The response should indicate that the RF state is off.
The query results are

// printed to the to the display window.
//

//***

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

#include "StdAfx.h"
#include <visa.h>

#include <iostream>
#include <stdlib.h>

#tinclude <conio.h>

void main ()

{
ViSession defaultRM, vi; // Declares variables of type
ViSession
// for instrument communication
ViStatus viStatus = 0; // Declares a variable of type
ViStatus

// for GPIB verifications

char rdBuffer [256]; // Declare variable to hold
string data

int num; // Declare variable to hold integer
data

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA
system

// Open session to GPIB device at

address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL,
&vi);

if(viStatus){ // If problems then prompt user

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");

printf("\n");

exit(9);}

viPrintf(vi, "*RST\n"); // Reset the signal generator

viPrintf(vi, "FREQ 500 kHz\n"); // Set the source CW frequency
for 500 kHz

viPrintf(vi, "FREQ:CW?\n"); // Query the CW frequency

viScanf(vi, "%t", rdBuffer); // Read signal generator response

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 89

90

Programming Examples
GPIB Programming Interface Examples

printf("Source CW frequency is : %s\n", rdBuffer); // Print the
frequency

viPrintf(vi, "POW:AMPL -2.3 dBm\n"); // Set the power level to
-2.3 dBm

viPrintf(vi, "POW:AMPL?\n"); // Query the power level

viScanf(vi, "%t", rdBuffer); // Read the response into
rdBuffer

printf("Source power (dBm) is : %s\n", rdBuffer); // Print the
power level

viPrintf(vi, "OUTP:STAT ON\n"); // Turn source RF state on

viPrintf(vi, "OUTP?\n"); // Query the signal generator's
RF state

viScanf(vi, "%1i", &num); // Read the response (integer
value)

// Print the on/off RF state
if (num > 0) {
printf("Source RF state is : on\n");
}else{
printf("Source RF state is : off\n");
}
printf("\n");
printf("Verify RF state then press continue\n");
printf("\n");
getch();
viClear(vi);

viPrintf(vi, "OUTP:STAT OFF\n"); // Turn source RF state off

viPrintf(vi, "OUTP?\n"); // Query the signal generator's
RF state
viScanf(vi, "%1i", &num); // Read the response

// Print the on/off RF state
if (num > @) {
printf("Source RF state is now: on\n");
}else{

printf("Source RF state is now: off\n");

}

// Close the sessions

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

printf("\n");

viClear(vi);

viClose(vi);

viClose(defaultRM);
}

Generating an Externally Applied AC-Coupled FM Signal Using VISA
and C
In this example, the VISA library is used to generate an ac-coupled FM signal

at a carrier frequency of 700 MHz, a power level of —2.5 dBm, and a deviation
of 20 kHz. Before running the program:

— Connect the output of a modulating signal source to the signal generator’s
EXT 2 input connector.
— Set the modulation signal source for the desired FM characteristics.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the code into
your .cpp source file. vi saex5. cpp performs the following functions:

— error checking

— resets the signal generator

— sets up the EXT 2 connector on the signal generator for FM
— sets up FM path 2 coupling to AC

— sets up FM path 2 deviation to 20 kHz

— sets carrier frequency to 700 MHz

— sets the power level to -2.5 dBm

— turns on frequency modulation and RF output

The following program example is available on the signal generator
Documentation CD-ROM as vi saex5. cpp.

[/ Rk sk sk sk sk sk sk sk sk ok stk s ok sk sk sk sk sk ok sk kst skl sk sk ok skl sk ok skl ok skl sk sk sk ok sk ok
// PROGRAM FILE NAME:visaex5.cpp

/7

// PROGRAM DESCRIPTION:This example sets the signal generator FM
source to External 2,

// coupling to AC, deviation to 20 kHZ, carrier frequency to 700 MHz
and the power level

// to -2.5 dBm. The RF state is set to on.
//

VAR E R E R E R R R R R R e R R R e R R R R R E L EE LR R L ELELEL

#tinclude <visa.h>

#include "StdAfx.h"

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 91

92

Programming Examples
GPIB Programming Interface Examples

#tinclude <iostream>
#include <stdlib.h>

#include <conio.h>

void main ()

{
ViSession defaultRM, vi; // Declares variables of type
ViSession
// for instrument
communication

ViStatus viStatus = 0; // Declares a variable of
type ViStatus

// for GPIB verifications
// Initialize VISA session
viStatus=viOpenDefaultRM(&defaultRM);

// open session to gpib device at
address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL,
&vi);

if(viStatus){ // If problems, then prompt
user

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");

exit(@);}

printf("Example program to set up the signal generator\n");
printf("for an AC-coupled FM signal\n");

printf("Press any key to continue\n");

printf("\n");

getch();

printf("\n");

viPrintf(vi, "*RST\n"); // Resets the signal
generator
viPrintf(vi, "FM:SOUR EXT2\n"); // Sets EXT 2 source for FM

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

viPrintf(vi, "FM:EXT2:COUP AC\n"); // Sets FM path 2 coupling

to AC

viPrintf(vi, "FM:DEV 20 kHz\n"); // Sets FM path 2 deviation
to 20 kHz

viPrintf(vi, "FREQ 700 MHz\n"); // Sets carrier frequency to
700 MHz

viPrintf(vi, "POW:AMPL -2.5 dBm\n"); // Sets the power level to
-2.5 dBm

viPrintf(vi, "FM:STAT ON\n"); // Turns on frequency
modulation

viPrintf(vi, "OUTP:STAT ON\n"); // Turns on RF output

// Print user information

printf("Power level : -2.5 dBm\n");

printf("FM state : on\n");

printf("RF output : on\n");

printf("Carrier Frequency : 700 MHZ\n");

printf("Deviation : 20 kHZ\n");

printf("EXT2 and AC coupling are selected\n");

printf("\n"); // Prints a carrage return
// Close the sessions

viClose(vi);

viClose(defaultRM);

}

Generating an Internal FM Signal Using VISA and C

In this example the VISA library is used to generate an internal FM signal at a
carrier frequency of 900 MHz and a power level of =15 dBm. The FM rate will

be 5 kHz and the peak deviation will be 100 kHz. Launch Microsoft Visual C++
6.0, add the required files, and enter the following code into your .cpp source

file. vi saex6. cpp performs the following functions:

— error checking

— resets the signal generator

— sets up the signal generator for FM path 2 and internal FM rate of 5 kHz
— sets up FM path 2 deviation to 100 kHz

— sets carrier frequency to 900 MHz

— sets the power level to -15 dBm

— turns on frequency modulation and RF output

The following program example is available on the signal generator
Documentation CD-ROM as vi saex6. cpp.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 93

94

Programming Examples
GPIB Programming Interface Examples

VAR E R R E R E R LR R R R R e e R R R e R R R LR E L LR LR LR L LR L E LR

// PROGRAM FILE NAME:visaex6.cpp

/7

// PROGRAM DESCRIPION:This example generates an internal FM signal
at a 900

// MHz carrier frequency and a power level of -15 dBm. The FM rate is
5 kHz and the peak

// deviation 100 kHz
//

//***

#include <visa.h>

#include "StdAfx.h"
#include <iostream>
#include <stdlib.h>

#include <conio.h>

void main ()

{
ViSession defaultRM, vi; // Declares variables of type
ViSession
// for instrument communication
ViStatus viStatus = 0; // Declares a variable of type
ViStatus
// for GPIB verifications
viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session
// open session to gpib device at
address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL,
&vi);

if(viStatus){ // If problems, then prompt
user

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");

printf("\n");

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

exit(9);}

printf("Example program to set up the signal generator\n");

printf("for an AC-coupled FM signal\n");

printf("\n");

printf("Press any key to continue\n");

getch();

viClear(vi);
generator

viPrintf(vi, "*RST\n");
generator

viPrintf(vi, "FM2:INT:FREQ 5 kHz\n");
internal at a modulation rate of 5 kHz

viPrintf(vi, "FM2:DEV 100 kHz\n");
modulation deviation rate of 100 kHz

viPrintf(vi, "FREQ 900 MHz\n");
to 900 MHz

viPrintf(vi, "POW -15 dBm\n");
-15 dBm

viPrintf(vi, "FM2:STAT ON\n");
modulation

viPrintf(vi, "OUTP:STAT ON\n");
printf("\n");

printf("Power level : -15 dBm\n");
printf("FM state : on\n");
printf("RF output : on\n");

/7

//

//

//

/7

Clears the signal

Resets the signal

Sets FM path 2 to

Sets FM path 2

Sets carrier frequency

// Sets the power level to

// Turns on frequency

// Turns on RF output

// Prints a carriage return

// Print user information

printf("Carrier Frequency : 900 MHZ\n");

printf("Deviation : 100 kHZ\n");

printf("Internal modulation : 5 kHz\n");

printf("\n"); // Print a carrage return

// Close the sessions
viClose(vi);

viClose(defaultRM);

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

95

96

Programming Examples
GPIB Programming Interface Examples

Generating a Step-Swept Signal Using VISA and C++

In this example the VISA library is used to set the signal generator for a
continuous step sweep on a defined set of points from 500 MHz to 800 MHz.
The number of steps is set for 10 and the dwell time at each step is set to 500
ms. The signal generator will then be set to local mode which allows the user
to make adjustments from the front panel. Launch Microsoft Visual C++ 6.0,
add the required files, and enter the following code into your .cpp source file.
vi saex7. cpp performs the following functions:

— clears and resets the signal generator

— sets up the instrument for continuous step sweep
— sets up the start and stop sweep frequencies

— sets up the number of steps

— sets the power level

— turns on the RF output

The following program example is available on the signal generator
Documentation CD-ROM as vi saex7. cpp.

//***
// PROGRAM FILE NAME:visaex7.cpp

/7

// PROGRAM DESCRIPTION:This example will program the signal
generator to perform a step

// sweep from 500-800 MHz with a .5 sec dwell at each frequency
step.

//

[] F AR K K SRR K K KR SRR KR KK K SR KR K SRR KR KK KR KK R KR KK R K Sk KR K oK Kk

#include <visa.h>
#tinclude "StdAfx.h"

#tinclude <iostream>

void main ()

{

ViSession defaultRM, vi;// Declares variables of type ViSession
// vi establishes instrument communication
ViStatus viStatus = 0;// Declares a variable of type ViStatus

// for GPIB verifications

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

// Open session to GPIB device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL,
&vi);

if(viStatus){// If problems, then prompt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");

printf("\n");

exit(9);}

viClear(vi); // Clears the signal
generator

viPrintf(vi, "*RST\n"); // Resets the signal
generator

viPrintf(vi, "*CLS\n"); // Clears the status byte
register

viPrintf(vi, "FREQ:MODE LIST\n"); // Sets the sig gen freq
mode to list

viPrintf(vi, "LIST:TYPE STEP\n"); // Sets sig gen LIST type
to step

viPrintf(vi, "FREQ:STAR 500 MHz\n"); // Sets start frequency
viPrintf(vi, "FREQ:STOP 800 MHz\n"); // Sets stop frequency

viPrintf(vi, "SWE:POIN 10\n"); // Sets number of steps (30
mHz/step)

viPrintf(vi, "SWE:DWEL .5 S\n"); // Sets dwell time to 500
ms/step

viPrintf(vi, "POW:AMPL -5 dBm\n"); // Sets the power level for
-5 dBm

viPrintf(vi, "OUTP:STAT ON\n"); // Turns RF output on

viPrintf(vi, "INIT:CONT ON\n"); // Begins the step sweep
operation

// Print user information

printf("The signal generator is in step sweep mode. The

frequency range is\n");

printf("500 to 800 mHz. There is a .5 sec dwell time at each 30
mHz step.\n");

printf("\n"); // Prints a carriage

return/line feed

viPrintf(vi, "OUTP:STAT OFF\n"); // Turns the RF output off

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 97

98

Programming Examples
GPIB Programming Interface Examples

printf("Press the front panel Local key to return the\n");
printf("signal generator to manual operation.\n");

// Closes the sessions
printf("\n");
viClose(vi);

viClose(defaultRM);

Generating a Swept Signal Using VISA and Visual C++

This example sets up the signal generator for a frequency sweep from 1 to 2
GHz with 101 points and a .01 second dwell period for each point. A loop is
used to generator 5 sweep operations. The signal generator triggers each
sweep with the : I Nl T command. There is a wait introduced in the loop to
allow the signal generator to complete all operations such as set up and
retrace before the next sweep is generated. vi saex11. cpp performs the
following functions:

— sets up the signal generator for a 1 to 2 GHz frequency sweep

— sets up the signal generator to have a dwell time of .01 seconds and 101
points in the sweep

— sleep function is used to allow the instrument to complete its sweep
operation

The following program example is available on the signal generator
Documentation CD-ROM as vi saex11. cpp.

//***
// PROGRAM FILE NAME: visaexll.cpp

//

// PROGRAM DESCRIPTION: This program sets up the signal generator to

// sweep from 1-2 GHz. A loop and counter are used to generate 5
sweeps.

// Each sweep consists of 101 points with a .01 second dwell at each
point.

//

// The program uses a Sleep function to allow the signal generator
to

// complete it's sweep operation before the INIT command is sent.

// The Sleep function is available with the windows.h header file
which is

// included in the project.
//

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

// NOTE: Change the TCPIP@ address in the instOpenString declaration

to
// match the IP address of your signal generator.

/7

//***

#tinclude "stdafx.h"
#tinclude "visa.h"
#include <iostream>

#include <windows.h>

void main ()

{

ViStatus stat;
ViSession defaultRM,inst;

int npoints = 101;

double dwell = 90.01;
int intCounters=5;
char* instOpenString = "TCPIPO::141.121.93.101::INSTR";
stat = viOpenDefaultRM(&defaultRM);

stat = viOpen(defaultRM,instOpenString,VI_NULL,VI_NULL,

&inst);

// preset to start clean

stat = viPrintf(inst, "*RST\n");
// set power level for -10dBm
stat = viPrintf(inst, "POW -10DBM\n");

// set the start and stop frequency for the sweep

stat = viPrintf(inst, "FREQ:START 1GHZ\n");

stat = viPrintf(inst, "FREQ:STOP 2GHZ\n");

// setup dwell per point

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

99

Programming Examples
GPIB Programming Interface Examples

stat = viPrintf(inst, "SWEEP:DWELL %e\n", dwell);
// setup number of points

stat = viPrintf(inst, "SWEEP:POINTS %d\n", npoints);

// set interface timeout to double the expected sweep time
// sweep takes (~15ms + dwell) per point * number of points
// the timeout should not be shorter then the sweep, set it
// longer
long timeoutMS = long(2*npoints*(.015+dwell)*1000);

// set the VISA timeout
stat = viSetAttribute(inst, VI_ATTR_TMO_VALUE, timeoutMS);

// set continuous trigger mode off
stat = viPrintf(inst, "INIT:CONT OFF\n");
// turn list sweep on

stat = viPrintf(inst, "FREQ:MODE LIST\n");

int sweepNo = 0;
while(intCounter>0)
{
// start the sweep (initialize)
stat = viPrintf(inst, "INIT\n");
printf("Sweep %d started\n",++sweepNo);
// wait for the sweep completion with *OPC?
int res ;

stat

viPrintf(inst, "*OPC?\n");

stat = viScanf(inst, "%d", &res);
// handle possible errors here (most likely a timeout)
// err_handler(inst, stat);

puts("Sweep ended");

// delay before sending next INIT since instrument

// may not be ready to receive it yet

Sleep(15);

100 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

intCounter = intCounter-1;

}
printf("End of Program\n\n");

Saving and Recalling States Using VISA and C

In this example, instrument settings are saved in the signal generator’s save
register. These settings can then be recalled separately; either from the
keyboard or from the signal generator’s front panel. Launch Microsoft Visual
C++ 6.0, add the required files, and enter the following code into your .cpp
source file. vi saex8. cpp performs the following functions:

— error checking

— clears the signal generator

— resets the status byte register

— resets the signal generator

— sets up the signal generator frequency, ALC off, power level, RF output on

— checks for operation complete

— saves to settings to instrument register number one

— recalls information from register number one

— prompts user input to put instrument into Local and checks for operation
complete

The following program example is available on the signal generator
Documentation CD-ROM as vi saex8. cpp.

//***

// PROGRAM FILE NAME:visaex8.cpp

/7

// PROGRAM DESCRIPTION:In this example, instrument settings are
saved in the signal

// generator's registers and then recalled.

// Instrument settings can be recalled from the keyboard or, when
the signal generator

// is put into Local control, from the front panel.

// This program will initialize the signal generator for an
instrument state, store the

// state to register #1. An *RST command will reset the signal
generator and a *RCL

// command will return it to the stored state. Following this remote
operation the user

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 107

Programming Examples
GPIB Programming Interface Examples

// will be instructed to place the signal generator in Local mode.

//

//***

#tinclude <visa.h>
#include "StdAfx.h"
#tinclude <iostream>

#include <conio.h>

void main ()

{
ViSession defaultRM, vi;// Declares variables of type ViSession
// for instrument communication
ViStatus viStatus = @;// Declares a variable of type ViStatus
// for GPIB verifications
long lngDone = ©; // Operation complete flag
viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA
session
// Open session to gpib device at address 19
viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL,
&vi);
if(viStatus){// If problems, then prompt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(9);}
printf("\n");
viClear(vi); // Clears the signal
generator
viPrintf(vi, "*CLS\n"); // Resets the status byte
register

// Print user information

printf("Programming example using the *SAV,*RCL SCPI
commands\n");

printf("used to save and recall an instrument's state\n");

102 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

printf("\n");

viPrintf(vi, "*RST\n"); // Resets the signal
generator

viPrintf(vi, "FREQ 5 MHz\n"); // Sets sig gen frequency

viPrintf(vi, "POW:ALC OFF\n"); // Turns ALC Off

viPrintf(vi, "POW:AMPL -3.2 dBm\n"); // Sets power for -3.2 dBm

viPrintf(vi, "OUTP:STAT ON\n"); // Turns RF output On
viPrintf(vi, "*OPC?\n"); // Checks for operation
complete

while (!1lngDone)

viScanf (vi ,"%d",&lngDone); // Waits for setup to
complete
viPrintf(vi, "*SAV 1\n"); // Saves sig gen state to

register #1
// Print user information

printf("The current signal generator operating state will be
saved\n");

printf("to Register #1. Observe the state then press Enter\n");

printf("\n"); // Prints new line character

getch(); // Wait for user input

1ngDone=0; // Resets the operation
complete flag

viPrintf(vi, "*RST\n"); // Resets the signal
generator

viPrintf(vi, "*OPC?\n"); // Checks for operation
complete

while (!1lngDone)

viScanf (vi ,"%d",&lngDone); // Waits for setup to
complete

// Print user infromation

printf("The instrument is now in it's Reset operating state.
Press the\n");

printf("Enter key to return the signal generator to the Register

#1 state\n");
printf("\n"); // Prints new line character
getch(); // Waits for user input
1ngDone=0; // Reset the operation

complete flag

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 103

104

Programming Examples
GPIB Programming Interface Examples

viPrintf(vi, "*RCL 1\n"); // Recalls stored register
#1 state

viPrintf(vi, "*OPC?\n"); // Checks for operation
complete

while (!1lngDone)

viScanf (vi ,"%d",&lngDone); // Waits for setup to
complete

// Print user information

printf("The signal generator has been returned to it's Register
#1 state\n");

printf("Press Enter to continue\n");

printf("\n"); // Prints new line character

getch(); // Waits for user input

1ngDone=0; // Reset the operation
complete flag

viPrintf(vi, "*RST\n"); // Resets the signal
generator

viPrintf(vi, "*OPC?\n"); // Checks for operation
complete

while (!1lngDone)

viScanf (vi ,"%d",&lngDone); // Waits for setup to
complete

// Print user information

printf("Press Local on instrument front panel to return to
manual mode\n");

printf("\n"); // Prints new line character
// Close the sessions
viClose(vi);

viClose(defaultRM);

Reading the Data Questionable Status Register Using VISA and C

In this example, the signal generator’s data questionable status register is
read. You will be asked to set up the signal generator for error generating
conditions. The data questionable status register will be read and the program
will notify the user of the error condition that the setup caused. Follow the user
prompts presented when the program runs. Launch Microsoft Visual C++ 6.0,
add the required files, and enter the following code into your .cpp source file.
vi saex9. cpp performs the following functions:

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

— error checking

— clears the signal generator

— resets the signal generator

— the data questionable status register is enabled to read an unleveled
condition

— prompts user to manually set up the signal generator for an unleveled
condition

— queries the data questionable status register for any set bits and converts
the string data to numeric

— based on the numeric value, program checks for a corresponding status
check value

— similarly checks for over or undermodulation condition

The following program example is available on the signal generator
Documentation CD-ROM as vi saex9. cpp.

//***
// PROGRAM NAME:visaex9.cpp

//

// PROGRAM DESCRIPTION:In this example, the data questionable status
register is read.

// The data questionable status register is enabled to read an
unleveled condition.

// The signal generator is then set up for an unleveled condition
and the data

// questionable status register read. The results are then displayed
to the user.

// The status questionable register is then setup to monitor a
modulation error condition.

// The signal generator is set up for a modulation error condition
and the data

// questionable status register is read.
// The results are displayed to the active window.

//

//***

#include <visa.h>
#include "StdAfx.h"
#include <iostream>

#tinclude <conio.h>

void main ()

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 105

106

Programming Examples
GPIB Programming Interface Examples

ViSession defaultRM, vi;// Declares a variables of type
ViSession

// for instrument communication
ViStatus viStatus = 0;// Declares a variable of type ViStatus
// for GPIB verifications

int num=0;// Declares a variable for switch statements

char rdBuffer[256]={0}; // Declare a variable for
response data

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA
session

// Open session to GPIB device at
address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL,
&vi);

if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");

exit(9);}

printf("\n");

viClear(vi);// Clears the signal generator

// Prints user information

printf("Programming example to demonstrate reading the signal
generator's Status Byte\n");

printf("\n");

printf("Manually set up the sig gen for an unleveled output
condition:\n");

printf("* Set signal generator output amplitude to +20 dBm\n");

printf("* Set frequency to maximum value\n");
printf("* Turn On signal generator's RF Output\n");

printf("* Check signal generator's display for the UNLEVEL
annunciator\n");

printf("\n");

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

printf("Press Enter when ready\n");
printf("\n");

getch(); // Waits for keyboard
user input

viPrintf(vi, "STAT:QUES:POW:ENAB 2\n"); // Enables the Data
Questionable

// Power Condition
Register Bits

// Bits '@' and '1'

viPrintf(vi, "STAT:QUES:POW:COND?\n"); // Querys the register
for any

// set bits

viScanf(vi, "%s", rdBuffer); // Reads the decimal sum
of the

// set bits

num=(int (rdBuffer[1]) -('0')); // Converts string data
to

// numeric

switch (num) // Based on the decimal
value

{
case 1:

printf("Signal Generator Reverse Power Protection
Tripped\n");

printf("/n");
break;
case 2:
printf("Signal Generator Power is Unleveled\n");
printf("\n");
break;
default:
printf("No Power Unleveled condition detected\n");
printf("\n");
}

viClear(vi); // Clears the signal
generator

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 107

108

Programming Examples
GPIB Programming Interface Examples

// Prints user information

o] N1 o R R D L EEEE TR
---\n");

printf("\n");

printf("Manually set up the sig gen for an unleveled output
condition:\n");

printf("\n");

printf("* Select AM modulation\n");

printf("* Select AM Source Ext 1 and Ext Coupling AC\n");
printf("* Turn On the modulation.\n");

printf("* Do not connect any source to the input\n");

printf("* Check signal generator's display for the EXT1 LO
annunciator\n");

printf("\n");
printf("Press Enter when ready\n");
printf("\n");

getch(); // Waits for keyboard
user input

viPrintf(vi, "STAT:QUES:MOD:ENAB 16\n"); // Enables the Data
Questionable

// Modulation Condition
Register

// bits 'e','1','2"','3" and '4'

viPrintf(vi, "STAT:QUES:MOD:COND?\n"); // Querys the register
for any

// set bits
viScanf(vi, "%s", rdBuffer); // Reads the decimal sum
of the
// set bits

num=(int (rdBuffer[1]) -('@')); // Converts string data to
numeric

switch (num) // Based on the decimal
value
{
case 1:

printf("Signal Generator Modulation 1 Undermod\n");

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

printf("\n");
break;
case 2:
printf("Signal Generator Modulation 1 Overmod\n");
printf("\n");
break;
case 4:
printf("Signal Generator Modulation 2 Undermod\n");
printf("\n");
break;
case 8:
printf("Signal Generator Modulation 2 Overmod\n");
printf("\n");
break;
case 16:
printf("Signal Generator Modulation Uncalibrated\n");
printf("\n");
break;
default:
printf("No Problems with Modulation\n");
printf("\n");
}
// Close the sessions
viClose(vi);

viClose(defaultRM);

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 109

110

Programming Examples
GPIB Programming Interface Examples

Reading the Service Request Interrupt (SRQ) Using VISA and C

This example demonstrates use of the Service Request (SRQ) interrupt. By
using the SRQ, the computer can attend to other tasks while the signal
generator is busy performing a function or operation. When the signal
generator finishes its operation, or detects a failure, then a Service Request
can be generated. The computer will respond to the SRQ and, depending on
the code, can perform some other operation or notify the user of failures or
other conditions.

This program sets up a step sweep function for the signal generator and, while
the operation is in progress, prints out a series of asterisks. When the step
sweep operation is complete, an SRQ is generated and the printing ceases.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the following
code into your .cpp source file. vi saex10. cpp performs the following
functions:

— error checking

— clears the signal generator

— resets the signal generator

— prompts user to manually begin the step sweep and waits for response

— clears the status register

— sets up the operation status group to respond to an end of sweep

— the data questionable status register is enabled to read an unleveled
condition

— prompts user to manually set up the signal generator for an unleveled
condition

— queries the data questionable status register for any set bits and converts
the string data to numeric

— based on the numeric value, program checks for a corresponding status
check value

— similarly checks for over or undermodulation condition

The following program example is available on the signal generator
Documentation CD-ROM as vi saex10. cpp.

//********>k**
//

// PROGRAM FILE NAME:visaex1@.cpp

//

// PROGRAM DESCRIPTION: This example demonstrates the use of a
Service Request (SRQ)

// interrupt. The program sets up conditions to enable the SRQ and
then sets the signal

// generator for a step mode sweep. The program will enter a
printing loop which prints

// an * character and ends when the sweep has completed and an SRQ
received.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

/7

//***

#include "visa.h"
#include <stdio.h>
#include "StdAfx.h"
#include "windows.h"

#include <conio.h>

#tdefine MAX_CNT 1024

int sweep=1; // End of sweep flag

/* Prototypes */

ViStatus _VI_FUNCH interupt(ViSession vi, ViEventType eventType,
ViEvent event, ViAddr addr);

int main ()
{
ViSession defaultRM, vi;// Declares variables of type ViSession
// for instrument communication
ViStatus viStatus = 0;// Declares a variable of type ViStatus
// for GPIB verifications

char rdBuffer[MAX_CNT];// Declare a block of memory data

viStatus=viOpenDefaultRM(&defaultRM);// Initialize VISA session
if(viStatus < VI_SUCCESS){// If problems, then prompt user
printf("ERROR initializing VISA... exiting\n");

printf("\n");

return -1;}

// Open session to gpib device at
address 19

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 111

Programming Examples
GPIB Programming Interface Examples

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL,
&vi);

if(viStatus){ // If problems then prompt user

printf("ERROR: Could not open communication with
instrument\n");

printf("\n");

return -1;}

viClear(vi); // Clears the signal generator
viPrintf(vi, "*RST\n"); // Resets signal generator

// Print program header and
information

printf("** End of Sweep Service Request **\n");
printf("\n");

printf("The signal generator will be set up for a step sweep mode
operation.\n");

printf("An ’*’ will be printed while the instrument is sweeping.
The end of \n");

printf("sweep will be indicated by an SRQ on the GPIB and the
program will end.\n");

printf("\n");

printf("Press Enter to continue\n");
printf("\n");

getch();

viPrintf(vi, "*CLS\n");// Clears signal generator status byte

viPrintf(vi, "STAT:OPER:NTR 8\n");// Sets the Operation Status
Group // Negative Transition Filter to indicate a // negative
transition in Bit 3 (Sweeping)

// which will set a corresponding event in // the Operation
Event Register. This occurs // at the end of a sweep.

viPrintf(vi, "STAT:OPER:PTR ©\n");// Sets the Operation Status
Group // Positive Transition Filter so that no

// positive transition on Bit 3 affects the // Operation Event
Register. The positive // transition occurs at the start of a
sweep.

viPrintf(vi, "STAT:OPER:ENAB 8\n");// Enables Operation Status
Event Bit 3 // to report the event to Status Byte // Register
Summary Bit 7.

112 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
GPIB Programming Interface Examples

viPrintf(vi,
Summary Bit 7

"*SRE 128\n");// Enables Status Byte Register

// The next line of code indicates the // function to call on an

event

viStatus
rdBuffer);

// The next line of code enables the

viInstallHandler(vi, VI_EVENT_SERVICE_REQ, interupt,

// detection of an event

viStatus = viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR,
VI_NULL);

viPrintf(vi, "FREQ:MODE LIST\n");// Sets frequency mode to list

viPrintf(vi, "LIST:TYPE STEP\n");// Sets sweep to step

viPrintf(vi, "LIST:TRIG:SOUR IMM\n");// Immediately trigger the
sweep

viPrintf(vi, "LIST:MODE AUTO\n");// Sets mode for the list sweep

viPrintf(vi, "FREQ:STAR 40 MHZ\n"); // Start frequency set to 40
MHz

viPrintf(vi, "FREQ:STOP 900 MHZ\n");// Stop frequency set to 900
MHz

viPrintf(vi, "SWE:POIN 25\n");// Set number of points for the

step sweep

viPrintf(vi, "SWE:DWEL .5 S\n");// Allow .5 sec dwell at each
point

viPrintf(vi, "INIT:CONT OFF\n");// Set up for single sweep

viPrintf(vi, "TRIG:SOUR IMM\n");// Triggers the sweep

viPrintf(vi, "INIT\n"); // Takes a single sweep

printf("\n");

// While the instrument is sweeping have the
// program busy with printing to the display.
// The Sleep function, defined in the header
// file windows.h, will pause the program

// operation for .5 seconds

while (sweep==1){

printf("*");

Sleep(500);}

printf("\n");

// The following lines of code will stop the

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 113

Programming Examples
GPIB Programming Interface Examples

// events and close down the session

viStatus = viDisableEvent(vi,
VI_ALL_ENABLED EVENTS,VI_ALL_MECH);

viStatus = viUninstallHandler(vi, VI_EVENT_SERVICE_REQ,
interupt, rdBuffer);

viStatus

viClose(vi);
viStatus = viClose(defaultRM);

return 0;

// The following function is called when an SRQ event occurs. Code
specific to your

// requirements would be entered in the body of the function.

ViStatus _VI_FUNCH interupt(ViSession vi, ViEventType eventType,
ViEvent event, ViAddr addr)

{
ViStatus status;
ViUIntl6é stb;

status = viReadSTB(vi, &stb);// Reads the Status Byte
sweep=0;// Sets the flag to stop the ’*’ printing
printf("\n");// Print user information

printf("An SRQ, indicating end of sweep has occurred\n");
viClose(event);// Closes the event

return VI_SUCCESS;

114 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

LAN Programming Interface Examples

The LAN programming examples in this section demonstrate the use of
VXI-11 and Sockets LAN to control the signal generator.

To use these programming examples you must change references to the IP
address and hostname to match the IP address and hostname of your
signal generator.

— “VXI-11 Programming Using SICL and C++” on page 116
— “VXI-11 Programming Using VISA and C++” on page 118
— “Sockets LAN Programming and C” on page 120

— “Sockets LAN Programming Using Java” on page 150

— “Sockets LAN Programming Using Perl” on page 153

— “TCP-IP (LAN) Programming Using Matlab” on page 154

For additional LAN programming examples that work with user-data files, refer
to:

— “Save and Recall Instrument State Files” on page 365

VXI-11 Programming

The signal generator supports the VXI-11 standard for instrument
communication over the LAN interface. Keysight IO Libraries support the
VXI-11 standard and must be installed on your computer before using the
VXI-11 protocol. Refer to “Using VXI-11" on page 50 for information on
configuring and using the VXI-11 protocol.

The VXI-11 examples use TCPIPQO as the board address.

Using VXI-11 with GPIB Programs

The GPIB programming examples that use the VISA library, and are listed in
“GPIB Programming Interface Examples” on page 68, can be easily changed
to use the LAN VXI-11 protocol by changing the address string. For example,
change the "GPIB::19::INSTR" address string to "TCPIP::hostname::INSTR"
where hostname is the IP address or hostname of the signal generator. The
VXI-11 protocol has the same capabilities as GPIB. See the section “Setting Up
the LAN Interface” on page 43 for more information.

To communicate with the signal generator over the LAN interface you
must enable the VXI-11 SCPI service. For more information, refer to
“Configuring the VXI-11 Service” on page 43.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 115

116

Programming Examples
LAN Programming Interface Examples

VXI-11 Programming Using SICL and C++

The following program uses the VXI-11 protocol and SICL to control the signal
generator. Before running this code, you must set up the interface using the
Keysight 10 Libraries 10 Config utility. vxi si cl . cpp performs the following
functions:

— sets signal generator to 1 GHz CW frequency
— queries signal generator for an ID string
— error checking

The following program example is available on the signal generator
Documentation CD-ROM as vxi si cl . cpp.

//***
//

// PROGRAM NAME:vxisicl.cpp

//

// PROGRAM DESCRIPTION:Sample test program using SICL and the VXI-11
protocol

//

// NOTE: You must have the Keysight IO Libraries installed to run
this program.

/7

// This example uses the VXI-11 protocol to set the signal generator
for a 1 gHz CW // frequency. The signal generator is queried for
operation complete and then queried

// for its ID string. The frequency and ID string are then printed
to the display.

/7

// IMPORTANT: Enter in your signal generators hostname in the
instrumentName declaration

// where the "xxxxx" appears.

/7

//***

#tinclude "stdafx.h"
#tinclude <sicl.h>
#include <stdlib.h>

#include <stdio.h>

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

int main(int argc, char* argv[])

{

INST id; // Device session id

int opcResponse; // Variable for
response flag

char instrumentName[] = "xxxxx"; // Put your instrument's
hostname here

char instNameBuf[256];// Variable to hold instrument name
char buf[256];// Variable for id string
ionerror(I_ERROR_EXIT);// Register SICL error handler

// Open SICL instrument handle using VXI-11 protocol

sprintf(instNameBuf, "lan[%s]:inst@", instrumentName);

id = iopen(instNameBuf);// Open instrument session
itimeout(id, 1000);// Set 1 second timeout for operations
printf("Setting frequency to 1 Ghz...\n");

iprintf(id, "freq 1 GHz\n");// Set frequency to 1 GHz

printf("Waiting for source to settle...\n");
iprintf(id, "*opc?\n");// Query for operation complete
iscanf(id, "%d", &opcResponse); // Operation complete flag
if (opcResponse != 1)// If operation fails, prompt user
{
printf("Bad response to 'OPC?'\n");
iclose(id);
exit(1);
}
iprintf(id, "FREQ?\n");// Query the frequency
iscanf(id, "%t", &buf);// Read the signal generator frequency
printf("\n");// Print the frequency to the display

printf("Frequency of signal generator is %s\n", buf);

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 117

118

Programming Examples
LAN Programming Interface Examples

ipromptf(id, "*IDN?\n", "%t", buf);// Query for id string
printf("Instrument ID: %s\n", buf);// Print id string to display

iclose(id);// Close the session

return 0;

VXI-11 Programming Using VISA and C++

The following program uses the VXI-11 protocol and the VISA library to control
the signal generator. The signal generator is set to a -5 dBm power level and
queried for its ID string. Before running this code, you must set up the interface
using the Keysight 10 Libraries 10 Config utility. vxi vi sa. cpp performs the
following functions:

— sets signal generator to a -5 dBm power level
— queries signal generator for an ID string
— error checking

The following program example is available on the signal generator
Documentation CD-ROM as vxi vi sa. cpp.

//***
// PROGRAM FILE NAME:vxivisa.cpp

// Sample test program using the VISA libraries and the VXI-11
protocol

/7

// NOTE: You must have the Keysight Libraries installed on your
computer to run

// this program
//

// PROGRAM DESCRIPTION:This example uses the VXI-11 protocol and
VISA to query

// the signal generator for its ID string. The ID string is then
printed to the

// screen. Next the signal generator is set for a -5 dBm power level
and then

// queried for the power level. The power level is printed to the
screen.

//
// IMPORTANT: Set up the LAN Client using the IO Config utility

/7

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

[[KAk sk sk sk KR KR K K o K K K K K K K K K K K S K R R o K o K K SR K ok K

#include <visa.h>
#include <stdio.h>
#include "StdAfx.h"
#include <stdlib.h>

#tinclude <conio.h>

#define MAX_COUNT 200

int main (void)

ViStatus status;// Declares a type ViStatus variable

ViSession defaultRM, instr;// Declares a type ViSession variable
ViUInt32 retCount;// Return count for string I/O

ViChar buffer[MAX_COUNT];// Buffer for string I/O

status = viOpenDefaultRM(&defaultRM); // Initialize the
system

// Open communication
with Serial

// Port 2

status = viOpen(defaultRM, "TPCIPO::19::INSTR", VI_NULL,
VI_NULL, &instr);

if(status){ // If problems then prompt
user

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");

exit(9);}

// Set timeout for 5
seconds

viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 119

Programming Examples
LAN Programming Interface Examples

// Ask for sig gen ID

string
status = viWrite(instr, (ViBuf)"*IDN?\n", 6, &retCount);
// Read the sig gen
response

status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= '\0'; // Indicate the end of
the string

printf("Signal Generator ID = "); // Print header for ID

printf(buffer); // Print the ID string

printf("\n"); // Print carriage return

// Flush the read buffer

// Set sig gen power to

-5dbm
status = viWrite(instr, (ViBuf)"POW:AMPL -5dbm\n", 15,
&retCount);
// Query the power level
status = viWrite(instr, (ViBuf)"POW?\n",5,&retCount);

// Read the power level
status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= '\0'; // Indicate the end of
the string

printf("Power level = "); // Print header to the
screen

printf(buffer); // Print the queried power
level

printf("\n");
status = viClose(instr); // Close down the system
status = viClose(defaultRM);

return 0;

Sockets LAN Programming and C

The program listing shown in “Queries for Lan Using Sockets” on page 124
consists of two files; lanio.c and getopt.c. The lanio.c file has two main
functions; int main() andanint mainl().

120 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

Theint mai n() function allows communication with the signal generator
interactively from the command line. The program reads the signal generator's
hostname from the command line, followed by the SCPI command. It then
opens a socket to the signal generator, using port 5025, and sends the
command. If the command appears to be a query, the program queries the
signal generator for a response, and prints the response.

Theint mai nl(), after renaming toi nt mai n(), will output a sequence of
commands to the signal generator. You can use the format as a template and
then add your own code.

This program is available on the signal generator Documentation CD-ROM as
[ani o. c.

Sockets on UNIX

In UNIX, LAN communication through sockets is very similar to reading or
writing a file. The only difference is the openSocket () routine, which uses a
few network library routines to create the TCP/IP network connection. Once
this connection is created, the st andard fread() andfwite() routinesare
used for network communication. The following steps outline the process:

1. Copy the lanio.c and getopt.c files to your home UNIX directory. For
example, /users/nydir/.

2. Atthe UNIX prompt in your home directory type:cc -Aa -O -0 | anio
| ani 0. c

3. At the UNIX prompt in your home directory type: . /| ani 0 Xxxxx
“*| DN?” where xxxxXx is the hostname for the signal generator. Use this
same format to output SCPI commands to the signal generator.

Theint mai n1() function will output a sequence of commands in a program
format. If you want to run a program using a sequence of commands then
perform the following:

1. Rename the lanio.c int nai n1() toint nain() and the original i nt
mai n() toint nainl().

2. Inthe mai n(), openSocket () function, change the “your hostname here”
string to the hostname of the signal generator you want to control.

3. Re-save the lanio.c program.

4. At the UNIX prompt type:cc -Aa -O -0 lanio lanio.c

5. At the UNIX prompt type: ./l ani o

The program will run and output a sequence of SCPI commands to the signal
generator. The UNIX display will show a display similar to the following:

uni x machi ne: /users/nydir
$./lanio
I D. Keysi ght Technol ogi es, E4438C, US70000001, C. 02.00

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 127

122

Programming Examples
LAN Programming Interface Examples

Frequency: +2. 5000000000000E+09
Power Level: -5.00000000E+000

Sockets on Windows

In Windows, the routines send() and recv() must be used, since fread()
and fwrite() may not work on sockets. The following steps outline the
process for running the interactive program in the Microsoft Visual C++ 6.0
environment:

1. Rename the lanio.c to lanio.cpp and getopt.c to getopt.cpp and add them
to the Source folder of the Visual C++ project.

Theint nain() function in the lanio.cpp file will allow commands to be
sent to the signal generator in a line-by-line format; the user types in SCPI
commands. The i nt nmai n1(0) function can be used to output a sequence
of commands in a “program format.” See Programming Using main1() Function
below.

2. Click Rebuild All from Build menu. Then Click Execute Lanio.exe. The
Debug window will appear with a prompt “Press any key to continue.” This
indicates that the program has compiled and can be used to send
commands to the signal generator.

3. Click Start, click Programs, then click Command Prompt. The command
prompt window will appear.

4. At the command prompt, cd to the directory containing the lanio.exe file
and then to the Debug folder. For example C. \ Socket | O Lani o\ Debug.

5. After you cd to the directory where the lanio.exe file is located, type in the
following command at the command prompt: | ani 0 xxxxx “*1 DN?” . For
example:

C \ Socket | O Lani o\ Debug>l ani o xxxxx “*| DN?” where the xxxxx is
the hostname of your signal generator. Use this format to output SCPI
commands to the signal generator in a line by line format from the
command prompt.

6. Type exi t at the command prompt to quit the program.

Programming Using main1() Function

Theint mai n1() function will output a sequence of commands in a program
format. If you want to run a program using a sequence of commands then
perform the following:

1. Enter the hostname of your signal generator in the openSocket function of
the mai n1() function of the lanio.cpp program.

2. Rename the lanio.cpp i nt nai n1() functiontoint nai n() and the
originali nt mai n() functiontoint nainl().

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

3. Select Rebuild All from Build menu. Then select Execute Lanio.exe.

The program will run and display results similar to those shown in Figure 3-1.

Figure 3-1 Program Output Screen

% "C:GPIB\Test\lanio\Debug\Lanio.exe"

o

ID: Agilent Technologies, E8663B, US00000001, C.01.00

Frequency: +2.5000000000000E+09
Power Level: -5.00000000E+000

Press any key to continue_

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 123

Programming Examples
LAN Programming Interface Examples

Queries for Lan Using Sockets
| ani 0. ¢ and get opt . ¢ perform the following functions:

— establishes TCP/IP connection to port 5025

— resultant file descriptor is used to “talk” to the instrument using regular
socket I/0 mechanisms

— maps the desired hostname to an internal form

— error checks

— queries signal generator for ID

— sets frequency on signal generator to 2.5 GHz

— sets power on signal generator to -5 dBm

— gets option letter from argument vector and checks for end of file (EOF)

The following programming examples are available on the signal generator
Documentation CD-ROM as | ani 0. ¢ and get opt . C.

/**

* $Header: lanio.c 04/24/01
* $Revision: 1.1 $
* ¢$Date: 10/24/01

* PROGRAM NAME: lanio.c

*

* $Description: Functions to talk to an Keysight signal
generator

* via TCP/IP. Uses command-line arguments.

*

* A TCP/IP connection to port 5025 is established
and

* the resultant file descriptor is used to "talk"
to the

* instrument using regular socket I/0O mechanisms.
$

* Examples:

* Query the signal generator frequency:

* lanio xx.xxx.xx.x 'FREQ?'

124 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

* Query the signal generator power level:

* lanio xX.XXxX.XX.X 'POW?'

* Check for errors (gets one error):

* lanio xx.xxx.xx.x ‘'syst:err?'

* Send a list of commands from a file, and number them:

* cat scpi_cmds | lanio -n XX.XXX.XX.X

3k ok 5k ok ok ok ok >k ok ok >k ok ok ok ok ok ok ok >k >k ok >k ok ok ok >k ok ok ok ok >k >k ok >k >k ok ok >k 5k ok ok ok >k sk ok >k >k ok >k >k ok >k >k ok >k >k ok >k >k ok ok >k ok >k kok ok

*

* This program compiles and runs under

HP-UX 10.20 (UNIX), using HP cc or gcc:
* + cc -Aa -0 -o lanio lanio.c

* + gcc -Wall -0 -o lanio lanio.c

*
1

Windows 95, using Microsoft Visual C++ 4.0 Standard Edition

Windows NT 3.51, using Microsoft Visual C++ 4.0

* + Be sure to add WSOCK32.LIB to your list of libraries!
* + Compile both lanio.c and getopt.c

* + Consider re-naming the files to lanio.cpp and
getopt.cpp

*

* Considerations:

* - On UNIX systems, file I/O can be used on network sockets.

* This makes programming very convenient, since routines like
* getc(), fgets(), fscanf() and fprintf() can be used. These
* routines typically use the lower level read() and write()
calls.

*

* - In the Windows environment, file operations such as read(),
write(),

* and close() cannot be assumed to work correctly when applied
to

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 125

126

Programming Examples
LAN Programming Interface Examples

* sockets. Instead, the functions send() and recv() MUST be
used.

***/

/* Support both Win32 and HP-UX UNIX environment */

#ifdef _WIN32 /* Visual C++ 6.0 will define this */
define WINSOCK
#endif

#ifndef WINSOCK
ifndef _HPUX_SOURCE
define _HPUX_SOURCE

endif

#endif

#include <stdio.h> /* for fprintf and NULL */
#include <string.h> /* for memcpy and memset */
#include <stdlib.h> /* for malloc(), atol() */
#include <errno.h> /* for strerror */

#ifdef WINSOCK

#tinclude <windows.h>

ifndef _WINSOCKAPI_

include <winsock.h> // BSD-style socket functions

endif

#else /* UNIX with BSD sockets */
1include <sys/socket.h> /* for connect and socket*/
include <netinet/in.h> /* for sockaddr_in */
include <netdb.h> /* for gethostbyname */

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

define SOCKET_ERROR (-1)
define INVALID_SOCKET (-1)

typedef int SOCKET;

#endif /* WINSOCK */

#ifdef WINSOCK
/* Declared in getopt.c. See example programs disk. */
extern char *optarg;
extern int optind;

extern int getopt(int argc, char * const argv[], const char*
optstring);

#else
include <unistd.h> /* for getopt(3C) */
#endif

#define COMMAND ERROR (1)
#define NO_CMD_ERROR (@)

#define SCPI_PORT 5025
#define INPUT BUF_SIZE (64*1024)

/**

* Display usage

**/

static void usage(char *basename)

{

fprintf(stderr,"Usage: %s [-nqu] <hostname> [<command>]\n",
basename);

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 127

Programming Examples
LAN Programming Interface Examples

fprintf(stderr,"” %s [-nqu] <hostname> < stdin\n",
basename);

fprintf(stderr,” -n, number output lines\n");
fprintf(stderr,” -q, quiet; do NOT echo lines\n");

fprintf(stderr,” -e, show messages in error queue when
done\n");

}

#ifdef WINSOCK

int init_winsock(void)

{
WORD wVersionRequested;
WSADATA wsaData;
int err;
wVersionRequested = MAKEWORD(1, 1);
wVersionRequested = MAKEWORD(2, 9);
err = WSAStartup(wVersionRequested, &wsaData);
if (err !'=0) {
/* Tell the user that we couldn't find a useable */
/* winsock.dll. */
fprintf(stderr, "Cannot initialize Winsock 1.1.\n");
return -1;
}
return 0;
}

int close_winsock(void)

WSACleanup();

return 0;

128 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

}
#endif /* WINSOCK */

/**

*

> $Function: openSocket$

*

* $Description: open a TCP/IP socket connection to the instrument

$

*

* $Parameters: $

* (const char *) hostname Network name of instrument.
* This can be in dotted decimal
notation.

* (int) portNumber The TCP/IP port to talk to.

* Use 5025 for the SCPI port.

*

* $Return: (int) A file descriptor similar to
open(1).%

*

* $Errors: returns -1 if anything goes wrong $

*

**/

SOCKET openSocket(const char *hostname, int portNumber)

{
struct hostent *hostPtr;

struct sockaddr_in peeraddr_in;

SOCKET s;

memset (&peeraddr_in, 0, sizeof(struct sockaddr_in));

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 129

Programming Examples
LAN Programming Interface Examples

R S K K s SOK SR SR SR SOR SR SR SO SR SO SR SR SRRk ko ok

/* map the desired host name to internal form. */
/***/
hostPtr = gethostbyname(hostname);

if (hostPtr == NULL)

{

fprintf(stderr,"unable to resolve hostname '%s'\n",
hostname);

return INVALID_SOCKET;

/*******************/

/* create a socket */
/R kR ok stk ok /

s = socket(AF_INET, SOCK_STREAM, 0);
if (s == INVALID_SOCKET)

{
fprintf(stderr,"unable to create socket to '%s': %s\n",
hostname, strerror(errno));
return INVALID_SOCKET;
}

memcpy (&peeraddr_in.sin_addr.s_addr, hostPtr->h_addr,
hostPtr->h_length);

peeraddr_in.sin_family = AF_INET;

peeraddr_in.sin_port = htons((unsigned short)portNumber);

if (connect(s, (const struct sockaddr*)&peeraddr_in,

sizeof(struct sockaddr_in)) == SOCKET_ERROR)

{
fprintf(stderr,"unable to create socket to '%s': %s\n",
hostname, strerror(errno));
return INVALID_SOCKET;
}

130 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

return s;

Var iR E R E R R E R R R R R e R R R e LR R e LR E L LR E LR L E L E L EL L b

*

> $Function: commandInstrument$

*

* $Description: send a SCPI command to the instrument.$

*

* $Parameters: $

* (FILE *) file pointer associated with TCP/IP
socket.

* (const char *command) . . SCPI command string.

* $Return: (char *) a pointer to the result string.

* $Errors: returns © if send fails $

**/

int commandInstrument(SOCKET sock,

const char *command)

{
int count;
/* fprintf(stderr, "Sending \"%s\".\n", command); */
if (strchr(command, '\n') == NULL) {
fprintf(stderr, "Warning: missing newline on command %s.\n",
command) ;

}

count = send(sock, command, strlen(command), 0);

if (count == SOCKET_ERROR) {

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 131

Programming Examples
LAN Programming Interface Examples

return COMMAND_ERROR;

return NO_CMD_ERROR;

/**

* recv_line(): similar to fgets(), but uses recv()

**/

char * recv_line(SOCKET sock, char * result, int maxLength)
{
#ifdef WINSOCK

int cur_length = 0;

int count;

char * ptr = result;

int err = 1;

while (cur_length < maxLength) {
/* Get a byte into ptr */

count = recv(sock, ptr, 1, 0);

/* If no chars to read, stop. */
if (count < 1) {
break;

}

cur_length += count;

/* If we hit a newline, stop. */
if (*ptr == '\n") {

ptr++;

err = 0;

break;

132 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

}
ptr++;
}
*ptr = '\0"';
if (err) {
return NULL;
} else {
return result;
}
ttelse

/**

* Simpler UNIX version, using file I/0. recv() version works
too.

* This demonstrates how to use file I/O on sockets, in UNIX.

sk sk sk ok sk sk ok skl sk sk ok sk sk ok skl sk sk sk sk ok sk ok skl sk sk ok sk ok sk skl skl ok sk sk skok ok skok ok /
FILE * instFile;
instFile = fdopen(sock, "r+");

if (instFile == NULL)

{
fprintf(stderr, "Unable to create FILE * structure : %s\n",
strerror(errno));
exit(2);
}
return fgets(result, maxLength, instFile);
#endif
}

/**

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 133

134

Programming Examples
LAN Programming Interface Examples

*

> $Function: queryInstrument$

*

* ¢$Description: send a SCPI command to the instrument, return a
response.$

*

* $Parameters: $

* (FILE *) file pointer associated with TCP/IP
socket.

* (const char *command) . . SCPI command string.

* (char *result) where to put the result.

* (size_t) maxLength maximum size of result array in
bytes.

*

* $Return: (long) The number of bytes in result
buffer.

*

* $Errors: returns @ if anything goes wrong. $

*

**/

long queryInstrument(SOCKET sock,

const char *command, char *result, size_t
maxLength)

{
long ch;
char tmp_buf[8];
long resultBytes = 0;
int command_err;

int count;

/***

* Send command to signal generator

***/

command_err = commandInstrument(sock, command);

if (command_err) return COMMAND_ERROR;

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

/***

* Read response from signal generator

**/

count = recv(sock, tmp_buf, 1, @); /* read 1 char */

ch = tmp_buf[0];

if ((count < 1) || (ch == EOF) || (ch == '\n"))

{
result = "\@'; / null terminate result for ascii */
return 0;

}

/* use a do-while so we can break out */

do
{

if (ch "#')

/* binary data encountered - figure out what it is */
long numDigits;

long numBytes = 0;

/* char length[10]; */

count = recv(sock, tmp_buf, 1, @); /* read 1 char */

ch = tmp_buf[@];

if ((count < 1) || (ch == EOF)) break; /* End of file */

if (ch < '@" || ch > '9"') break; /* unexpected char */

numDigits = ch - '0";

if (numDigits)
{

/* read numDigits bytes into result string. */

135

Programming Examples
LAN Programming Interface Examples

count = recv(sock, result, (int)numDigits, 0);
result[count] = @; /* null terminate */

numBytes = atol(result);

if (numBytes)
{
resultBytes = 0;
/* Loop until we get all the bytes we requested. */

/* Each call seems to return up to 1457 bytes, on
HP-UX 9.05 */

do {
int rcount;
rcount = recv(sock, result, (int)numBytes, 0);
resultBytes += rcount;
result += rcount; /* Advance pointer */

} while (resultBytes < numBytes);

[KA RS SRR KRR SRR SRR SRR SRR SRR KSR R SRR SRR SRS SRR SR SRR SR SR ok o o

* For LAN dumps, there is always an extra trailing
newline

* Since there is no EOI line. For ASCII dumps this
is

* great but for binary dumps, it is not needed.

***/

if (resultBytes == numBytes)

{
char junk;
count = recv(sock, &junk, 1, 9);
}
}
else
{

136 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

else

feed */
break;
}
{
return 0;
string. */
}

/* indefinite block ... dump til we can an extra line

do

{
if (recv_line(sock, result, maxLength) == NULL)

if (strlen(result)==1 && *result == '\n') break;
resultBytes += strlen(result);
result += strlen(result);

} while (1);

/* ASCII response (not a binary block) */
*result = (char)ch;

if (recv_line(sock, result+l, maxLength-1) == NULL)

/* REMOVE trailing newline, if present. And terminate

resultBytes = strlen(result);
if (result[resultBytes-1] == '\n') resultBytes -= 1;
result[resultBytes] = '\0@';

} while (0);

return resultBytes;

/**

*

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 137

Programming Examples
LAN Programming Interface Examples

> $Function: showErrors$

*

* ¢$Description: Query the SCPI error queue, until empty. Print
results. $

*

* $Return: (void)

*

sk sk s ok ok sk ok ok ok skl sk sk ok sk ok ok skl sk sk ok sk s ok sk sk sk ok sk sk ok sk sk skl ok sk sk ok stk sk skok sk kR ok /
void showErrors(SOCKET sock)

const char * command = "SYST:ERR?\n";

char result_str[256];

do {

queryInstrument(sock, command, result_str,
sizeof(result_str)-1);

/**

* Typical result_str:
* -221,"Settings conflict; Frequency span reduced.”
* +0,"No error"

* Don't bother decoding.

**/
if (strncmp(result_str, "+40,", 3) == 0) {
/* Matched +0,"No error" */
break;

}
puts(result_str);

} while (1);

138 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

/KRR SR SR R R K KR KR K K K K K K K K K K K K K K S K ok K o K R K K SR K ok K

*

> $Function: isQuery$

*

* ¢$Description: Test current SCPI command to see if it a query. $

*

* $Return: (unsigned char) . . . non-zero if command is a query. ©
if not.

*

**/

unsigned char isQuery(char* cmd)

{
unsigned char q = 0 ;
char *query ;
/***/
/* if the command has a '?' in it, use queryInstrument. */
/* otherwise, simply send the command. */
/* Actually, we must be a more specific so that */
/* marker value querys are treated as commands. */
/* Example: SENS:FREQ:CENT (CALC1:MARK1:X?) */
/***/
if ((query = strchr(cmd,'?"')) != NULL)
{
/* Make sure we don't have a marker value query, or
* any command with a '?' followed by a ')' character.
* This kind of command is not a query from our point of
view.

* The signal generator does the query internally, and uses
the result.

*/
query++ ; /* bump past '?' */
while (*query)

{

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 139

Programming Examples
LAN Programming Interface Examples

if (*query == ') /* attempt to ignore white spc */
query++ ;

else break ;

}
if (*query != ")")
{
q=1;
}
}
return q ;

/**
*

> $Function: main$

*

* ¢$Description: Read command line arguments, and talk to signal
generator.

Send query results to stdout. $

*

* $Return: (int) . . . non-zero if an error occurs

*

SR S R K K S K SRR SR SR SR S SR SR SR SR SRS SRR SR SR SRR S SR SR SRR SRR S SRR SRSk sk R sk ok ok

int main(int argc, char *argv[])

{

SOCKET instSock;

char *charBuf = (char *) malloc(INPUT_BUF_SIZE);
char *basename;

int chr;

char command[1024];

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

char *destination;
unsigned char quiet = 0;
unsigned char show_errs = 0;

int number = 0;

basename = strrchr(argv[@], '/');
if (basename != NULL)

basename++ ;
else

basename = argv[0];

while ((chr = getopt(argc,argv,"qune")) != EOF)
switch (chr)

{
case 'q': quiet = 1; break;
case 'n': number = 1; break ;
case 'e' show_errs = 1; break ;
case 'u':
case '?': usage(basename); exit(1l) ;
}

/* now look for hostname and optional <command>*/

if (optind < argc)

{

destination = argv[optind++] ;

strcpy(command, "");

if (optind < argc)

{

while (optind < argc) {
/* <hostname> <command> provided; only one command

string */

strcat(command, argv[optind++]);
if (optind < argc) {

strcat(command, " ");

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 141

Programming Examples
LAN Programming Interface Examples

} else {

strcat(command, "\n");

}
}
}
else
{
/*0Only <hostname> provided; input on <stdin> */
strcpy(command, "");
if (optind > argc)
{
usage(basename);
exit(1);
}
}
}
else
{
/* no hostname! */
usage(basename);
exit(1);
}

/**

/* open a socket connection to the instrument

/**/

#ifdef WINSOCK
if (init_winsock() != 0) {
exit(1);
}
#tendif /* WINSOCK */

142 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

instSock = openSocket(destination, SCPI_PORT);

if (instSock == INVALID SOCKET) {
fprintf(stderr, "Unable to open socket.\n");
return 1;

}
/* fprintf(stderr, "Socket opened.\n"); */

if (strlen(command) > 0)

{

/***

/* if the command has a '?' in it, use queryInstrument. */

/* otherwise, simply send the command. */

[AR K R K K K SO SO SO SO SRS SOR O OR SR ORHOR Ok Ok R R Rk ok

if (isQuery(command))

{
long bufBytes;
bufBytes = queryInstrument(instSock, command,
charBuf, INPUT_BUF_SIZE);
if (!quiet)
{
fwrite(charBuf, bufBytes, 1, stdout);
fwrite("\n", 1, 1, stdout) ;
fflush(stdout);
}
}
else
{
commandInstrument(instSock, command);
}
}
else
{

/* read a line from <stdin> */

while (gets(charBuf) != NULL)

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 143

144

Programming Examples
LAN Programming Interface Examples

{
if (!strlen(charBuf))
continue ;
if (*charBuf == '#' || *charBuf == '!"')

continue ;

strcat(charBuf, "\n");

if (!quiet)

{

if (number)

{
char num[10];
sprintf(num,"%d: ",number);
fwrite(num, strlen(num), 1, stdout);
}

fwrite(charBuf, strlen(charBuf), 1, stdout) ;
fflush(stdout);

if (isQuery(charBuf))

{

the*/

terminator.*/

+ 1,

long bufBytes;

/* Put the query response into the same buffer as

/* command string appended after the null

bufBytes = queryInstrument(instSock, charBuf,
charBuf + strlen(charBuf)

INPUT_BUF_SIZE

-strlen(charBuf));

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

if (!quiet)

{
fwrite(" ", 2, 1, stdout) ;

fwrite(charBuf + strlen(charBuf)+1, bufBytes, 1,

stdout);
fwrite("\n", 1, 1, stdout) ;
fflush(stdout);
}
}
else
{
commandInstrument(instSock, charBuf);
}
if (number) number++;
}
}

if (show_errs) {

showErrors(instSock);

#ifdef WINSOCK
closesocket(instSock);
close _winsock();

#telse
close(instSock);

#endif /* WINSOCK */

return 0;

/* End of lanio.cpp *

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

145

Programming Examples
LAN Programming Interface Examples

/***/

/* $Function: maini$
*/

/* $Description: Output a series of SCPI commands to the signal
generator */

/* Send query results to stdout. $
*/

/%
*/

/* $Return: (int) . . . non-zero if an error occurs

*/

/%
*/

/***/

/* Rename this int mainl() function to int main(). Re-compile and
the */

/* execute the program
*/

/***/

int mainl()

{

SOCKET instSock;
long bufBytes;
char *charBuf = (char *) malloc(INPUT_BUF_SIZE);

/***/

/* open a socket connection to the instrument*/

/***/

#ifdef WINSOCK

if (init_winsock() != @) {
exit(1);

146 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

#tendif /* WINSOCK */

instSock = openSocket ("xxxxxx", SCPI_PORT); /* Put your hostname

here */
if (instSock == INVALID SOCKET) {
fprintf(stderr, "Unable to open socket.\n");
return 1;

}
/* fprintf(stderr, "Socket opened.\n"); */

bufBytes = queryInstrument(instSock, "*IDN?\n", charBuf,
INPUT_BUF_SIZE);

printf("ID: %s\n",charBuf);
commandInstrument(instSock, "FREQ 2.5 GHz\n");
printf("\n");

bufBytes = queryInstrument(instSock, "FREQ:CW?\n", charBuf,
INPUT_BUF_SIZE);

printf("Frequency: %s\n",charBuf);
commandInstrument(instSock, "POW:AMPL -5 dBm\n");

bufBytes = queryInstrument(instSock, "POW:AMPL?\n", charBuf,
INPUT_BUF_SIZE);

printf("Power Level: %s\n",charBuf);

printf("\n");

#ifdef WINSOCK
closesocket(instSock);
close winsock();

#else
close(instSock);

#endif /* WINSOCK */

return 0;

}

/**

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

147

148

Programming Examples
LAN Programming Interface Examples

getopt(30C)
getopt(3C)

PROGRAM FILE NAME: getopt.c

getopt - get option letter from argument vector

SYNOPSIS

int getopt(int argc, char * const argv[], const char
*optstring);

extern char *optarg;

extern int optind, opterr, optopt;

PRORGAM DESCRIPTION:

getopt returns the next option letter in argv (starting from
argv[1])

that matches a letter in optstring. optstring is a string of

recognized option letters; if a letter is followed by a colon,
the

option is expected to have an argument that may or may not be

separated from it by white space. optarg is set to point to
the start

of the option argument on return from getopt.

getopt places in optind the argv index of the next argument to
be

processed. The external variable optind is initialized to 1
before

the first call to the function getopt.

When all options have been processed (i.e., up to the first
non-option

argument), getopt returns EOF. The special option -- can be
used to

delimit the end of the options; EOF is returned, and -- is
skipped.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

SR s R R SR SR SRR SR KSR SR S SR SR SRR SRR SRS SRR SRR SRR SRR S SR SR SR SRR SR SRS SR SRR sk sk ok ok

#include <stdio.h> /* For NULL, EOF */

#include <string.h> /* For strchr() */

char *optarg; /* Global argument pointer. */

int optind = ©; /* Global argv index. */

static char *scan = NULL; /* Private scan pointer. */

int getopt(int argc, char * const argv[], const char* optstring)
{
char c;

char *posn;

optarg = NULL;

if (scan == NULL || *scan == '\@') {
if (optind == @)

optind++;

if (optind >= argc || argv[optind][@] != '-' ||
argv[optind][1] == '\@")

return(EOF);
if (strcmp(argv[optind], "--")==0) {
optind++;

return(EOF);

scan = argv[optind]+1;

optind++;

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 149

Programming Examples
LAN Programming Interface Examples

c = *scan++;

posn = strchr(optstring, c); /* DDP */

if (posn == NULL || c == ":") {
fprintf(stderr, "%s: unknown option -%c\n", argv[@], c);

return('?');

}
posn++;
if (*posn == ':') {
if (*scan != '"\@") {
optarg = scan;
scan = NULL;
} else {
optarg = argv[optind];
optind++;
}
}

return(c);

}

Sockets LAN Programming Using Java

In this example the Java program connects to the signal generator through
sockets LAN. This program requires Java version 1.7 or later be installed on
your PC. To run the program perform the following steps:

1. In the code example below, type in the hostname or IP address of your
signal generator. For example, St ri ng i nstrunment Name = (your
si gnal generator’s hostnane).

2. Copy the program as Scpi SockTest . j ava and save it in a convenient
directory on your computer. For example save the file to the
C:\jdk1l. 3. 0_2\bi n\javac directory.

3. Launch the Command Prompt program on your computer. Click Start >
Programs > Command Prompt.

150 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

4. Compile the program. At the command prompt type: j avac
Scpi SockTest . j ava.
The directory path for the Java compiler must be specified. For example:
C.\>jdk1. 3.0_02\bin\javac Scpi SockTest.|java

5. Run the program by typing j ava Scpi SockTest at the command
prompt.

6. Type exi t at the command prompt to end the program.

Generating a CW Signal Using Java

The following program example is available on the signal generator
Documentation CD-ROM as j avaex. t xt .

//***

// PROGRAM NAME: javaex.txt
// Sample
java program to talk to the signal generator via SCPI-over-sockets

// This program requires Java version 1.1 or later.
// Save this code as ScpiSockTest.java

// Compile by typing: javac ScpiSockTest.java

// Run by typing: java ScpiSockTest

// The signal generator is set for 1 GHz and queried for its id
string

[] F A AR SRR K K KRR KKK K SR KR K SRR KK KR KK KR KK R K SR KR K SR R Kk

import java.io.*;
import java.net.*;
class ScpiSockTest
{

public static void main(String[] args)

{

String instrumentName = "xxxxx"; // Put instrument
hostname here

try

{

Socket t = new Socket(instrumentName,5025); // Connect to
instrument

/7

Setup read/write mechanism

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 157

Programming Examples
LAN Programming Interface Examples

BufferedWriter out =

new BufferedWriter(

new OutputStreamWriter(t.getOutputStream()));
BufferedReader in =

new BufferedReader(

new InputStreamReader(t.getInputStream()));

System.out.println("Setting frequency to 1 GHz...");

out.write("freq 1GHz\n"); // Sets
frequency

out.flush();

System.out.println("Waiting for source to settle...");

out.write("*opc?\n"); // Waits for
completion

out.flush();
String opcResponse = in.readlLine();
if (!opcResponse.equals("1"))

{

System.err.println("Invalid response to '*OPC?'!");

System.exit(1);
}
System.out.println("Retrieving instrument ID...");
out.write("*idn?\n"); // Querys the id
string

out.flush();

String idnResponse = in.readlLine(); // Reads the id
string
// Prints the id string
System.out.println("Instrument ID: " + idnResponse);
}
catch (IOException e)
{
System.out.println("Error" + e);
}
}
}

152 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

Sockets LAN Programming Using Perl

This example uses PERL to control the signal generator over the sockets LAN
interface. The signal generator frequency is set to 1 GHz, queried for operation
complete and then queried for it’s identify string. This example was developed
using PERL version 5.6.0 and requires a PERL version with the 10::Socket
library.

1. In the code below, enter your signal generator’s hostname in place of the
XXXXX in the code line: ny $i nstrument Nane= “ xxxxx”; .

2. Save the code listed below using the filename | anper| .

3. Run the program by typing per| | anper!| atthe UNIX term window
prompt.

Setting the Power Level and Sending Queries Using PERL

The following program example is available on the signal generator
Documentation CD-ROM as perl . t xt.

#!/usr/bin/perl

PROGRAM NAME: perl.txt

Example of talking to the signal generator via SCPI-over-sockets
#

use IO0::Socket;

Change to your instrument's hostname

my $instrumentName = "xxxxx";

Get socket

$sock = new IO::Socket::INET (PeerAddr => $instrumentName,
PeerPort => 5025,
Proto => 'tcp',
)

die "Socket Could not be created, Reason: $!\n" unless $sock;

Set freq
print "Setting frequency...\n";

print $sock "freq 1 GHz\n";

Wait for completion

print "Waiting for source to settle...\n";

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 153

Programming Examples
LAN Programming Interface Examples

print $sock "*opc?\n";

my $response = <$sock>;

chomp $response; # Removes newline from response
if ($response ne "1")

{

die "Bad response to '*OPC?' from instrument!\n";

Send identification query
print $sock "*IDN?\n";
$response = <$sock>;

chomp $response;

print "Instrument ID: $response\n”;

TCP-IP (LAN) Programming Using Matlab

The examples in this section are meant to be used in one of three ways:

— Using a PSA to directly calculate and load an Equalization filter into the
MXG. (This process can be easily automated.)

1. Set up the PSA to measure the modulation.
2. Turn on the equalization filter.

3. Call loadPsaEqFilterFreq (example 1) in Matlab to read out the
equalization channel response over LAN via SCPI and calculate the
correct equalization filter.

4. Call writeMxgFir (example 4) in Matlab to write out the equalization
filter over LAN via SCPI to the MXG.

— Manual process using the VSA 89600 software to measure the channel
response, calculate the correction equalization filter and load that filter into
the MXG:

1. Setup to measure the modulation.
2. Turn on the equalization filter.

3. View the equalization channel response trace, either “Eq Ch Freq
Resp” or “Eq Impls Resp”.

4. Save the trace as ".mat" file, with the header included.

5. Call loadVsaEgFilter (example 3) in Matlab to read the file and
calculate a correction filter.

154 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

6. Call writeMxgFir (example 4) in Matlab to write out the equalization
filter over LAN via SCPI to the MXG.

— Takes a user-created filter in Matlab—either an equalization filter or a
modulation filter—and writes it to a FIR file in the MXG.

This section contains the following examples:

1. “Example 1: Reading Out the Channel Response and Calculating
Corrections for an Equalization Filter Using Matlab”

2. “Example 2: Reading a PXA Trace and Setting up the Equalization Filter
Using Matlab”

3. “Example 3: Reading a VSA Trace and Setting up the Equalization Filter
Using Matlab”

4. “Example 4: Downloading a FIR filter in Matlab to the MXG”

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 155

Programming Examples
LAN Programming Interface Examples

Example 1: Reading Out the Channel Response and Calculating
Corrections for an Equalization Filter Using Matlab

This example reads out the channel response from a PSA and calculates a
correction equalization filter that can be loaded into the EXG/MXG.

function [corrFilter] = loadPsaEqFilter(psaDev, destRate)
% [corrFilter] = loadPsaEqFilter(psaDev[, destRate])

% Reads out the current Equalization filter active on the PSA
specified.

R

The communication is over TCP-IP (LAN).

3R

destRate is assumed to be 200e6 if missing

S

Example: [corrFilter] = loadPsakEqFilter('psad’)

S

output of corrFilter is in time domain.

S

NOTE: The equalization filter feature in the PSA Digital
Modulation

% Modulation Analysis mode must be ON for this script to work.

R

It can be set to EQ Hold ON.

NS

R

Typically followed with something like:

R

5 writeMxgFir('a-n5182b-00211', 'EQ_1GHZ 62MHZ', corrFilter);
if (nargin<l || nargin>2)

error('[corrFilter] = loadPsakEqFilter(psaDev[, destRate]) --
destRate is assumed to be 200e6 if missing');

end
if (nargin<2)

destRate=200e6;
end
% contact PSA using LAN
t=tcpip(psaDev, 5025);
t.0utputBufferSize=1*1024%1024;
t.InputBufferSize=1*1024%1024;
fopen(t);
fprintf(t, ':FETCh:EVM9?\n');
magDb = readArrayOfDoubles(t);
fprintf(t, ':FETCh:EVM10?\n');

phaseDeg = readArrayOfDoubles(t);

156 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

fprintf(t, ':FETCh:EVM21?\n');

xSteps = readArrayOfDoubles(t);

fclose(t);

freqStep = xSteps(l + 9*2 + 1);

oversample = 1/xSteps(l + 8*2 +1);

% /10 compensates for issue with PSA (should be /20)
% this issue will be corrected in a future release
linmag = 10.~(magDb./10);

% *2 compensates for issue with PSA (should be *1)
% this issue will be corrected in a future release
phaseRad = phaseDeg./(360/(2*pi)).*2;

coeffs = linmag.*cos(phaseRad)+j*linmag.*sin(phaseRad);

rate = oversample*round(freqStep*length(coeffs)); % frequency range
is also rate

% we now have a centered frequency domain version of the channel
response

% invert so that we will cancel the channel response
invertedFregDomain = 1./coeffs;

% convert to time domain (first placing the © frequency at the left
edge)

timeDomain=ifft(ifftshift(invertedFregDomain));

% put time domain © time in center

len=length(timeDomain);

if (mod(length(timeDomain), 2)==1) % odd
center=ceil(len/2);
centeredTime(1l:(center-1)) = timeDomain(center+l:end);
centeredTime(center:len) = timeDomain(1l:center);

else % even
topHalf = (length(timeDomain)/2)+1;
centeredTime(1: (topHalf-1)) = timeDomain(topHalf:end);
centeredTime(topHalf:len) = timeDomain(1:(topHalf-1));

end

% resample to desired rate if necessary

if (abs(destRate-rate)>1le-6)

% note that this resample function only works with integer rates

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 157

158

Programming Examples
LAN Programming Interface Examples

resampledTime resample(centeredTime, destRate, rate, 30);
resampledTime = resampledTime.*(rate/destRate);
else
resampledTime = centeredTime;
end
% clip off the center 256 (if necessary)
if (length(resampledTime)>256)
% the peak point is assumed to be the center
[maxval, index] = max(abs(resampledTime));
center=index;
left = center-127;
right = left+255;
clippedTime=resampledTime((left):(right));
else
clippedTime = resampledTime;

end

corrFilter=clippedTime;

end

function array = readArrayOfDoubles(fid)
line = fgets(fid);
array = sscanf(line, '%g%*c');

end

Example 2: Reading a PXA Trace and Setting up the Equalization Filter
Using Matlab

This example reads a PXA trace of “Eq Ch Freq Resp” or “Eq Impls Resp” and
creates an equalization filter compatible with X-Series signal generators.

function [corrFilter] = loadPxakEqFilter(pxaAddress, destRate,
displayCorr)

% [corrFilter] = loadPxaEqFilter(pxaAddress[, destRatel[,
displayCorr]])

% Reads out the current Equalization filter active on the PXA
specified.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

The communication is over TCP-IP (LAN).

destRate is assumed to be 200e6 if missing
displayCorr is assumed to © (off) if missing
Example: [corrFilter] = loadPxaEqFilter('pxad')

output of corrFilter is in time domain.

hi
script to work. It can be EQ Hold ON.

%
%
%
%
%
% NOTE: The equalization filter feature on the PXA must be ON for
t
%
%
% Typically followed with something like:

% writeMxgFir('a-n5182b-00211', 'EQ_1GHZ 62MHZ', corrFilter);

if (nargin<l || nargin>3)

error('[corrFilter] = loadPxakEqFilter(pxaAddress[, destRate[,
displayCorr]]) -- destRate is assumed to be 200e6 if missing');

end
if (nargin<2)
destRate=200e6;
end
if (nargin<3)
displayCorr=0;
end
% contact PXA
t=tcpip(pxaAddress, 5025);
t.OutputBufferSize=1*¥1024*1024;
t.InputBufferSize=1*¥1024*%1024;
fopen(t);
fprintf(t, ':DISPlay:DDEM:TRAC2:FEED "Eq Impulse Responsel”\n');
fprintf(t, 'DISP:DDEM:TRACe2:FORMat REAL\n');
fprintf(t, 'calc:DDEM:DATA2?\n');
realTime = readArrayOfDoubles(t);
fprintf(t, 'DISP:DDEM:TRACe2:FORMat IMAG\n');
fprintf(t, 'calc:DDEM:DATA2?\n');
imagTime = readArrayOfDoubles(t);

coeffs = realTime + 1i.*imagTime;

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 159

Programming Examples
LAN Programming Interface Examples

fprintf(t, 'calc:DDEM:DATA2:HEAD? "XDelta"\n');
timeStep = readArrayOfDoubles(t);

rate = ceil(1 / timeStep - 1le-9);

% mirror coefficients

coeffs = coeffs(length(coeffs):-1:1);

% convert to frequency coefficients (null group delay with
ifftshift)

coeffs = fft(ifftshift(coeffs));
% invert phase in frequency domain

mag

abs(coeffs);

ang

-angle(coeffs);

coeffs = mag.*cos(ang)+li*mag.*sin(ang);

% display the frequency domain version again

fprintf(t, ':DISPlay:DDEM:TRAC2:FEED "Ch Frequency Responsel™\n');
fprintf(t, ':DISPlay:DDEM:TRAC2:FORMat MLOG\n');

fprintf(t, ':DISPlay:DDEM:TRAC2:Y:AUTO:ONCE\n'");

% must center frequency domain (to match what comes in frequency
domain)

coeffs = fftshift(coeffs);
fclose(t);

% convert to time domain (first placing the @ frequency at the left
edge)

timeDomain=ifft(ifftshift(coeffs));

centeredTime = fftshift(timeDomain);

if (abs(destRate-rate)>1le-6)

% this simple resample function may be insuffient for some rates
resampledTime = resample(centeredTime, destRate, rate, 30);
resampledTime = resampledTime.*(rate/destRate);

else
resampledTime = centeredTime;

end

%%%

% display resulting corrections

if displayCorr~=0
fcorr = fftshift(fft(resampledTime));

160 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

displayOversample = 100;

xcoordsOversample =

((1:(displayOversample*length(fcorr)))-(displayOversample*lengt

h(fcorr)+2)/2)/(length(fcorr))*destRate/displayOversample;
% plot amplitude correction

figure;plot(xcoordsOversample,
resample(20*1logl@(abs(fcorr)),displayOversample,1,100));

% plot phase correction
fcorrz = fftshift(fft(ifftshift(resampledTime)));

figure;plot(xcoordsOversample,
resample(unwrap(angle(fcorrz)),displayOversample,1,100)/pi*180);

end
% clip off the center 256 (if necessary)
if (length(resampledTime)>256)
[~, index] = max(abs(resampledTime));
center=index;
left = center-127;
right = left+255;
clippedTime=resampledTime((left):(right));
else
clippedTime = resampledTime;
end
corrFilter=clippedTime;
end
function array = readArrayOfDoubles(fid)
line = fgets(fid);
array = sscanf(line, '%g%*c');

end

Example 3: Reading a VSA Trace and Setting up the Equalization Filter

Using Matlab

This example reads a VSA trace of “Eq Ch Freq Resp” or “Eq Impls Resp” and

creates an equalization filter compatible with the MXG.
function [corrFilter] = loadVsakEqFilter(filename, destRate)

% [corrFilter] = loadVsaFilter(filename[, destRate])

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

161

162

Programming Examples
LAN Programming Interface Examples

% filename must reference an 89600 Equalization filter saved as .mat
file with the header included.

% destRate is assumed to be 200e6 if missing

% output of corrFilter is in time domain.

% Typically followed with:

% writeMxgFir('a-n5182b-00211', 'cft', corrFilter);
if (nargin<l || nargin>2)

error('[corrFilter] = loadVsakqFilter(filename[, destRate]) --
destRate is assumed to be 200e6 if missing');

end
if (nargin<2)
destRate=200e6;
end
% load filter struct from .mat file
filterStruct=load(filename);
coeffs = double(filterStruct.Y);
if (filterStruct.XDomain==1) % frequency

rate = filterStruct.XDelta*length(coeffs); % frequency range is
also rate

% VSA software supplies centered frequency domain
else % time domain is 2

rate = 1/filterStruct.XDelta; % inverse of time step is
frequency

% convert to frequency domain
% must center frequency domain (to match what comes from the VSA
% software)
coeffs = fftshift(fft(coeffs));
end
% invert
invertedFregDomain = 1./coeffs;

% convert to time domain (first placing the © frequency at the left
edge)

timeDomain=ifft(ifftshift(invertedFreqDomain));
if (filterStruct.XDomain==1) % frequency
% put time domain © time in center

len=length(timeDomain);

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

if (mod(length(timeDomain), 2)==1) % odd
center=ceil(len/2);
centeredTime(1:(center-1)) = timeDomain(center+l:end);
centeredTime(center:len) = timeDomain(1l:center);
else % even
topHalf = (length(timeDomain)/2)+1;
centeredTime(1l: (topHalf-1)) = timeDomain(topHalf:end);
centeredTime(topHalf:len) = timeDomain(1:(topHalf-1));
end
else % already centered in time domain
centeredTime = timeDomain;
end
if (abs(destRate-rate)>1le-6)
resampledTime = resample(centeredTime, destRate, rate, 30);
resampledTime = resampledTime.*(rate/destRate);
else
resampledTime = centeredTime;
end
% clip off the center 256 (if necessary)
if (length(resampledTime)>256)
[maxval, index] = max(abs(resampledTime));
center=index;
left = center-127;
right = left+255;
clippedTime=resampledTime((left):(right));
else
clippedTime = resampledTime;
end
corrFilter=clippedTime;

end

Example 4: Downloading a FIR filter in Matlab to the MXG

This example uses Matlab to control the X-Series signal generators over the
TCP-IP (LAN) interface. This example takes a filter in Matlab and writes it to a
FIR file in the MXG. This example can be can be used in combination with

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 163

164

Programming Examples
LAN Programming Interface Examples

either the automatable loadPsaEgFilterFreq.m example (1) or the
loadVsaEqgFilter.m (example 3) to manually work with the VSA 89600 software.
This example can also be used to create real modulation FIRs.

function [rateAdjustedFilter]=writeMxgFir(host, instrumentFilename,
timeDomainFilter, osr, rate, destRate, maxTaps)

% writeMxgEqFir(host, instrumentFilename, timeDomainFilter, osr,
rate, destRate, maxTaps);

% writes filter to 'instrumentFilename' on 'host' using tcp-ip. Real
or complex is

% auto-detected. osr is assumed to be 1 if it is missing. rate is
assumed

% to be 200Mhz if missing. destRate is assumed to be 200Mhz if
missing.

% maxTaps is the hardware limit of the MXG (256 if not specified).

% This value should be 256 for the Equalization filter and 32*osr
for the

% Arb Modulation filter. Note that the filter has a rectangular
window

% applied with a width of maxTaps centered about the peak point.

% Example: writeMxgEqFir('mxgl', 'a', [-0.1 0.1 0.4 0.1 0.4 0.1
-0.1]);

if (nargin<3 || nargin>7)

error('usage: writeMxgFir(host, instrumentFilename,
timeDomainFilter[, osr[, rate[, destRate[, maxTaps]]]])');

end

if (nargin<4)
osr=1;

end

if (nargin<5)
rate=200e6;

end

if (nargin<6)
destRate=200e6;

end

if (nargin<7)
maxTaps=1024;

end

% adjust coefficients for destination rate

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming Examples
LAN Programming Interface Examples

if (rate ~= destRate)

timeDomainFilter = resample(double(timeDomainFilter), destRate,
rate, 30);

timeDomainFilter = timeDomainFilter.*(rate/destRate);
end
if (length(timeDomainFilter)>maxTaps)

[maxval, index] = max(abs(timeDomainFilter));

center=index;

left = center-(maxTaps/2-1);

if (left<1)

left=1;

end

right = left+(maxTaps-1);

while (right > length(timeDomainFilter))

right = right-1;

end

timeDomainFilter = timeDomainFilter((left):(right));
end
rateAdjustedFilter = timeDomainFilter;
% open tcp connection
t=tcpip(host, 5025);
t.0utputBufferSize=1024*1024; % plenty big for filters
% write file contents
fopen(t);
%for writing to a file instead to see what is being output
%t=fopen('test', 'w');
% send command with filename

fprintf(t, '%s', horzcat(':MEM:DATA:FIR "', instrumentFilename,
III,I));

% send type

if (isreal(timeDomainFilter))
fprintf(t, '%s', 'REAL,');

else % convert complex to a real array

fprintf(t, '%s', 'COMP,');

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 165

Programming Examples
LAN Programming Interface Examples

temp=zeros(1,length(timeDomainFilter)*2);
temp(1:2:end)=real(timeDomainFilter);
temp(2:2:end)=imag(timeDomainFilter);
timeDomainFilter=temp;

end

% output osr

fprintf(t, '%d', osr);

% send coefficients

fprintf(t, ',%g', timeDomainFilter);

% send terminator

fprintf(t, "\n');

fclose(t);

end

166 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Keysight Technologies
X-Series Signal Generators

Programming Guide

4 Programming the Status Register System

This chapter provides the following major sections:
— Overview on page 168
— Status Register Bit Values on page 172

— Accessing Status Register Information on page 173

Status Byte Group on page 179

Status Groups on page 181

KEYSIGHT

TECHNOLOGIES

167

Overview

168

Programming the Status Register System
Overview

Some of the status bits and register groups only apply to select signal
generators with certain options. For more specific information on each
exception, refer to the following:

— Standard Operation Condition Register bits (see Table on page 185)
— Data Questionable Condition Register bits (see Table on page 188)

— Data Questionable Power Condition Register bits (see Table on
page 191)

— Data Questionable Frequency Condition Register bits (see Table on
page 194)

— Data Questionable Calibration Condition Register bit (see Table on
page 197)

— Data Questionable BERT Status Group (see page 199)

During remote operation, you may need to monitor the status of the signal
generator for error conditions or status changes. You can use the signal
generator’s status register system to monitor error conditions, or condition
changes, or both. In general, the error queue is easier to use than the status
registers, but the status registers provide some additional information not
found in the error queue. For more information on using the signal generator’s
SCPI commands to query the signal generator’s error queue, refer to the SCPI
Command Reference.

The signal generator’s status register system provides two major advantages:

— You can monitor the settling of the signal generator using the settling bit of
the Standard Operation Status Group’s condition register.

— You can use the service request (SRQ) interrupt technique to avoid status
polling, therefore giving a speed advantage.

The signal generator’s instrument status system provides complete SCPI
compliant data structures for reporting instrument status using the register
model.

The SCPI register model of the status system has multiple registers that are
arranged in a hierarchical order. The lower-priority status registers propagate
their data to the higher-priority registers using summary bits. The Status Byte
Register is at the top of the hierarchy and contains the status information for
lower level registers. The lower level registers monitor specific events or
conditions.

The lower level status registers are grouped according to their functionality.
For example, the Data Questionable Frequency Status Group consists of five
registers. This chapter may refer to a group as a register so that the
cumbersome longer description is avoided. For example, the Standard

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming the Status Register System
Overview

Operation Status Group’s Condition Register can be referred to as the
Standard Operation Status register. Refer to “Status Groups” on page 181 for
more information.

Figure 4-1 and Figure 4-2 show the EXG/MXG’s signal generator status byte
register system and hierarchy.

The status register systems use IEEE 488.2 commands (those beginning with *)
to access the higher-level summary registers (refer to the SCPI Command
Reference). Access Lower-level registers by using STATus commands.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 169

Programming the Status Register System
Overview

Overall Status Byte Register Systems

“Overall Status Byte Register System (1 of 2)” on page 170
“Overall Status Byte Register System (2 of 2)” on page 171

Figure 4-1 Overall Status Byte Register System (1 of 2)

Data Questionable Power Status Group

RPP Tripped

Unieveled =

13 Mad Owverdrive -

Unused -

ALC Heater Datactor {Caold)
Unused

Unused

Unused -

Urused -

Unuzed

'¢‘ To Data Cuestionable Stalus Group 13

{+Trans Fillar
{- | Trans Fillar
Evam Ragsiar
Ewani Enabla Rag
(;

To Data Questionabla Stabus Group 05

Condiian Regisier

Dinseed 331 To Diaka Quesiionabie Sialus Group 13

To Data Queslionable Slalus Group #12

Data Quest. Frequency Status Group

Synilh. Unlacked
10 MHz Raf Unlacked o
Freq. Clipped
Unused -

Unused

Unused -

Unused <

Unused -

Unused <

Unuzad -

Unused {10

Unused 411

Unused 412

Unused ={13

Unused 414

Always Zerg (0) {15

Data Quest. Calibration Status Group
Cal. DCFM
Cal. 13
Unused -
Unu=ed
Unused -
Unused
Unused -
Unused =
Unu=ed =
Urnused -
Unused
Unuzed =
Unused -
Unused <

Always E:rgﬁ]

Data Quest. BERT Status Group
(Option NS1B0UNTB only)

Mo Clock

Mo Data Change

PRES Syn: Lass -

Unusad

Unusad -

Unusad -

Unusad -

Unusad <

Unusad -

Unusad =

Unusad 4

Unusad -

Unusad -

Unusad -

D00~ O OB G kY O

Candilian Ragstar
{+}Trans Fillar
{- ITrans Filtar
EwantHagistar

Evani E?:jm Riag

Evant Enmabla Rag

[+ Trans Fillar
(- fTrans Filar
Ewant Ragistar

Condition Regsier

{+|Trans Fillar
- JTrans Filkar
Evamt Ragster
Ewvani Enabia Rag
T

Condian Regisir

b b b b b

Unusad
Always fero (1)

N B G B = D D~ DR R D R =

-t

170 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Figure 4-2

Programming the Status Register System

Overview

Overall Status Byte Register System (2 of 2)

Fram Data Cuestiorabie Power Slatus Group

Fram Data Guest. Frequency Stetus Group

Fram Data Cuesl. Calibralion Status Group

Fram Data Guest BERT Stetus Group

Data Questionable
Status Group

Unused—]
Unused—
Unused—
(sUmmany)|—
Unused—
(summary)—
Unused—
Unused =
(sUmmany) =
SELFleat—
Unused—]
Unused—
[summary)=
Unuszed—|
Unused—
Always Lena (0)—

Standard Ev
Dper. Camplate_]
Req. Bus Canbrol—
Quiery Error—

D, Dep. Ervor—]
Exaculian Ernod—
Camand Ernof—
User Requesl—
Pawer Oir—

Standard Op

13 CALibsating —
Setting—
Unused—

SWEeping—
MEASning—
Wailing Tor TRIGer —
Unused—
Unused—
Unused—
Unuzsed—
Unuzsed—
Unused—
Unused—
Unused—
Unused—

Status Byte Register

Unuzed
Unuzed

EmrariEvent Quaue Summary Bit

[iata Questionable Status Summearny Bit

Lo I -

(=3 -]

11

12
13
14
18

o
[-—dmmhum—~o|= |

mw‘-lmw-hwm-'l:|

11

12
13
14

Always Lera (0)—

18

[
Me'ssageﬁ'.'allslmlew.ﬁ.'ln
Sid. Event Staius Sum. Bit

[
Req. Sarv. Suml. Bit (ROS),

Sid. Oparalion Stalus

{+|Trans Fillar
§- | Trans Filsar
Evam Ragsiar
Event Enable Rag
+

Condiian Regiser

Status Group

ration Status Group

{+}Trans Fillar
§- }Trans Fillar
Evant Ragster
Eveni Enable Ra

Candifian Register

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

2. Bil

Fa———

TI6|5) 4] 32| 1)0

Service Request
Enable Register

171

Programming the Status Register System
Status Register Bit Values

Status Register Bit Values

Each bit in a register is represented by a decimal value based on its location in
the register (see Table 4-1).

— To enable a particular bit in a register, send its value with the SCPI
command. Refer to the signal generator’s SCPI command listing for more
information.

— To enable more than one bit, send the sum of all the bits that you want to
enable.

— To verify the bits set in a register, query the register.

Example: Enable a Register
To enable bit O and bit 6 of the Standard Event Status Group’s Event Register:

1. Add the decimal value of bit 0 (1) and the decimal value of bit 6 (64) to
give a decimal value of 65.

2. Send the sum with the command: * ESE 65.

Example: Query a Register

To query a register for a condition, send a SCPI query command. For example,
if you want to query the Standard Operation Status Group’s Condition Register,
send the command:

STATus:OPERation:CONDition?

If bit 7, bit 3 and bit 2 in this register are set (bits = 1) then the query will return
the decimal value 140. The value represents the decimal values of bit 7, bit 3
and bit 2: 128 + 8 + 4 = 140.

Table 4-1 Status Register Bit Decimal Values
(@) ~t (@] [<e} e ~t (@] (e} (o) ~t o (e} (e ~r (@] —
Decimal e X |12 18 |2 |8 |b|&|[2|“C|”|T
Value ERN R R A
<<
Bit Number 15 |14 |13 (12 |11 |10 |9 |8 |7 |6 |5 |4 |3 2|1 |0

Bit 15 is not used and is always set to zero.

172 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming the Status Register System
Accessing Status Register Information

Accessing Status Register Information

1. Determine which register contains the bit that reports the condition. Refer
to Figure 4-1 on page 170 and Figure 4-2 on page 171 for register location
and names.

. Send the unique SCPI query that reads that register.

Examine the bit to see if the condition has changed.

(ANN

Determining What to Monitor
You can monitor the following conditions:

— current signal generator hardware and firmware status
— whether a particular condition (bit) has occurred

Monitoring Current Signal Generator Hardware and Firmware Status

To monitor the signal generator’s operating status, you can query the
condition registers. These registers represent the current state of the signal
generator and are updated in real time. When the condition monitored by a
particular bit becomes true, the bit sets to 1. When the condition becomes
false, the bit resets to O.

Monitoring Whether a Condition (Bit) has Changed

The transition registers determine which bit transition (condition change)
should be recorded as an event. The transitions can be positive to negative,
negative to positive, or both. To monitor a certain condition, enable the bit
associated with the condition in the associated positive and negative registers.

Once you have enabled a bit through the transition registers, the signal
generator monitors it for a change in its condition. If this change in condition
occurs, the corresponding bit in the event register will be set to 1. When a bit
becomes true (set to 1) in the event register, it stays set until the event register
is read or is cleared. You can thus query the event register for a condition even
If that condition no longer exists.

To clear the event register, query its contents or send the *CLS command,
which clears all event registers.
Monitoring When a Condition (Bit) Changes

Once you enable a bit, the signal generator monitors it for a change in its
condition. The transition registers are preset to register positive transitions (a
change going from O to 1). This can be changed so the selected bit is detected
if it goes from true to false (negative transition), or if either transition occurs.

Deciding How to Monitor

You can use either of two methods described below to access the information
in status registers (both methods allow you to monitor one or more conditions).

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 173

174

Programming the Status Register System
Accessing Status Register Information

— The polling method

In the polling method, the signal generator has a passive role. It tells the
controller that conditions have changed only when the controller asks the
right question. This is accomplished by a program loop that continually
sends a query.

The polling method works well if you do not need to know about changes
the moment they occur. Use polling in the following situations:

— when you use a programming language/development environment or
|0 interface that does not support SRQ interrupts

— when you want to write a simple, single-purpose program without
the complexity of setting up an SRQ handler

The service request (SRQ) method

In the SRQ method (described in the following section), the signal
generator takes a more active role. It tells the controller when there has
been a condition change without the controller asking. Use the SRQ
method to detect changes using the polling method, where the program
must repeatedly read the registers.

Use the SRQ method if you must know immediately when a condition
changes. Use the SRQ method in the following situations:

— when you need time-critical notification of changes

— when you are monitoring more than one device that supports SRQs

— when you need to have the controller do something else while
waiting

— when you can’t afford the performance penalty inherent to polling

Using the Service Request (SRQ) Method

The programming language, 1/0 interface, and programming environment
must support SRQ interrupts (for example: BASIC or VISA used with GPIB and
VXI-11 over the LAN). Using this method, you must do the following:

1.
2.

5.

Determine which bit monitors the condition.

Send commands to enable the bit that monitors the condition (transition
registers).

Send commands to enable the summary bits that report the condition
(event enable registers).

Send commands to enable the status byte register to monitor the
condition.

Enable the controller to respond to service requests.

The controller responds to the SRQ as soon as it occurs. As a result, the time
the controller would otherwise have used to monitor the condition, as in a loop
method, can be used to perform other tasks. The application determines how
the controller responds to the SRQ.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming the Status Register System
Accessing Status Register Information

When a condition changes and that condition has been enabled, the request
service summary (RQS) bit in the status byte register is set. In order for the
controller to respond to the change, the Service Request Enable Register
needs to be enabled for the bit(s) that will trigger the SRQ.

Generating a Service Request

The Service Request Enable Register lets you choose the bits in the Status
Byte Register that will trigger a service request. Send the *SRE <num>
command where <num> is the sum of the decimal values of the bits you want
to enable.

For example, to enable bit 7 on the Status Byte Register (so that whenever the
Standard Operation Status register summary bit is set to 1, a service request is
generated) send the command *SRE 128.

Refer to Figure 4-1 on page 170 and Figure 4-2 on page 171 for bit positions
and values.

The query command *SRE? returns the decimal value of the sum of the bits
previously enabled with the *SRE <num> command.

To query the Status Byte Register, send the command *STB?. The response will
be the decimal sum of the bits which are set to 1. For example, if bit 7 and bit 3
are set, the decimal sum will be 136 (bit 7 = 128 and bit 3 = 8).

Multiple Status Byte Register bits can assert an SRQ, however only one bit
at a time can set the RQS bit. All bits that are asserting an SRQ will be read
as part of the status byte when it is queried or serial polled.

The SRQ process asserts SRQ as true and sets the status byte’s RQS bitto 1.
Both actions are necessary to inform the controller that the signal generator
requires service. Asserting SRQ informs the controller that some device on the
bus requires service. Setting the RQS bit allows the controller to determine
which signal generator requires service.

This process is initiated if both of the following conditions are true:

— The corresponding bit of the Service Request Enable Register is also set to
1.

— The signal generator does not have a service request pending.

A service request is considered to be pending between the time the signal
generator’s SRQ process is initiated and the time the controller reads the
status byte register.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 175

176

Programming the Status Register System
Accessing Status Register Information

If a program enables the controller to detect and respond to service requests, it
should instruct the controller to perform a serial poll when SRQ is true. Each
device on the bus returns the contents of its status byte register in response to
this poll. The device whose request service summary (RQS) bit is set to 1 is the
device that requested service.

When you read the signal generator’s Status Byte Register with a serial
poll, the RQS bit is reset to 0. Other bits in the register are not affected.

If the status register is configured to SRQ on end-of-sweep or measurement
and the mode set to continuous, restarting the measurement (INIT command)
can cause the measuring bit to pulse low. This causes an SRQ when you have
not actually reached the “end-of-sweep” or measurement condition. To avoid
this, do the following:

1. Send the command | NIl Ti at e: GONTi nuous CFF.
2. Set/enable the status registers.

3. Restart the measurement (send INIT).

Status Register SCPI Commands

Most monitoring of signal generator conditions is done at the highest level
using the IEEE 488.2 common commands listed below. You can set and query
individual status registers using the commands in the STATus subsystem.

*CLS (clear status) clears the Status Byte Register by emptying the error
queue and clearing all the event registers.

*ESE, *ESE? (event status enable) sets and queries the bits in the Standard
Event Enable Register which is part of the Standard Event Status Group.

*ESR? (event status register) queries and clears the Standard Event Status
Register which is part of the Standard Event Status Group.

*OPC, *OPC? (operation complete) sets bit #0 in the Standard Event Status
Register to T when all commands have completed. The query stops any new
commands from being processed until the current processing is complete,

then returns a 1.

*PSC, *PSC? (power-on state clear) sets the power-on state so that it clears
the Service Request Enable Register, the Standard Event Status Enable
Register, and device-specific event enable registers at power on. The query
returns the flag setting from the *PSC command.

*SRE, *SRE? (service request enable) sets and queries the value of the
Service Request Enable Register.

*STB? (status byte) queries the value of the status byte register without
erasing its contents.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming the Status Register System
Accessing Status Register Information

:STATus:PRESet presets all transition filters, non-IEEE 488.2 enable
registers, and error/event queue enable registers. (Refer to Table .)

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 177

Programming the Status Register System
Accessing Status Register Information

Table 4-2 Effects of :STATus:PRESet
Register? Value after
:STATus:PRESet

:STATus:OPERation:ENABle 0
:STATus:OPERation:NTRansition 0
:STATus:OPERation:PTRransition 32767
:STATus:QUEStionable:CALibration:ENABle 32767
:STATus:QUEStionable:CALibration:NTRansition 32767
:STATus:QUEStionable:CALibration:PTRansition 32767
:STATus:QUEStionable:ENABle 0
:STATus:QUEStionable:NTRansition 0
:STATus:QUEStionable:PTRansition 32767
:STATus:QUEStionable:FREQuency:ENABle 32767
:STATus:QUEStionable:FREQuency:NTRansition 32767
:STATus:QUEStionable:FREQuency:PTRansition 32767
:STATus:QUEStionable:POWer:ENABle 32767
:STATus:QUEStionable:POWer:NTRansition 32767
:STATus:QUEStionable:POWer:PTRansition 32767
:STATus:QUEStionable:BERT:ENABIle 32767
:STATus:QUEStionable:BERT:NTRansition 32767
:STATus:QUEStionable:BERT:PTRansition 32767

a. Table reflects :STAT:PRES values for EXG and MXG models with all options. Refer to Figure
4-1 on page 170, Figure 4-2 on page 171, and Table on page 180 through Table
on page 200.

178 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Byte Group

Status Byte Group

The Status Byte Group includes the Status Byte Register and the Service
Request Enable Register.

NQOTE: .
Some signal Status Byte Register
generator 0 | Unused
models may 1 | Unused
use Only a 2 | Error/Event Queue Summary Bit
subset of the Data Guestionable S 5
status 3 ata Questionable Summary Bit
registers 4 | Message Available (MAV)
shown. 5 | Standard Event Summary Bit
r-------- #»| 6 | RequestService (RQS)
E 7 | Operation Status Summary Bit
Y i
® :
b ® i
b (&) 1
 © j
b ® -
I ®
by
&
T
011]12|3|4]|5]|6]| 7| Service Request Enable Register

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 179

180

Programming the Status Register System
Status Byte Group

Status Byte Register

Bit | Description
0,7 | Unused. These bits are always set to 0.

2 Error/Event Queue Summary Bit. A 1 in this bit position indicates that the SCPI error queue is not empty. The
SCPI error queue contains at least one error message.

3 Data Questionable Status Summary Bit. A 1 in this bit position indicates that the Data Questionable summary
bit has been set. The Data Questionable Event Register can then be read to determine the specific condition that
caused this bit to be set.

4 Message Available. A 1 in this bit position indicates that the signal generator has data ready in the output queue.

There are no lower status groups that provide input to this bit.

Standard Event Status Summary Bit. A 1 in this bit position indicates that the Standard Event summary bit has
been set. The Standard Event Status Register can then be read to determine the specific event that caused this bit to
be set.

Request Service (RQS) Summary Bit. A 1 in this bit position indicates that the signal generator has at least one
reason to require service. This bit is also called the Master Summary Status bit (MSS). The individual bits in the Status
Byte are individually ANDed with their corresponding service request enable register, then each individual bit value is
ORed and input to this bit.

Standard Operation Status Summary Bit. A 1 in this bit position indicates that the Standard Operation Status
Group’s summary bit has been set. The Standard Operation Event Register can then be read to determine the specific
condition that caused this bit to be set.

Query: *STB?
Response: The decimal sum of the bits set to 1 including the master summary status bit (MSS) bit 6.
Example: The decimal value 136 is returned when the MSS bit is set low (0).

Decimal sum = 128 (bit 7) + 8 (bit 3)
The decimal value 200 is returned when the MSS bit is set high (1).
Decimal sum =128 (bit 7) + 8 (bit 3) + 64 (MSS bit)

Service Request Enable Register

The Service Request Enable Register lets you choose which bits in the Status
Byte Register trigger a service request.

*SRE <dat a> <dat a>is the sum of the decimal values of the bits you want to enable except bit 6. Bit 6 cannot
be enabled on this register. Refer to Figure 4-1 on page 170 and Figure 4-2 on page 171.

Example: To enable bits 7 and 5 to trigger a service request when either corresponding status group
register summary bit sets to 1, send the command * SRE 160 (128 + 32).

Query: * SRE?

Response: The decimal value of the sum of the bits previously enabled with the * SRE <dat a> command.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming the Status Register System

Status Groups

Status Groups

The Standard Operation Status Group and the Data Questionable Status Group
consist of the registers listed below. The Standard Event Status Group is similar
but does not have negative or positive transition filters or a condition register.

Condition
Register

Negative
Transition
Filter

Positive
Transition
Filter

Event
Register

Event
Enable
Register

A condition register continuously monitors the
hardware and firmware status of the signal generator.
There is no latching or buffering for a condition register;
it is updated in real time.

A negative transition filter specifies the bits in the
condition register that will set corresponding bits in the
event register when the condition bit changes from 1 to
0.

A positive transition filter specifies the bits in the
condition register that will set corresponding bits in the
event register when the condition bit changes from O to
1.

An event register latches transition events from the
condition register as specified by the positive and
negative transition filters. Once the bits in the event
register are set, they remain set until cleared by either
querying the register contents or sending the *CLS
command.

An enable register specifies the bits in the event register
that generate the summary bit. The signal generator
logically ANDs corresponding bits in the event and
enable registers and ORs all the resulting bits to
produce a summary bit. Summary bits are, in turn, used
by the Status Byte Register.

A status group is a set of related registers whose contents are programmed to
produce status summary bits. In each status group, corresponding bits in the
condition register are filtered by the negative and positive transition filters and
stored in the event register. The contents of the event register are logically
ANDed with the contents of the enable register and the result is logically ORed
to produce a status summary bit in the Status Byte Register.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 187

182

Programming the Status Register System
Status Groups

Standard Event Status Group

The Standard Event Status Group is used to determine the specific event that
set bit b in the Status Byte Register. This group consists of the Standard Event
Status Register (an event register) and the Standard Event Status Enable

Register.
NOTE:
Some Operation Complete
signal Request Bus Control
generator
models may Query Error
use only a Device Dependent Error
iﬁbsitff Execution Error
€ status Command Error
registers
User Request
Power On
y Y Yy yvyy
Event Register 7 6 5 4 3 2 1 0
@
T &
Event 7 6 5 4 3 210
Enable Register
vy To Status Byte Register Bit #5 ok723a
Standard Event Status Register
Bit | Description
0 Operation Complete. A 1 in this bit position indicates that all pending signal generator operations were completed
following execution of the * GPCcommand.
1 Request Control. This bit is always set to 0. (The signal generator does not request control.)
2 Query Error. A1 in this bit position indicates that a query error has occurred. Query errors have instrument error
numbers from —499 to —400.
3 Device Dependent Error. A 1 in this bit position indicates that a device dependent error has occurred. Device
dependent errors have instrument error numbers from —399 to —300 and 1 to 32767.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Bit | Description

4 Execution Error. A1 in this bit position indicates that an execution error has occurred. Execution errors have
instrument error numbers from —299 to —200.

5 Command Error. A 1 in this bit position indicates that a command error has occurred. Command errors have
instrument error numbers from =199 to —100.

6 User Request Key (Local). A 1 in this bit position indicates that the Local key has been pressed. This is true even
if the signal generator is in local lockout mode.

7 Power On. A1 in this bit position indicates that the signal generator has been turned off and then on.

Query: *ESR?
Response: The decimal sum of the bits set to 1
Example: The decimal value 136 is returned. The decimal sum = 128 (bit 7) + 8 (bit 3).

Standard Event Status Enable Register

The Standard Event Status Enable Register lets you choose which bits in the
Standard Event Status Register set the summary bit (bit 5 of the Status Byte
Register) to 1.

*ESE <dat a> <dat a> is the sum of the decimal values of the bits you want to enable.

Example: To enable bit 7 and bit 6 so that whenever either of those bits are set to 1, the Standard Event
Status summary bit of the Status Byte Register is set to 1. Send the command * ESE 192 (128
+B4).

Query: * ESE?

Response: Decimal value of the sum of the bits previously enabled with the * ESE <dat a> command.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 183

Programming the Status Register System

Status Groups

Standard Operation Status Group

Some of the bits in this status group do not apply to all models, and return
zero when queried. See Table 4-3 on page 185 for more information.

The SCPI command : STAT: OPER: SUPP can suppress the managing of this
status group and save 50 us from the switching time. Refer to the SCPI Command

Reference.

The Operation Status Group is used to determine the specific event that set bit
7 in the Status Byte Register. This group consists of the Standard Operation
Condition Register, the Standard Operation Transition Filters (negative and
positive), the Standard Operation Event Register, and the Standard Operation

Event Enable Register.

NOTE: /0 CALibrating
Some Settling
; Unused
Si9 nal SWEeping
generator MEASuring
models Waiting for TRIGger
Unused
may use Unused
on ly a Unused
subset of Unused
the status L
. Unused
registers Unused
shown. Unused
Unused
Abways Zero (D)

= !

Evant
Enable Register

1151413121110987554

) Ty F Y Y VY YYYY
e L T
5 40 Yy
TP}:EI.E&E%"F::T'M[15 1413121110987 654321 0]
IEEEEEEEEEIEEEEEY
E:f;;;rgifmmn (151413 12 1110987654321 0]
ransition Fiiter T T
IEEEEEEEEEEEEEEER
Bvem Angme " [15 14 1312 1110987654321 0]
./_Lﬁ
P — b8
= I ,
- ﬁ:—"-—:”:_::_d_ 1) (& o
@ — r O
?ﬁa @ I 1
™ :‘& f"\
Standard Operation 2| T
1

=

184

¥ To Status Byte Register Bit #7

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Standard Operation Condition Register

The Standard Operation Condition Register continuously monitors the

hardware and firmware status of the signal generator. Condition registers are
read only.

Table 4-3 Standard Operation Condition Register Bits

Bit Description

02 I/Q Calibrating. A1 in this position indicates an I/Q calibration is in process.

1 Settling. A 1 in this bit position indicates that the signal generator is settling.

2 Unused. This bit position is always set to 0.

3 Sweeping. A 1 in this bit position indicates that a sweep is in progress.

40 Measuring. A 1 in this bit position indicates that a bit error rate test is in progress.
5 Waiting for Trigger. A 1 in this bit position indicates that the source is in a “wait for trigger”

state.
6-14 Unused. These bits are always set to 0.

15 Always 0.

a. Inanalog models, this bit is always set to O.
b. Always set to O if Option N5T180UN7B not present.

Query: STATus: CPERat i on: CONDi ti on?
Response: The decimal sum of the bits set to 1
Example: The decimal value 40 is returned. The decimal sum = 32 (bit 5) + 8 (bit 3).

Standard Operation Transition Filters (negative and positive)

The Standard Operation Transition Filters specify which types of bit state
changes in the condition register set corresponding bits in the event register.
Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: CPERat i on: NTRansi ti on <val ue> (negative transition), or

Queries:

STATus: CPERat i on: PTRansi ti on <val ue> (positive transition), where
<val ue>is the sum of the decimal values of the bits you want to enable.

STATus: CPERat i on: NTRansi ti on?
STATus: CPERat i on: PTRansi ti on?

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 185

Programming the Status Register System
Status Groups

Standard Operation Event Register

The Standard Operation Event Register latches transition events from the
condition register as specified by the transition filters. Event registers are
destructive read only. Reading data from an event register clears the content of
that register.

Query: STATus: CPERati on[: EVENt] ?

Standard Operation Event Enable Register

The Standard Operation Event Enable Register lets you choose which bits in
the Standard Operation Event Register set the summary bit (bit 7 of the Status
Byte Register) to 1.

Command: STATus: CPERat i on: ENABl e <val ue>, where
<val ue>is the sum of the decimal values of the bits you want to enable.

Example: To enable bit band bit 3 so that whenever either of those bits are set to 1, the Standard Operation
Status summary bit of the Status Byte Register is set to 1. Send the command STAT: OPER: ENAB
40(32+38).

Query: STATus: CPERat i on: ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the STATus: OPERat i on: ENABI e

<val ue>command.

186 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Status Group

The Data Questionable Status Group is used to determine the specific event

Some of the bits in this status group do not apply to all models, and return zero when queried.
See Table 4-4 on page 188 for more information.

that set bit 3 in the Status Byte Register. This group consists of the Data
Questionable Condition Register, the Data Questionable Transition Filters
(negative and positive), the Data Questionable Event Register, and the Data
Questionable Event Enable Register.

NOTE:) Unused
Some signal Unused

Unused
generator POWer (summary)

models may Unused
use only a FREQuency (summary)

Urused
subset of Unused

the status CALibration {summary)

registers SELFtest
9 Unused

shown. Unused
BERT (summary)
Unused

Unused

Always Zero (0)

¥y ¥ r L
Da1a0L|ESt|c-r‘Bble| 15 14 13 12 11 1

Condition Register
Data QUEStionable * # * ;
Positive 15 14 13 12 11 1
Transition Filtar + + + + +
Data QUEStionable
Megative 15 14 13 12 11 1

Transition Filter + + + + *

Data QUEStionable
Event Aegister |15 14 13 12 111

=

i
i

=

=

~—

=

et

G | GO el GOl L3 [

v f—————|

i o [w0 e o [
- © || 0O g 00 |l O e
(™ o]] =] =
(i o e e e e
e 0t L1 e L7 e o [

@).—.: bl sl Bl

et |
N | | [\ | 13 | N 3

=]

(&)

Data QUEStionable

E t
E:';’;,Eﬂagim, |15 1413121110987 654 3

¥ To Status Byte Register Bit #3

Data Questionable Condition Register

The Data Questionable Condition Register continuously monitors the hardware

and firmware status of the signal generator. Condition registers are read only.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Table 4-4 Data Questionable Condition Register Bits
Bit Description
0-2 Unused. These bits are always set to 0.

3 Power (summary). This is a summary bit taken from the QUEStionable:POWer register. A 1 in this bit
position indicates that one of the following may have happened: The ALC (Automatic Leveling Control) is unable
to maintain a leveled RF output power (i.e., ALC is UNLEVELED), the reverse power protection circuit has been
tripped. See the “Data Questionable Power Status Group” on page 190 for more information.

4 Unused. This bit is always set to 0.

5 Frequency (summary). This is a summary bit taken from the QUEStionable:FREQuency register. A 1 in this
bit position indicates that one of the following may have happened: synthesizer PLL unlocked, 10 MHz
reference VCO PLL unlocked, 1 GHz reference unlocked, sampler, YO loop unlocked or baseband 1 unlocked.
For more information, see the “Data Questionable Frequency Status Group” on page 193.

6,7 Unused. These bits are always set to 0.

g2 Calibration (summary). This is a summary bit taken from the QUEStionable:CALibration register. A 1 in this
bit position indicates that one of the following may have happened: an error has occurred in the DCFM zero
calibration, or an error has occurred in the I/Q calibration. See the “Data Questionable Calibration Status
Group” on page 196 for more information.

9 Self Test. A 1 in this bit position indicates that a self-test has failed during power-up. Reset this bit by cycling
the signal generator’s line power. *CLS will not clear this bit.

10, 11 Unused. These bits are always set to 0.
190 BERT (summary). This is a summary bit taken from the QUEStionable:BERT register. A T in this bit position
indicates that one of the following occurred: no BCH/TCH synchronization, no data change, no clock input,
PRBS not synchronized, demod/DSP unlocked, or demod unleveled. See the “Data Questionable BERT
Status Group” on page 199 for more information.
13,14 Unused. These bits are always set to 0.
15 Always 0.

188

a. The data reported by this bit depends on the installed options.
b. In models that do not support Bit Error Rate Testing (Option N5180UN7B), this bit is always set

to 0.

Query: STATus: QUESt i onabl e: CONDI ti on?

Response: The decimal sum of the bits set to 1

Example: The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Comman

Programming the Status Register System
Status Groups

Data Questionable Transition Filters (negative and positive)

The Data Questionable Transition Filters specify which type of bit state
changes in the condition register set corresponding bits in the event register.
Changes can be positive (0 to 1) or negative (1 to 0).

ds: STATus: QUESti onabl e: NTRansi ti on <val ue> (negative transition), or
STATus: QUESti onabl e: PTRansi tion <val ue> (positive transition), where
<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: NTRansi ti on?
STATus: QUESt i onabl e: PTRansi ti on?
Data Questionable Event Register
The Data Questionable Event Register latches transition events from the
condition register as specified by the transition filters. Event registers are
destructive read-only. Reading data from an event register clears the content
of that register.
Query: STATus: QUESti onabl e[: EVENL] ?
Data Questionable Event Enable Register
The Data Questionable Event Enable Register lets you choose which bits in the
Data Questionable Event Register set the summary bit (bit 3 of the Status Byte
Register) to 1.
Command: STATus: QUESt i onabl e: ENABl e <val ue> where <val ue>is the sum of the decimal values
of the bits you want to enable.
Example: Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable Status
summary bit of the Status Byte Register is set to 1. Send the command STAT: QUES: ENAB 520
(512 +8).
Query: STATus: QUESt i onabl e: ENAB| e?
Response: Decimal value of the sum of the bits previously enabled with the

STATus: QUESt i onabl e: ENABI e <val ue> command.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 189

Programming the Status Register System
Status Groups

Data Questionable Power Status Group

190

Some of the bits in this status group do not apply to all models, and return
zero when queried. See Table 4-5 on page 191 for more information.

The Data Questionable Power Status Group is used to determine the specific
event that set bit 3 in the Data Questionable Condition Register. This group
consists of the Data Questionable Power Condition Register, the Data
Questionable Power Transition Filters (negative and positive), the Data
Questionable Power Event Register, and the Data Questionable Power Event
Enable Register.

Rewerse Power Proteclion Tripped

N OTE Unlevaled
Some signal 10 Mad Overdrive

Unused

generator ALC Heater Datactor (Cold)
models may Unused

Unused

use only a Urised
subset of Unused
the status e

. nused
rengterS Unused
shown. Liriigad

Unused
Unused

Always Zero (D)
Damuu:snunable_l b S .
POWer [15 14 13 12

Condition Register -

Dala QUESlianable { + 4‘

EaRmies [15 14 13 1

Transilian Fillar + +
Dala QUESlianable
POWer | 15 14 1
Megative
Transilian Fillar + +

Data QUEStionable
POWar | 1514

1

1

1

1

1

|

1

Evenl Register b
D l
-\“: = TP 3

N\ 1]

1

e
= [
-
=

-
.-
g —

3
-
=
—
=

rel—|

(5]
o e

| = L]

o g 00 fag O lag| OO Lt 0 [
ot = L =]] = |
et TR Ry, .y
ot ———————— LN |- th [U7 e e |
N PR S DI N PR N
o | o e o e
P | o | P e

3 [
-
=

(oot T3 [

o (0 [Dl D L D

o
-

e

Data QUEStionable
POWar

Evenl |15141312111095T55432
Enable Register

To Data Questionable Status Register Bit #3

cT0Mde

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Power Condition Register

The Data Questionable Power Condition Register continuously monitors the
hardware and firmware status of the signal generator. Condition registers are
read only.

Table 4-5 Data Questionable Power Condition Register Bits
Bit Description
0 Reverse Power Protection Tripped. A 1 in this bit position indicates that the reverse power protection (RPP)
circuit has been tripped. There is no output in this state. Any conditions that may have caused the problem should be
corrected. Reset the RPP circuit by sending the remote SCPI command: OUTput:PROTection:CLEar. Resetting the
RPP circuit bit, resets this bit to 0.
1 Unleveled. A 1 in this bit position indicates that the output leveling loop is unable to set the output power.
2 IQ Mod Overdrive. A 1 in this bit position indicates that the signal level into the IQ modulator is too high.
3 Unused. This bit is always set to 0.
4 ALC Heater Detector (Cold). A 1 in this bit position indicates that the ALC detector is cold.
5-14 | Unused. These bits are always set to 0.
15 Always 0.
Query: STATus: QUESt i onabl e: POMr: CONDi ti on?
Response: The decimal sum of the bits set to 1.

Data Questionable Power Transition Filters (negative and positive)

The Data Questionable Power Transition Filters specify which type of bit state
changes in the condition register set corresponding bits in the event register.
Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUESti onabl e: POMXér : NTRansi ti on <val ue> (negative transition), or
STATus: QUESti onabl e: POMér : PTRansi ti on <val ue> (positive transition), where
<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: POMr : NTRansi ti on?
STATus: QUESt i onabl e: POXr : PTRansi ti on?

Data Questionable Power Event Register

The Data Questionable Power Event Register latches transition events from the
condition register as specified by the transition filters. Event registers are
destructive read-only. Reading data from an event register clears the content
of that register.

Query: STATus: QUESt i onabl e: POMr [: EVENL] ?

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 197

Programming the Status Register System
Status Groups

Data Questionable Power Event Enable Register

The Data Questionable Power Event Enable Register lets you choose which bits
in the Data Questionable Power Event Register set the summary bit (bit 3 of
the Data Questionable Condition Register) to 1.

Command: STATus: QUESt i onabl e: POMr : ENABl e <val ue> where <val ue> is the sum of the
decimal values of the bits you want to enable

Example: Enable bit 3 and bit 2 so that whenever either of those bits are set to 1, the Data Questionable Power
summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT: QUES: POWN ENAB 12 (8 +4).

Query: STATus: QUESt i onabl e: PO/Mr : ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: PONer : ENABI e <val ue> command.

192 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Frequency Status Group

NOTE Some of the bits in this status group do not apply to all models, and return
zero when queried. See Table 4-6 on page 194 for more information.

The Data Questionable Frequency Status Group is used to determine the
specific event that set bit 5 in the Data Questionable Condition Register. This
group consists of the Data Questionable Frequency Condition Register, the
Data Questionable Frequency Transition Filters (negative and positive), the
Data Questionable Frequency Event Register, and the Data Questionable
Frequency Event Enable Register.

NOTE Some signal generator models may use only a subset of the status
registers shown.

Synthesizer Unlocked
10 MHz Reference Unlocked
Frequency Clipped
Unusied
Unusied
Unused
Unused
Unusied
Unused
Unused
Unused
Unused
Unuzied
Unused
Unused ——————
Always Zero (0

Diata QUESI ﬁnable—l
FREQuency
Candilian Register

Data QUESLionable
FRECQuency
Posgitive

Transition Filter
Data QUESLionable
FRECQuency 1
Megalive
Trangition Filler
Dala QUESHonable [
FREQuancy 15
Evenl Ragisler

Bl

sy
ury
sy

|

—
£n

—
—

— &
- TS | T

-
=l
-

-

it
o

" W e R e e

=) - .
S oo

i D] D e D e ——————————

= OO g O g (2 L D
(¥ m— Y I
et B
LN i (0 b= O ba={ (R
o o S
o € el 0 bl G e 0
(e Py Bt R (e RO
g] L]] |
oo o o

o
e L L

-
=l
=k

(+

FRECUENCY

Event [15141312111n93?654321o]
Enable Ragister

To Data Questionable Status Register Bit #5

Dala QUESionable

ck70E:

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 193

Programming the Status Register System
Status Groups

Data Questionable Frequency Condition Register

The Data Questionable Frequency Condition Register continuously monitors
the hardware and firmware status of the signal generator. Condition registers
are read-only.

Table 4-6 Data Questionable Frequency Condition Register Bits
Bit Description
0 Synth. Unlocked. A 1 in this bit position indicates that the synthesizer is unlocked.
1 10 MHz Ref Unlocked. A 1 in this bit position indicates that the 10 MHz reference signal is unlocked.
2 Frequency Clipped. A 1 in this bit position indicates that the 1 GHz reference signal is unlocked.
3-14 | Unused. These bits are always set to 0.
15 Always 0.

Query: STATus: QUESt i onabl e: FREQuency: CONDi ti on?

Response: The decimal sum of the bits set to 1.

Data Questionable Frequency Transition Filters (negative and positive)
Specifies which types of bit state changes in the condition register set
corresponding bits in the event register. Changes can be positive (0 to 1) or
negative (1 to 0).

Commands: STATus: QUESt i onabl e: FREQuency: NTRansi ti on <val ue> (negative transition) or
STATus: QUESt i onabl e: FREQuency: PTRansi ti on <val ue> (positive transition) where
<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: FREQuency: NTRansi ti on?

STATus: QUESt i onabl e: FREQuency: PTRansi ti on?
Data Questionable Frequency Event Register
Latches transition events from the condition register as specified by the
transition filters. Event registers are destructive read-only. Reading data from
an event register clears the content of that register.

Query: STATus: QUESt i onabl e: FREQuency[: EVENt] ?

194 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Data Questionable Frequency Event Enable Register
Lets you choose which bits in the Data Questionable Frequency Event Register
set the summary bit (bit 5 of the Data Questionable Condition Register) to 1.

Command: STATus: QUESt i onabl e: FREQuency: ENABl e <val ue>, where <val ue>isthe sum ofthe
decimal values of the bits you want to enable.

Example: Enable bit 5 and bit 2 so that whenever either of those bits are set to 1, the Data Questionable
Frequency summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT: QUES: FREQ ENAB 36 (32 + 4).

Query: STATus: QUESt i onabl e: FREQuency: ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: FREQuency: ENABI e <val ue>command.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 195

Programming the Status Register System
Status Groups

Data Questionable Calibration Status Group

196

Some of the bits in this status group do not apply to all models, and return
zero when queried. See Table 4-7 on page 197 for more information.

The Data Questionable Calibration Status Group is used to determine the
specific event that set bit 8 in the Data Questionable Condition Register. This
group consists of the Data Questionable Calibration Condition Register, the
Data Questionable Calibration Transition Filters (negative and positive), the
Data Questionable Calibration Event Register, and the Data Questionable
Calibration Event Enable Register.

DCFM Calibration Failure
NOTE: 1/C Calibration Failure
. Unused
Some signal Unused
generator Unused

models may H:ﬂzzg

use Oﬂly a Unused
subset of Unused

the status Unusad
. Unused
registers Unused
shown. Unused
Unused
Unused
Always Zero (0)

-
i
-
-
-

Data QUEStonable ¥ ¥ ¥ ¥ ¥
CaLibration |15 14 13 12 1

Condition Register
Data QUEStionable y + Y + i
1

CALibrat
Positive [15 14 13 12

Transition Filter

Data QUEStionable Y * L i + Y
CaALibration |15 14 13 12 1

Megative

Transition Filter
Data QUEStionable ¥ * ¥ + 1 +

Cabisraton 07| 15 14 13 12 11 10
Ewvent Registar

EH
——
-
W o re-{ w0 (e O e o
e 0] OO g OO | OO (o
ot =4] = [~ [=~ [
o e I
B LN - Nt L0 [th
b | b L Pl
L e G0t Lol o e
o |t o | b | RO [P
A e l=l =l =

e
]]
S [¥
o &
SES (&
2 1
{&)
Drata GUEStionable \i
CALibration 0

Event
Emable Register

Y To Data Questionable Status Register Bit #8

|151413‘|2 M1Wo 876543

ch7208

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Table 4-7

Programming the Status Register System
Status Groups

Data Questionable Calibration Condition Register

The Data Questionable Calibration Condition Register continuously monitors
the calibration status of the signal generator. Condition registers are read only.

Data Questionable Calibration Condition Register Bits

Bit

Description

DCFM Calibration Failure. A 1 in this bit position indicates that the DCFM zero calibration routine has failed. This
is a critical error. The output of the source has no validity until the condition of this bit is 0.

1/Q Calibration Failure. A 1 in this bit position indicates that the I/Q modulation calibration experienced a failure.

Unused. These bits are always set to 0.

Always 0.

Query:

STATus: QUESt i onabl e: CALi brati on: CONDi ti on?

Response: The decimal sum of the bits set to 1.

Data Questionable Calibration Transition Filters (negative and positive)

The Data Questionable Calibration Transition Filters specify which type of bit
state changes in the condition register set corresponding bits in the event
register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUESt i onabl e: CALi brati on: NTRansi ti on <val ue> (negative transition),

Queries:

Query:

or STATus: QUESt i onabl e: CALi br ati on: PTRansi ti on <val ue> (positive transition),
where <val ue> is the sum of the decimal values of the bits you want to enable.

STATus: QUESt i onabl e: CALi brati on: NTRansi ti on?
STATus: QUESt i onabl e: CALi brati on: PTRansi ti on?

Data Questionable Calibration Event Register

The Data Questionable Calibration Event Register latches transition events
from the condition register as specified by the transition filters. Event registers
are destructive read-only. Reading data from an event register clears the
content of that register.

STATus: QUESti onabl e: CALi bration[: EVENt] ?

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 197

Programming the Status Register System
Status Groups

Data Questionable Calibration Event Enable Register

The Data Questionable Calibration Event Enable Register lets you choose
which bits in the Data Questionable Calibration Event Register set the
summary bit (bit 8 of the Data Questionable Condition register) to 1.

Command: STATus: QUESti onabl e: CALi brati on: ENABl e <val ue>, where <val ue> is the sum of
the decimal values of the bits you want to enable.

Example: Enable bit 1 and bit O so that whenever either of those bits are set to 1, the Data Questionable
Calibration summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT: QUES: CAL: ENAB 3 (2+1).

Query: STATus: QUESt i onabl e: CALi br ati on: ENABI e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: CALi brati on: ENABI e <val ue>command.

198 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming the Status Register System

Status Groups

Data Questionable BERT Status Group

This status group applies only to signal generator models with Option
N5180UN7B. Refer to Table 4-8 on page 200 for more information.

The Data Questionable BERT Status Group is used to determine the specific
event that set bit 12 in the Data Questionable Condition Register. The Data

Questionable Status group consists of the Data Questionable BERT Condition
Register, the Data Questionable BERT Transition Filters (negative and positive),
the Data Questionable BERT Event Register, and the Data Questionable BERT

Event Enable Register.

Mo Clock
Mo Data Change
PRBS Sync Loss

Unused

Unused

Unused
Unused

Unused

Unused

Unused

Unused

Unused
Unused
Unused
Unused

EERT

BERT
Positive

BERT
Megalive

BERT

Always Zero (0)
Data DUES!iu'laulr—l L

gp—————

—
-
—
o M

BERT
Event
Enable Register

L 3 TYYVYY i
Candition Ragister 15 14 13 12 seres4321 0|
DataOUEStienable ¥ ¥ ¥ ¥ ¥ F Y YT ¥ ¥ Y ¥ ¥ ¥ ¥
Postive [514 13121110 9876543210]
e EE EEEEEEEEEEEE
[5141B121110987654321 0]
Transitian Filtes + + * + + * * ++++ +** + +
pEmr e 44 13 12 1110 987 654321 0]
Evenl Ragister 'r)
9 1
A &
| &)
2 B
14
!'IF
'

“1&& |
£ ‘{]:}
Dala QUEStenable Tl
[5141312 1110987654321 0]

To Data Questionable Status Register Bit #12

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

199

Table 4-8

200

Programming the Status Register System
Status Groups

Data Questionable BERT Condition Register

The Data Questionable BERT Condition Register continuously monitors the
hardware and firmware status of the signal generator. Condition registers are
read only.

Data Questionable BERT Condition Register Bits

Bit

Description

No Clock. A 1 in this bit position indicates no clock input for more than 3 seconds.

No Data Change. A 1 in this bit position indicates no data change occurred during the last 200 clock signals.

PRBS Sync Loss. A1 is set while PRBS synchronization is not established. * RST sets the bit to zero.

Unused. These bits are always set to 0.

Always 0.

Query: STATus: QUESt i onabl e: BERT: CONDi ti on?

Response: The decimal sum of the bits set to 1.

Data Questionable BERT Transition Filters (negative and positive)

The Data Questionable BERT Transition Filters specify which type of bit state
changes in the condition register set corresponding bits in the event register.
Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUESt i onabl e: BERT: NTRansi ti on <val ue> (negative transition), or
STATus: QUESt i onabl e: BERT: PTRansi ti on <val ue> (positive transition), where
<val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: BERT: NTRansi ti on?
STATus: QUESt i onabl e: BERT: PTRansi ti on?

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Programming the Status Register System
Status Groups

Data Questionable BERT Event Register

The Data Questionable BERT Event Register latches transition events from the
condition register as specified by the transition filters. Event registers are
destructive read-only. Reading data from an event register clears the content
of that register.

Query: STATus: QUESti onabl e: BERT[: EVENt] ?

Data Questionable BERT Event Enable Register

The Data Questionable BERT Event Enable Register lets you choose which bits
in the Data Questionable BERT Event Register set the summary bit (bit 3 of the
Data Questionable Condition Register) to 1.

Command: STATus: QUESt i onabl e: BERT: ENABl e <val ue> where <val ue> is the sum of the
decimal values of the bits you want to enable

Example: Enable bit 2 and bit 1 so that whenever either of those bits are set to 1, the Data Questionable BERT
summary bit of the Data Questionable Condition Register is set to 1. Send the command
STAT: QUES: BERT: ENAB 6 (4 +2).

Query: STATus: QUESt i onabl e: BERT: ENABI e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: BERT: ENABI e <val ue>command.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 207

Programming the Status Register System
Status Groups

202 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Keysight Technologies
X-Series Signal Generators

Programming Guide

o Creating and Downloading Waveform Files

NOTE The ability to play externally created waveform data in the signal
generator is available only in vector signal generator models with an

installed internal baseband generator option (refer to the Data Sheet for
more information).

This chapter explains how to create Arb-based waveform data and download it
into the signal generator.

— “Overview of Downloading and Extracting Waveform Files” on page 204
— “Understanding Waveform Data” on page 206

— “Waveform Structure” on page 214

— “Waveform Phase Continuity” on page 217

— “7on page 220

— “Commands for Downloading and Extracting Waveform Data” on
page 225

— “Creating Waveform Data” on page 235

— “Downloading Waveform Data” on page 241

— “Loading, Playing, and Verifying a Downloaded Waveform” on page 247
— “Using the Download Utilities” on page 250

— “Downloading E443xB Signal Generator Files” on page 251

— “Programming Examples” on page 253

— “Troubleshooting Waveform Files” on page 317

KEYSIGHT

TECHNOLOGIES

203

Creating and Downloading Waveform Files
Overview of Downloading and Extracting Waveform Files

Overview of Downloading and Extracting Waveform Files

204

The signal generator lets you download and extract waveform files. You can
create these files externally and download them to the signal generator. The
signal generator also accepts waveforms files created for some earlier signal
generator models. For file extractions, the signal generator encrypts the
waveform file information. The exception to encrypted file extraction is user—
created I/Q data. The signal generator lets you extract this type of file
unencrypted. After extracting a waveform file, you can download it into another
Keysight signal generator that has the same option or software license required
to play it. Waveform files consist of three items:

1. 1/Q data
2. Marker data
3. File header

This order of download is required, as the I/Q data downloads results in
the overwriting of all of these three parts of the file.

The signal generator automatically creates the marker file and the file header if
the two items are not part of the download. In this situation, the signal
generator sets the file header information to unspecified (no settings saved)
and sets all markers to zero (off).

There are three ways to download waveform files: FTP, programmatically, or
using one of the available free download utilities created by Keysight
Technologies:

— N7622A Signal Studio Toolkit 2
http.//www.keysight.com/find/signalstudio

— Keysight Waveform Download Assistant for use only with MATLAB
http.//www.keysight.com/find/downloadassistant

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Overview of Downloading and Extracting Waveform Files

Waveform Data Requirements

To be successful in downloading files, you must first create the data in the
required format.

— Signed 2’s complement

— 2-byte integer values

— Input data range of -32768 to 32767

— Minimum of 60 samples per waveform (60 | and 60 Q data points)
— Interleaved | and Q data

— Big-endian byte order

— The same name for the marker, header, and I/Q file

This is only a requirement if you create and download a marker file and or
file header, otherwise the signal generator automatically creates the marker
file and or file header using the I/Q data file name.

FTP can be used without programming commands to transfer files from
the PC to the signal generator or from the signal generator to the PC.

For more information, see “Waveform Structure” on page 214.

For more information on waveform data, see “Understanding Waveform Data”
on page 206.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 205

Creating and Downloading Waveform Files
Understanding Waveform Data

Understanding Waveform Data

206

The signal generator accepts binary data formatted into a binary I/Q file. This
section explains the necessary components of the binary data, which uses ones
and zeros to represent a value.

Bits and Bytes

Binary data uses the base-two number system. The location of each bit within

the data represents a value that uses base two raised to a power (2"~"). The
exponentis n — 1 because the first position is zero. The first bit position, zero, is
located at the far right. To find the decimal value of the binary data, sum the
value of each location:

1101 =(1x 2%+ (1x29) + (0x 2" + (1 x 29)
=(1x8)+(1x4)+0Ox2)+(1x1)
=13 (decimal value)

Notice that the exponent identifies the bit position within the data, and we read
the data from right to left.

The signal generator accepts data in the form of bytes. Bytes are groups of
eight bits:

01101110=0x2)) + (1 x 25 + (1 x 2% + (0Ox 2% +(1 x 23) + (1 x 22) + (1 x 21)
+(0x29
=110 (decimal value)

The maximum value for a single unsigned byte is 255 (11111111 or 28—1), but
you can use multiple bytes to represent larger values. The following shows two
bytes and the resulting integer value:

01101110 10110011= 28339 (decimal value)

The maximum value for two unsigned bytes is 65535. Since binary strings
lengthen as the value increases, it is common to show binary values using
hexadecimal (hex) values (base 16), which are shorter. The value 65535 in hex
is FFFF. Hexadecimal consists of the values 0, 1, 2, 3,4, 5,6, 7, 8,9, A, B, C, D,
E, and F. In decimal, hex values range from 0 to 15 (F). It takes 4 bits to
represent a single hex value.

1=0001 2=0010 3=0011 4=0100 5=0101
6=0110 7=01M 8=1000 9=1001 A=1010
B=1011 C=1100 D=1101 E=1110 F=1111

For I and Q data, the signal generator uses two bytes to represent an integer
value.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Understanding Waveform Data

LSB and MSB (Bit Order)

Within groups (strings) of bits, we designate the order of the bits by identifying
which bit has the highest value and which has the lowest value by its location
in the bit string. The following is an example of this order.

Most Significant Bit (MSB) This bit has the highest value (greatest weight) and is located at the far left of the bit
string.

Least Significant Bit (LSB) This bit has the lowest value (bit position zera) and is located at the far right of the bit
string.

Bit Position 15 14 1312 1110 9 8 7 6 54 32 1 0
Data 1 01 1 01 11 1110T1U001

MSB LSB

Because we are using 2 bytes of data, the LSB appears in the second byte.

Little Endian and Big Endian (Byte Order)

When you use multiple bytes (as required for the waveform data), you must
identify their order. This is similar to identifying the order of bits by LSB and
MSB. To identify byte order, use the terms little endian and big endian. These
terms are used by designers of computer processors.

Little Endian Order

The lowest order byte that contains bits 0—7 comes first.

Bit Position 7 6 5 4 3 2 1 0 15 14 1312 1110 9 8
Data 11101001 101101 11 Hex values = E9 B7
LSB MSB

Big Endian Order

The highest order byte that contains bits 8—15 comes first.

Bit Position 15 14 1312 1110 9 8 7 654 321 0
Data 1 01101 11 11101001 Hex values = B7 E9

‘ ,

MSB LSB

Notice in the previous figure that the LSB and MSB positioning changes with
the byte order. In little endian order, the LSB and MSB are next to each other in
the bit sequence.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 207

Creating and Downloading Waveform Files
Understanding Waveform Data

For I/Q data downloads, Keysight signal generators require big-endian
order.

For each I/Q data point, the signal generator uses four bytes (two integer
values), two bytes for the | point and two bytes for the Q point.

The byte order, little-endian or big-endian, depends on the type of processor
used with your development platform. Intel© processors and its clones use
little endian. Sun™ and Motorola processors use big endian. The Apple
PowerPC processor, while big-endian oriented, also supports the little-endian
order. Always refer to the processor’'s manufacturer to determine the order they
use for bytes and if they support both, to understand how to ensure that you
are using the correct byte order.

Development platforms include any product that creates and saves waveform
data to afile. This includes Keysight Technologies Advanced Design System
EDA software, C++, MATLAB, and so forth.

The byte order describes how the system processor stores integer values as
binary data in memory. If you output data from a little-endian system to a text
file (ASCII text), the values are the same as viewed from a big endian system.
The order only becomes important when you use the data in binary format, as
is done when downloading data to the signal generator.

Byte Swapping

While the processor for the development platform determines the byte order,
the recipient of the data may require the bytes in the reverse order. In this
situation, you must reverse the byte order before downloading the data. This is
commonly referred to as byte swapping. You can swap bytes either
programmatically or by using the Signal Studio Toolkit 2 software. For the
signal generator, byte swapping is the method to change the byte order of little
endian to big endian. For more information on little endian and big endian
order, see “Little Endian and Big Endian (Byte Order)” on page 207.

The following figure shows the concept of byte swapping for the signal
generator. Remember that we can represent data in hex format (4 bits per hex
value), so each byte (8 bits) in the figure shows two example hex values.

0 1 2 3
Little Endian | E9 | B7| 53 | 2A| 16-bit integer values (2 bytes = 1 integer value)

| data = bytes 0 and 1
Q data = bytes 2 and 3

Big Endian [B7 [£ | 2A [53]
0o 1.2 3

\ﬂ_}\ﬁ(_}

I Q

208 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Understanding Waveform Data

To correctly swap bytes, you must group the data to maintain the I and Q
values. One common method is to break the two-byte integer into one-byte
character values (0-255). Character values use 8 bits (1 byte) to identify a

character. Remember that the maximum unsigned 8-bit value is 255 (28 -1).
Changing the data into character codes groups the data into bytes. The next
step is then to swap the bytes to align with big endian order.

Keysight signal generators always assume that downloaded data is in
big-endian order, so there is no data order check. Downloading data in
little-endian order will produce an undesired output signal.

DAC Input Values

The signal generator uses a 16-bit DAC (digital-to-analog converter) to
process each of the 2-byte integer values for the | and Q data points. The DAC
determines the range of input values required from the I/Q data. Remember
that with 16 bits we have a range of 0-65535, but the signal generator divides
this range between positive and negative values:

— 32767 = positive full scale output
— 0=0volts
— -32768 = negative full scale output

Because the DAC’s range uses both positive and negative values, the signal
generator requires signed input values. The following list illustrates the DAC’s
input value range.

Voltage DAC Range Input Range Binary Data Hex Data
Vmax 65535 32767 01111111 11111111 7FFF

: 32768 1 00000000 00000001 0001
0 Volts 32767 0 00000000 00000000 0000

' 32766 1 11111111 11111111 FFFF
Vmin 0 -32768 10000000 00000000 8000

Notice that it takes only 15 bits (2'°) to reach the Vmax (positive) or Vmin
(negative) values. The MSB determines the sign of the value. This is covered in
“2’s Complement Data Format” on page 211.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 209

Creating and Downloading Waveform Files
Understanding Waveform Data

Using E443xB ESG DAC Input Values

Keysight E443xBsignal generator models have a DAC input range that is

different from other Keysight signal generator models. For E443xB models, the
input values are all positive (unsigned) and the data is contained within 14 bits
plus 2 bits for markers. This means that the E443xB DAC has a smaller range:

— 0 =negative full scale output
— 8192 =0 volts
— 16383 = positive full scale output

Although X-Series signal generators use signed input values, they accept
unsigned data created for the E443xB and convert it to the proper DAC values.
To download an E443xB files to an X-Series signal generator, use the same
command syntax as for the E443xB models. For more information on
downloading E443xB files, see “Downloading E443xB Signal Generator Files”
on page 251.

Scaling DAC Values

The signal generator uses an interpolation algorithm (sampling between the
I/Q data points) when reconstructing the waveform. For common waveforms,
this interpolation can cause overshoot, which may exceed the limits of the
signal process path’s internal number representation, causing arithmatic
overload. This will be reported as a data path overload error. Because of the
interpolation, the error condition can occur even when all the I and Q values
are within the DAC input range. To avoid the DAC over-range problem, you
must scale (reduce) the I and Q input values, so that any overshoot remains
within the DAC range.

Interpolation
) Interpolation

_______ n_o____i

Scaling effect

=

DAC over-range No over-range

68

Whenever you interchange files between signal generator models, ensure
that all scaling is adequate for that signal generator’s waveform.

210 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Understanding Waveform Data

There is no single scaling value that is optimal for all waveforms. To achieve
the maximum dynamic range, select the largest scaling value that does not
result in a DAC over-range error. There are two ways to scale the I/Q data:

— Reduce the input values for the DAC.
— Use the SCPI command : RAD 0: ARB: RSCal i ng <val > to set the
waveform amplitude as a percentage of full scale.

The signal generator factory preset for scaling is 70%. If you reduce the
DAC input values, ensure that you set the signal generator scaling
(:RADio:ARB:RSCaling) to an appropriate setting that accounts for the
reduced values.

To further minimize overshoot problems, use the correct FIR filter for your
signal type and adjust your sample rate to accommodate the filter response.

FIR filter capability is only available on vector signal generator models
with an installed baseband generator option.

2’s Complement Data Format

The signal generator requires signed values for the input data. For binary data,
two’s complement is a way to represent positive and negative values. The most
significant bit (MSB) determines the sign.

— 0 equals a positive value (01011011 = 91 decimal)
— 1 equals a negative value (10100101 = -91 decimal)

Like decimal values, if you sum the binary positive and negative values, you get
zero. The one difference with binary values is that you have a carry, which is
ignored. The following shows how to calculate the two’s complement using
16-bits. The process is the same for both positive and negative values.

Convert the decimal value to binary.

23710 = 01011100 10011110

Notice that 15 bits (0-14) determine the value and bit 16 (MSB) indicates a positive value.
Invert the bits (1 becomes 0 and O becomes 1).

10100011 01100001
Add one to the inverted bits. Adding one makes it a two’s complement of the original binary value.

10100011 01100001
+ 00000000 00000001
10100011 01100010

The MSB of the resultant is one, indicating a negative value (-23710).
Test the results by summing the binary positive and negative values; when correct, they produce zero.

01011100 10011110
+ 10100011 01100010
00000000 00000000

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 211

Creating and Downloading Waveform Files
Understanding Waveform Data

| and Q Interleaving

When you create the waveform data, the | and Q data points typically reside in
separate arrays or files. The signal generator requires a single I/Q file for
waveform data playback. The process of interleaving creates a single array with
alternating | and Q data points, with the Q data following the | data. This array
is then downloaded to the signal generator as a binary file. The interleaved file
comprises the waveform data points where each set of data points, one | data
point and one Q data point, represents one I/Q waveform point.

212 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Understanding Waveform Data

The signal generator can accept separate | and Q files created for the
earlier E443xB ESG models. For more information on downloading E443xB
files, see “Downloading E443xB Signal Generator Files” on page 251.

The following figure illustrates interleaving | and Q data. Remember that it
takes two bytes (16 bits) to represent one | or Q data point.

MSB LSB MSB LSB
| Data Binary 11001010 01110110 01110111 00111110
Hex CA 76 77 3E

QData Binary 11101001 11001010 01011110 01110010
Hex E9 CA 5E 72

Interleaved Binary Data

Waveform data point Waveform data point
/\ A
: N I
11001010 01110110 11101001 11001010 01110111 00111110 01011110 01110010
NG NG AN J
~ ~ ~ ~
| Data Q Data | Data Q Data

Interleaved Hex Data

Waveform Waveform
data point data point
Al Al
14 A4 A

CA 76 E9 CA 77 3E 5E 72

|Data QData |Data Q Data

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 213

Creating and Downloading Waveform Files
Waveform Structure

Waveform Structure

214

To play back waveforms, the signal generator uses data from the following
three files:

— File header
— Marker file
— 1/Q file

All three files have the same name, the name of the I/Q data file, but the signal
generator stores each file in its respective directory (headers, markers, and
waveform). For information on file extractions, see “Commands for
Downloading and Extracting Waveform Data” on page 225.

File Header

Marker

The file header contains settings for the ARB modulation format such as
sample rate, marker polarity, I/Q modulation attenuator setting and so forth.
When you create and download I/Q data, the signal generator automatically
creates a file header with all saved parameters set to unspecified. With
unspecified header settings, the waveform either uses the signal generator
default settings, or if a waveform was previously played, the settings from that
waveform. Ensure that you configure and save the file header settings for each
waveform.

If you have no RF output when you play back a waveform, ensure that the
marker RF blanking function has not been set for any of the markers. The
marker RF blanking function is a header parameter that can be
inadvertently set active for a marker by a previous waveform. To check for
and turn RF blanking off manually, refer to “Configuring the Pulse/RF
Blank” on page 318.

File

The marker file uses one byte per I/Q waveform point to set the state of the
four markers either on (1) or off (0) for each I/Q point. When a marker is active
(on), an output trigger signal is sent to a corresponding rear-panel BNC and/or
AUX 10 connector pin. (For more information on active markers and their
output trigger signal location, refer to your signal generator’s User’s Guide.)
Because markers are set at each waveform point, the marker file contains the
same number of bytes as there are waveform points. For example, for 200
waveform points, the marker file contains 200 bytes.

Although a marker point is one byte, the signal generator uses only bits 0-3 to
configure the markers; bits 4-7 are reserved and set to zero. The following
example shows a marker byte.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Structure

Marker Byte

Example of Setting a Marker Byte

Sets markers 1 and 3 on for a waveform point

4 3 2 1 Marker Number Position
0000 1 0 1 1

Reserved

Binary 0000 0101
Hex 05

The following example shows a marker binary file (all values in hex) for a
waveform with 200 points. Notice the first marker point, Of , shows all four
markers on for only the first waveform point.

ooooo0000:
ooooo0010:
ooooo002o0:
ooooo0030:
oooo0040:
ooooo0050:
00000060
ooooo0do0:
00oo00s0:
ooooo090:
oooo000a0:
000000h0:
oooo00co:

15
ol
ol
ol
05
05
05
o4
o4
o4
oo
oo
oo

01
01
01
18]
18]
18]
18]
04
04
04
oo
oo
oo

o1
o1
o1
05
05
05
05
04
04
04
oo
oo
oo

o1
o1
o1
05
05
05
05
04
04
04
oo
oo
oo

01
01
01
05
05
05
04
04
04
04
oo
oo
oo

ol
ol
ol
05
05
05
o4
o4
o4
o4
oo
oo
oo

01
01
01
18]
18]
18]
04
04
04
oo
oo
oo
oo

o1
o1
o1
05
05
05
04
04
04
oo
oo
oo

o1
o1
o1
05
05
05
04
04
04
oo
oo
a0

oo

If you create your own marker file, its name must be the same as the waveform
file. If you download I/Q data without a marker file, the signal generator
automatically creates a marker file with all points set to zero. For more
information on markers, see the User’s Guide.

01
01
01
05
05
05
04
04
04
oo
oo
oo

ol
ol
ol
05
05
05
o4
o4
o4
oo
oo
oo

01
01
01
18]
18]
18]
04
04
04
oo
oo
oo

o1
o1
o1
05
05
05
04
04
04
oo
oo
oo

o1
o1
o1
05
05
05
04
04
04
oo
oo
oo

01
01
01
05
05
05
04
04
04
oo
oo
oo

ol
ol
ol
05
05
05
o4
o4
o4
oo
oo
oo

0f =All markers on
01 = Marker 1 on
05 = Markers 1 and

04 = Marker 3 on
00 = No active mark

Downloading marker data using a file name that currently resides on the
signal generator overwrites the existing marker file without affecting the
I/Q (waveform) file. However, downloading just the I/Q data with the same
file name as an existing 1/Q file also overwrites the existing marker file
setting all bits to zero.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

215

216

1/Q File

Creating and Downloading Waveform Files
Waveform Structure

The 1/Q file contains the interleaved | and @ data points (signed 16-bit integers
for each I and Q data point). Each I/Q point equals one waveform point. The
signal generator stores the I/Q data in the waveform directory.

If you download I/Q data using a file name that currently resides on the
signal generator, it also overwrites the existing marker file setting all bits
to zero and the file header setting all parameters to unspecified.

Waveform

A waveform consists of samples. When you select a waveform for playback, the
signal generator loads settings from the file header. When the ARB is on, it
creates the waveform samples from the data in the marker and I/Q (waveform)
files. The file header, while required, does not affect the number of bytes that
compose a waveform sample. One sample contains five bytes:

1/Q Data + Marker Data = 1 Waveform Sample
2 bytes| 2bytesQ 1byte (8 bits) 5 bytes
(16 bits) (16 bits) Bits 4-7 reserved—RBits 0-3 set

To create a waveform, the signal generator requires a minimum of 60 samples.
To help minimize signal imperfections, use an even number of samples (for
information on waveform continuity, see “Waveform Phase Continuity” on
page 217). When you store waveforms, the signal generator saves changes to
the waveform file, marker file, and file header.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Phase Continuity

Waveform Phase Continuity

Phase Discontinuity, Distortion, and Spectral Regrowth

The most common arbitrary waveform generation use case is to play back a
waveform that is finite in length and repeat it continuously. Although often
overlooked, a phase discontinuity between the end of a waveform and the
beginning of the next repetition can lead to periodic spectral regrowth and
distortion.

For example, the sampled sinewave segment in the following figure may have
been simulated in software or captured off the air and sampled. It is an
accurate sinewave for the time period it occupies, however the waveform does
not occupy an entire period of the sinewave or some multiple thereof.
Therefore, when repeatedly playing back the waveform by an arbitrary
waveform generator, a phase discontinuity is introduced at the transition point
between the beginning and the end of the waveform.

Repetitions with abrupt phase changes result in high frequency spectral
regrowth. In the case of playing back the sinewave samples, the phase

discontinuity produces a noticeable increase in distortion components in
addition to the line spectra normally representative of a single sinewave.

Sampled Sinewave with Phase Discontinuity

‘. Phase oo » k
\ discontinuity * \\.
\ ' i \

;
Ct_

Waveform length

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 217

Creating and Downloading Waveform Files
Waveform Phase Continuity

Avoiding Phase Discontinuities

You can easily avoid phase discontinuities for periodic waveforms by
simulating an integer number of cycles when you create your waveform
segment.

If there are N samples in a complete cycle, only the first N-1 samples are
stored in the waveform segment. Therefore, when continuously playing
back the segment, the first and Nth waveform samples are always the
same, preserving the periodicity of the waveform.

By adding off time at the beginning of the waveform and subtracting an
equivalent amount of off time from the end of the waveform, you can address
phase discontinuity for pulsed periodic waveforms. Consequently, when the
waveform repeats, the lack of signal present avoids the issue of phase
discontinuity.

However, if the period of the waveform exceeds the waveform playback
memory available in the arbitrary waveform generator, a periodic phase
discontinuity could be unavoidable.

Sampled Sinewave with No Discontinuity

- " Jr".
[o
o« - -
£ " Fa b Fa
4 R ¢ N /

T T\\q ;T h\: BT
\ l ”7\ l

' Added sample

Waveform length

The following figures illustrate the influence a single sample can have. The

generated 3-tone test signal requires 100 samples in the waveform to maintain
periodicity for all three tones. The measurement on the left shows the effect of
using the first 99 samples rather than all 100 samples. Notice all the distortion
products (at levels up to -35 dBc) introduced in addition to the wanted 3-tone

218 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Waveform Phase Continuity

signal. The measurement on the right shows the same waveform using all 100
samples to maintain periodicity and avoid a phase discontinuity. Maintaining
periodicity removes the distortion products.

Phase Discontinuity Phase Continuity

o Aglient

3—tone — 20 MHz Bandwidth 3—tone — 20 MHz Bandwidth
Measured distortion = 35 dBc Measured distortion = 86 dBc

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 219

220

Creating and Downloading Waveform Files

The signal generator provides two types of memory, volatile and non-volatile.
You can download files to either memory type.

The X-Series ARB Waveform File Cache is limited to 128 files.
Consequently, once the 128 file cache limit has been reached, the
waveform switching speed will be much slower for files loaded into the
volatile (BBG). For cache information, always refer to the Data Sheet for
the current information.

Volatile Random access memory that does not survive cycling
of the signal generator power. This memory is
commonly referred to as (WFM1) or waveform playback
memory. To play back waveforms, they must reside in
volatile memory. The following file types share this
memory:

Table 5-1 Signal Generators and Volatile Memory Types

Volatile Memory Type | Signal Generator Model

N51668B, N5172B, N51828B
with an installed BBG

option
I/Q X
Marker X
File header X

User PRAM -

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files

Non-volatile Storage memory where files survive cycling the signal
generator power. Files remain until overwritten or
deleted. To play back waveforms after cycling the signal
generator power, you must load waveforms from non-
volatile (NVWFM) to volatile (WFMT1). On the Keysight
X-Series signal generators the non-volatile memory is
referred to as internal media and external media. The
following file types share this memory:

Table 5-2 Signal Generators and Non-Volatile Memory Types

Non-Volatile Memory Type | Signal Generator Model
N5166B, N5172B, N5182B with
an installed BBG option

I/Q X

Marker X

File header X

Sweep List X

User Data X

User PRAM X

Instrument State X

Waveform Sequences X

(multiple 1/Q files played

together)

The following figure on Figure 5-1 on page 222 shows the locations within the
signal generator for volatile and non-volatile waveform data.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 221

Figure 5-1

Creating and Downloading Waveform Files

File Structure Map
Root directory

T !
_J

Non-volatile NONVOLATILES
Waveform sequences

EXG/MXG media:
,,J Volatile waveform File listing with extentions’
SEQ directory

_

BBG1

Volatile waveform data y Non-volatile waveform data (internal storage 2)

_

HEADER

g d oo

MARKERS WAVEFORM SECUREWAVE HEADER MARKERS WAVEFORM SECUREWAVE

1 The Keysight X-Series signal generator use an optional “USB media” to store non-volatile waveform data.

2 The Keysight X-Series signal generator internal non-volatile memory is referred to as “internal storage”. These internal storage
directories contain pointers to the files, which are located in the NONVOLATILE directory.

3 The NONVOLATILE directory shows the files with the same extensions as the USB media and is useful with ftp.

Memory Allocation

222

Volatile Memory

The signal generator allocates volatile memory in blocks of 1024 bytes. For
example, a waveform file with 60 samples (the minimum number of samples)
has 300 bytes (5 bytes per sample x 60 samples), but the signal generator
allocates 1024 bytes of memory. If a waveform is too large to fit into 1024
bytes, the signal generator allocates additional memory in multiples of 1024
bytes. For example, the signal generator allocates 3072 bytes of memory for a
waveform with 500 samples (2500 bytes).

3 x 1024 bytes = 3072 bytes of memory

As shown in the examples, waveforms can cause the signal generator to
allocate more memory than what is actually used, which decreases the amount
of available memory.

In the first block of data of volatile memory that is allocated for each
waveform file, the file header requires 512 bytes.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files

Non-Volatile Memory

If the signal generator’s external USB flash memory port is used, the USB
flash memory can provide actual physical storage of non-volatile data in
the SECUREWAVE directory versus the “virtual” only data.

ARB waveform encryption of proprietary information is supported on the
external non-volatile USB flash memory.

To copy unencrypted data files from an external media (as in USB Flash
Drive [UFD]) for playing on a signal generator, the full filename extension is
required (i.e. .MARKER, .HEADER, .WAVEFORM, etc.). For more information
on unencrypted data, refer to “Commands for Downloading and Extracting
Waveform Data” on page 225. For more information on how to work with
files, refer to the User’s Guide.

To copy compatible licensed encrypted data files (i.e. .SECUREWAVE) from an
external media, download (copy) the files to the signal generator (refer to the
User’s Guide for information on how to work with files). When using the external
media along with the signal generator’s Use as or Copy File to Instrument
softkey menus, encrypted data files can be automatically detected by the signal
generator, regardless of the suffix (e.g. .wfm, .wvfm, and no suffix, etc.). These
various waveform files can be selected and played by the signal generator. For
more information on encrypted data, refer to “Commands for Downloading and
Extracting Waveform Data” on page 225. When using the Copy File to
Instrument, the signal generator prompts the user to select between BBG
Memory and Internal Storage memories as locations to copy the files.

Non-volatile files are stored on the non-volatile internal signal generator
memory (internal storage) or to an USB media, if available.

The non-volatile internal memory is allocated according to a Microsoft
compatible file allocation table (FAT) file system. The signal generator allocates
non-volatile memory in clusters according to the drive size (see Table on
page 223). For example, referring to Table on page 223, if the drive size is 15
MB and if the file is less than or equal to 4K bytes, the file uses only one 4 KB
cluster of memory. For files larger than 4 KB, and with a drive size of 15 MB,
the signal generator allocates additional memory in multiples of 4KB clusters.
For example, a file that has 21,538 bytes consumes 6 memory clusters (24,000
bytes).

For more information on default cluster sizes for FAT file structures, refer to
Table on page 223 and to http://support.microsoft.com/.

Table 5-3 Drive Size (logical volume)

Drive Size (logical volume) | Cluster Size (Bytes)
(Minimum Allocation Size)

OMB-15MB 4K

16 MB - 127 MB 2K

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 223

Creating and Downloading Waveform Files

Table 5-3 Drive Size (logical volume)

Drive Size (logical volume) | Cluster Size (Bytes)
(Minimum Allocation Size)
128 MB - 255 MB 4K
256 MB - 511 MB 8K
512 MB - 1023 MB 16K
1024 MB - 2048 MB 32K
2048 MB - 4096 MB 64K
4096 MB - 8192 MB 128K
8192 MB - 16384 MB 256K
Memory Size

The amount of available memaory, volatile and non-volatile, varies by the
installed options and by amount of memory used by other files that share the
memory. When we refer to waveform files, we state the memory size in
samples (one sample equals five bytes). The waveform playback memory
resides on the baseband generator that is installed in the Keysight X-Series
signal generator. Refer to Table 5-4 on page 224 for the maximum available
memory for each model and option.

Table 5-4 Maximum Signal Generator Memory
Volatile (BBG) Memory Non-Volatile (Internal Storage and USB Media)
Memory
Option Size Option Size
N5166B

653, 655 (BBQ) 32 MSa (160 MB) Standard 600 MSa (3 GB)
009 7.5GSa (30 GB)

022 512 MSa (2.5 GB) USB Flash Drive (UFD) user determined

N5172B and N5182B

653, 655, 656, 657 32 MSa (160 MB) Standard 600 MSa (3 GB)
(BBG) 006 2 GSa (8 GB)

009 7.5 (GSa (30 GB)
021 (N5172B only) 256 MSa (1.25 GB) USB Flash Drive (UFD) user determined
022 512 MSa (2.5 GB)
023 (N5182B only) 1024 MSa (5 GB)

224 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Commands for Downloading and Extracting Waveform Data

You can download I/Q data, the associated file header, and marker file
information (collectively called waveform data) into volatile or non-volatile
memory. For information on waveform structure, see “Waveform Structure” on
page 214.

The signal generator provides the option of downloading waveform data either
for extraction or not for extraction. When you extract waveform data, the signal
generator may require it to be read out in encrypted form. The SCPI download
commands determine whether the waveform data is extractable.

You can download or extract waveform data created in any of the following
ways:

— with signal simulation software, such as MATLAB or Keysight Advanced
Design System (ADS)

— with advanced programming languages, such as C++, VB or VEE

— with Keysight Signal Studio software

— with the signal generator

Waveform Data Encryption

You can download encrypted waveform data extracted from one signal
generator into another signal generator with the same option or software
license for the modulation format. You can also extract encrypted waveform
data created with software such as MATLAB or ADS, providing the data was
downloaded to the signal generator using the proper command.

When you download an exported waveform using a Keysight Signal Studio
software product, you can use the FTP process and the securewave directory or
SCPI commands, to extract the encrypted file to the non-volatile memory on
the signal generator. Refer to “File Transfer Methods” on page 226.

Encrypted I/Q Files and the Securewave Directory

The signal generator uses the secur ewave directory to perform file encryption
(extraction) and decryption (downloads). The secur ewave directory is not an
actual storage directory, but rather a portal for the encryption and decryption
process. While the secur ewave directory contains file names, these are
actually pointers to the true files located in signal generator memory (volatile
or non-volatile). When you download an encrypted file, the secur enave
directory decrypts the file and unpackages the contents into its file header, I/Q
data, and marker data. When you extract a file, the secur ewave directory
packages the file header, I/Q data, and marker data and encrypts the
waveform data file. When you extract the waveform file (I/Q data file), it
includes the other two files, so there is no need to extract each one
individually.

The signal generator uses the following secur ewave directory paths for file
extractions and encrypted file downloads:

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 225

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Volatile /user/bbg1/securewave/file_name or swfm:file_name

Non-volatile /user/securewave or snvwfm1:file_name

To extract files (other than user-created I/Q files) and to download
encrypted files, you must use the secur ewave directory. If you attempt to
extract previously downloaded encrypted files (including Signal Studio
downloaded files) without using the securewave directory, the signal
generator generates an error and displays:

ERROR: 221, Access Deni ed.

Encrypted I/Q Files and the Securewave Directory

Header parameters of files stored on the Keysight X-Series signal
generator internal or USB media cannot be changed unless the file is
copied to the volatile BBG memory. For more information on modifying
header parameters, refer to the User’s Guide.

When downloading encrypted files (. SECUREWAVE) from the USB media that
have had the file suffix changed to something other than . SECUREWAVE, you
must use the Use As or Copy File to Instrument menus to play an encrypted
waveform file in the signal generator.

File Transfer Methods

SCPI using VXI-11 (VMEbus Extensions for Instrumentation as defined in
VXI-11)

SCPI over the GPIB or RS 232

— SCPI with sockets LAN (using port 5025)

— File Transfer Protocol (FTP)

226 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

SCPI Command Line Structure

The signal generator expects to see waveform data as block data (binary files).
The IEEE standard 488.2-1992 section 7.7.6 defines block data. The following
example shows how to structure a SCPI command for downloading waveform
data (#ABC represents the block data):

: MVMEM DATA "<fi |l e_nane>", #ABC

"<file_name>" the I/Q file name and file path within the signal
generator

indicates the start of the data block

the number of decimal digits present in B

B a decimal number specifying the number of data bytes
to follow in C
C the actual binary waveform data

The following example demonstrates this structure:

MMEM : DATA |“WFM1:my_file"|,#13 240)12%S!14&07#8g*Y9%@7. ..

| | |
c

file_name A B
WFM1: the file path
ny _file the I/Q file name as it will appear in the signal
generator’s memory catalog
indicates the start of the data block
3 B has three decimal digits
240 240 bytes of data to follow in C

1298! 4&07#89* YO@ . . . the ASCII representation of some of the
binary data downloaded to the signal generator,
however not all ASCII values are printable

Commands and File Paths for Downloading and Extracting Waveform
Data

Filenames should not exceed 23 characters.

You can download or extract waveform data using the commands and file
paths in the following tables:

— Table 5-5, “Downloading Unencrypted Files for No Extraction,” on

page 228
— Table 5-6, “Downloading Encrypted Files for No Extraction,” on page 228
— Table 5-7, “Downloading Unencrypted Files for Extraction,” on page 228

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 227

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

— Table 5-9, “Downloading Encrypted Files for Extraction,” on page 230
— Table 5-10, “Extracting Encrypted Waveform Data,” on page 230

Table 5-5 Downloading Unencrypted Files for No Extraction
Download Method/ Command Syntax Options
Memory Type

Table 5-6

Table 5-7

228

SCPI/volatile memory

MVEM DATA "WFML: <fi | e_nanme>", <bl ockdat a>
MVEM DATA "MKRL: <fi | e_name>", <bl ockdat a>
MVEM DATA "HDRL: <fi | e_nanme>", <bl ockdat a>

SCPI/volatile memory with | MMEM DATA "user/ bbgl/ wavef or mi <fi | e_name>", <bl ockdat a>

full directory path

MVEM DATA "user/ bbgl/ mar ker s/ <fi | e_name>", <bl ockdat a>
MVEM DATA "user/ bbgl/ header/ <fil e_name>", <bl ockdat a>

SCPI/non-volatile memory | MMEM DATA " NWAFM <fi | e_name>", <bl ockdat a>

MVEM DATA "NVMWKR <fil e_nane>", <bl ockdat a>
MVEM DATA "NVHDR <fi | e_name>", <bl ockdat a>

SCPI/non-volatile memory | MVEM DATA / user/wavef or i <fi | e_name>", <bl ockdat a>

with full directory path

MVEM DATA / user/ mar ker s/ <fi | e_name>", <bl ockdat a>
MVEM DATA / user/ header/ <fi |l e_name>", <bl ockdat a>

Downloading Encrypted Files for No Extraction

Download Method
/Memory Type

Command Syntax Options

SCPI/volatile memory

MVEM DATA "user/ bbgl/ securewave/ <fil e_nane>", <bl ockdat a>
MVEM DATA " SWFML: <fi | e_nane>", <bl ockdat a>
MVEM DATA "fil e_nane@WML" <blockdata>

SCPI/non-volatile memory | MVEM DATA "user/secur ewave/ <fil e_name>", <bl ockdat a>

MVEM DATA " SNVWFM <fil e_nane>", <bl ockdat a>
MVEM DATA "fi | e_name @NVWM', <bl ockdat a>

Downloading Unencrypted Files for Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile
memory?

MEM DATA: UNPRot ect ed "/ user/ bbgl/ waveform fil e_name", <bl ockdat a>
MEM DATA: UNPRot ect ed "/ user/ bbgl/ markers/fil e_name", <bl ockdat a>
MEM DATA: UNPRot ect ed "/ user/ bbgl/ header/fil e_nane", <bl ockdat a>
MEM DATA: UNPRot ect ed "WML: fi | e_nane", <bl ockdat a>

MEM DATA: UNPRot ected "MKRL: fi | e_nane", <bl ockdat a>

MEM DATA: UNPRot ect ed "HDRL: fil e_nane", <bl ockdat a>

MEM DATA: UNPRot ect ed "fil e_nane@V¥ML.", <bl ockdat a>

MEM DATA: UNPRot ected "fil e_name@KRL", <bl ockdat a>

MEM DATA: UNPRot ected "fil e_name@DRL", <bl ockdat a>

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Table 5-7 Downloading Unencrypted Files for Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/non-volatile

memory?

MEM DATA: UNPRot ect ed "/ user/waveforn fil e_name", <bl ockdat a>
MEM DATA: UNPRot ect ed "/ user/ markers/fil e _name", <bl ockdat a>
MEM DATA: UNPRot ect ed "/ user/ header/fil e_name", <bl ockdat a>
MEM DATA: UNPRot ect ed "NWWFM fi | e_nane", <bl ockdat a>

MEM DATA: UNPRot ect ed "NVWKR fi | e_nane", <bl ockdat a>

MEM DATA: UNPRot ect ed "NVHDR fi | e_nane", <bl ockdat a>

MEM DATA: UNPRot ect ed "fil e_name@WWM', <bl ockdat a>

MEM DATA: UNPRot ect ed "fil e_nane@WMKR', <bl ockdat a>

MEM DATA: UNPRot ect ed "fil e_nane@WHDR', <bl ockdat a>

FTP/volatile memory®

put <file_name> /user/bbgl/ waveforn <file_name>
put <file_name> /user/bbgl/ markers/<file_name>
put <file_name> /user/bbgl/ header/<fil e_nane>

FTP/non-volatile

memoryb

put <file_name> /user/waveform <fil e_name>
put <file_name> /user/ narkers/<file_name>
put <file_name> /user/header/<file_nane>

a. The : MEM DATA: UNPRot ect ed command is not required to be able to extract files (i.e.

use : MEM DATA). For more information, refer to the SCPI Command Reference.
b. See “FTP Procedures” on page 231.

Table 5-8 Extracting Unencrypted I/Q Data
Download Command Syntax Options
Method/Memory
Type
SCPI/volatile MVEM DATA? "/ user/bbgl/waveform <fil e_nane>"
memory MVEM DATA? "WFML: <fi | e_narme>"

MVEM DATA? "<fil e_name>@W¥M"

SCPI/non-volatile

MVEM DATA? "/ user/wavef orm <fil e_nane>"

memory MVEM DATA? "NWWFM <fi | e_name>"

MVEM DATA? "<fil e_nanme>@WWM
FTP/volatile get /user/bbgl/ waveform <fil e_nane>
memory? get /user/bbgl/ markers/<file_nane>

get /user/bbgl/header/<fil e_name>

FTP/non-volatile

memory?

get /user/waveforn <fil e_name>
get /user/narkers/<file_name>
get /user/header/<file_name>

a. See “FTP Procedures” on page 231.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

229

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Table 5-9 Downloading Encrypted Files for Extraction
Download Command Syntax Options
Method/Memory
Type
SCPI/volatile? MEM DATA: UNPRot ect ed "/ user/ bbgl/ securewave/ fil e_nane", <bl ockdat a>
memory MEM DATA: UNPRot ect ed " SWFML: fi | e_name”, <bl ockdat a>

MEM DATA: UNPRot ect ed "fi |l e_nane@WFML" ,<blockdata>

SCPI/non-volatile MEM DATA: UNPRot ect ed "/ user/ securewave/ fil e _nanme", <bl ockdat a>
memorySCPI/n | MEM DATA UNPRot ect ed " SNVWM fi | e_name”, <bl ockdat a>

on-volatile MEM DATA: UNPRot ect ed "fi | e_nane@NVWM' <blockdata>
memory?

FTP/volatile put <file_name> /user/bbgl/ securewave/ <fil e_nanme>
memoryb

FTP/non-volatile put <file_name> /user/securewave/ <fil e_nane>
memoryb

a. The : MEM DATA: UNPRot ect ed command is not required to be able to extract files (i.e.
use : MEM DATA). For more information, refer to the SCPI Command Reference.
b. See “FTP Procedures” on page 231.

Table 5-10 Extracting Encrypted Waveform Data
Download Command Syntax Options
Method/Memory
Type
SCPI/volatile MVEM DATA? "/ user/bbgl/ securewave/ fil e_nane"
memory MVEM DATA? " SWML: fi | e_narre”

MVEM DATA? "fil e_name@WM"

SCPI/non-volatile MVEM DATA? "/ user/securewave/fil e_nane"
memary MVEM DATA? " SNWWFM fi | e_name"
MVEM DATA? "fil e_name@NVWFM

FTP/volatile get /user/bbgl/securewave/ <fil e_name>
memory?

FTP/nan-volatile get /user/securewave/ <fil e_nane>

memory?

a. See “FTP Procedures” on page 231.

230 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

FTP Procedures

Avoid using the *OPC? or *WAI commands to verify that the FTP process
has been completed. These commands can potentially hang up due to the
processing of other SCPI parser operations. Refer to the SCPI Command
Reference.

If you are remotely FTPing files and need to verify the completion of the
FTP process, then query the instrument by using SCPI commands such as:
"MEM:DATA:', "MEM:CAT', *STB?', 'FREQ?", *IDN?', 'OUTP:STAT?'. Refer to
the SCPI Command Reference.

There are three ways to FTP files:

— use the Microsoft Internet Explorer FTP feature
— use the PC’s or UNIX command window
— use the signal generator’s internal web server

Using Microsoft Internet Explorer

1. Enter the signal generator’s hostname or IP address as part of the FTP
URL.

ftp://<host name> or
ftp://<IP address>

2. Press Enter on the keyboard or Go from the Internet Explorer window.
The signal generator files appear in the Internet Explorer window.

3. Drag and drop files between the PC and the Internet Explorer window

Using the Command Window (PC or UNIX)
This procedure downloads to non-volatile memory. To download to volatile
memory, change the file path.

Get and Put commands write over existing files by the same name in
destination directories. Remember to change remote and local filenames
to avoid the loss of data.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 231

Table 5-11

232

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

If a filename has a space, quotations are required around the filename.

Always transfer the waveform file before transferring the marker file.

For additional information on FTP commands, refer to the operating
system’s Window Help and Support Center.

1. From the PC command prompt or UNIX command line, change to the
destination directory for the file you intend to download.

2. From the PC command prompt or UNIX command line, type f t p
<i nstrument nane>. Wherei nstrunent nane is the signal
generator’s hostname or IP address.

3. Atthe User: prompt in the ftp window, press Enter (no entry is required).

4. At the Passwor d: prompt in the ftp window, press Enter (no entry is
required).

5. Atthe ft p prompt, either put a file or get a file:

To put a file, type:

put <file nane> /user/waveform <fil e nanel>

where <f i | e_name> is the name of the file to download and
<fil e_namel> is the name designator for the signal generator’s
/ user/wavef or ml directory.

If <fi | enanel> is unspecified, ftp uses the specified <f i | e_name> to
name <fil e_namel>.

— If a marker file is associated with the data file, use the following
command to download it to the signal generator:
put <marker file_name> /user/markers/<file_nanel>

where <marker file_name> is the name of the file to download and
<file_name1> is the name designator for the file in the signal
generator's / user/ mar ker s/ directory. Marker files and the
associated I/Q waveform data have the same name.

For more examples of put command usage refer to Table 5-11.

Put Command Examples

Command | Local Remote Notes

Results

Incorrect | put [user/wavef orni <fil enane | Produces two
<fil enane. wf n» 1.wnp separate and
put [user/ marker/<fil enamel. incompatible files.
<fil enane. nkr> nkr >

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Table 5-11 Put Command Examples
Command | Local Remote Notes
Results
Correct put [user/wavef orni <fi | enane | Createsawaveform
<fil enane. wf np 1> fileand a

put
<fil enamne. nkr >

[user/ mar ker/<fil enamel>

compatible marker
file.

To get a file, type:

get /user/waveform <file_namel> <file_name>

where <f i | e_namel> is the file to download from the signal generator’s
/ user/ wavef or mi directory and <fi | e_nane> is the name designator for
the local PC/UNIX.

— If a marker file is associated with the data file, use the following
command to download it to the local PC/UNIX directory:
get /user/markers/<file_nanmel><narker file_name>

where <mar ker fil e_namel>is the name of the marker file to
download from the signal generator’s / user/ mar ker s/ directory
and <mar ker fil e_name>is the name of the file to be downloaded
to the local PC/UNIX.

For more examples of get command usage refer to Table 5-12.

Table 5-12 Get Command Examples
Command | Local Remote Notes
Results
Incorrect | get filel Results in file1 containing only the
/user/waveformfile filel marker data.

get /user/narker/file

Correct

get
luser/waveformfile

get /user/narker/file

filel.wfm| Createsawaveformfile and a
compatible marker file. It is easier to
keep files associated by varying the

filel. mkr

extenders.

6. At the ft p prompt, type: bye

7. At the command prompt, type: exi t

Using the Signal Generator’s Internal Web Server

1. Enter the signal generator’s hostname or IP address in the URL.

http://<host name> or <IP address>

2. Click the Signal Generator FTP Access button located on the left side of
the window.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

233

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

The signal generator files appear in the web browser’s window.
3. Drag and drop files between the PC and the browser’s window

For more information on the web server feature, see Chapter 1.

234 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Creating Waveform Data

Creating Waveform Data

This section examines the C++ code algorithm for creating I/Q waveform data
by breaking the programming example into functional parts and explaining the
code in generic terms. This is done to help you understand the code algorithm
in creating the | and Q data, so you can leverage the concept into your
programming environment. The SCPI Command Reference, contains
information on how to use SCPI commands to define the markers (polarity,
routing, and other marker settings). If you do not need this level of detail, you
can find the complete programming examples in “Programming Examples” on
page 253.

You can use various programming environments to create ARB waveform data.
Generally there are two types:

— Simulation software— this includes MATLAB, Keysight Technologies EESof
Advanced Design System (ADS), Signal Processing WorkSystem (SPW),
and so forth.

— Advanced programming languages—this includes, C++, VB, VEE, MS
Visual Studio.Net, Labview, and so forth.

No matter which programming environment you use to create the waveform
data, make sure that the data conforms to the data requirements shown on
page 205. To learn about I/Q data for the signal generator, see
“Understanding Waveform Data” on page 206.

Code Algorithm

This section uses code from the C++ programming example “Importing, Byte
Swapping, Interleaving, and Downloading | and Q Data—Big and Little Endian
Order” on page 275 to demonstrate how to create and scale waveform data.

There are three steps in the process of creating an I/Q waveform:

1. Create the | and Q data.

2. Save the | and Q data to a text file for review.

3. Interleave the | and Q data to make an I/Q file, and swap the byte order for
little-endian platforms.

For information on downloading I/Q waveform data to a signal generator, refer
to “Commands and File Paths for Downloading and Extracting Waveform
Data” on page 227 and “Downloading Waveform Data” on page 241.

1. Create | and Q data.

The following lines of code create scaled | and Q data for a sine wave. The |
data consists of one period of a sine wave and the) data consists of one
period of a cosine wave.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 235

236

Creating and Downloading Waveform Files
Creating Waveform Data

Line Code—Create | and Q data

1 const int NUVBAMPLES=500;

2 mai n(int argc, char* argv[]);

3 {

4 short i dat a] NUVBAMPLES] ;

5 short qdat a] NUVBAMPLES] ;

6 int nunsanpl es = NUVBAMPLES;

7 for(int index=0; index<nunsanpl es; index++);

8 {

9 i dat a[i ndex] =23000 * si n((2*3. 14*i ndex)/ nunmsanpl es) ;

10 gdat a[i ndex] =23000 * cos((2*3. 14*i ndex)/ nunsanpl es) ;

" }

Line Code Description—Create | and Q data

1 Define the number of waveform paints. Note that the maximum number of waveform points that you can set is
based on the amount of available memory in the signal generator. For more information on signal generator
memory, refer to “” on page 220.

2 Define the main function in C++.

4 Create an array to hold the generated | values. The array length equals the number of the waveform points.
Note that we define the array as type short, which represents a 16-bit signed integer in most C++ compilers.

5 Create an array to hold the generated Q values (signed 16-bit integers).

6 Define and set a temporary variable, which is used to calculate the I and Q values.

Create a loop to do the following:

— Generate and scale the | data (DAC values). This example uses a simple sine equation,
where 2*3.14 equals one waveform cycle. Change the equation to fit your application.

— The array pointer, index, increments from 0-499, creating 500 | data points over
one period of the sine waveform.

— Set the scale of the DAC values in the range of -32768 to 32767, where the values

-32768 and 32767 equal full scale negative and positive respectively. This example
uses 23000 as the multiplier, resulting in approximately 70% scaling. For more
information on scaling, see “Scaling DAC Values” on page 210.

NOTE The signal generator comes from the factory with 1/Q scaling set to 70%. If you
reduce the DAC input values, ensure that you set the signal generator scaling
(: RAD 0: ARB: RSCal i ng) to an appropriate setting that accounts for the
reduced values.

— Generate and scale the Q data (DAC value). This example uses a simple cosine equation,
where 2*3.14 equals one waveform cycle. Change the equation to fit your application.
— The array pointer, index, increments from 0-499, creating 500 Q data points over
one period of the cosine waveform.
— Set the scale of the DAC values in the range of -32767 to 32768, where the values

-32767 and 32768 equal full scale negative and positive respectively. This example
uses 23000 as the multiplier, resulting in approximately 70% scaling. For more
information on scaling, see “Scaling DAC Values” on page 210.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Creating Waveform Data

2. Save the I/Q data to a text file to review.

The following lines of code export the | and Q data to a text file for validation.
After exporting the data, open the file using Microsoft Excel or a similar
spreadsheet program, and verify that the | and Q data are correct.

Line Code Description—Saving the I/Q Data to a Text File

12 char *ofile = "c:\\tenp\\iqg.txt";
13 FILE *outfile = fopen(ofile, "w);

14 if (outfile==NULL) perror ("Error opening file to wite");
15 for (i ndex=0; index<nunsanpl es; index++)
16 {
17 fprintf(outfile, "%, %l\n", idata[index], qdatalindex]);
18 }
19 fclose(outfile);
Line Code Description—Saving the I/Q Data to a Text File
12 Set the absolute path of a text file to a character variable. In this example, iq.txt is the file name and *ofile

is the variable name.

For the file path, some operating systems may not use the drive prefix (‘c:” in this example), or may require only
a single forward slash (/), or both ("/temp/ig.txt")

13 Open the text file in write format.

14 If the text file does not open, print an error message.

15-18 Create a loop that prints the array of generated | and Q data samples to the text file.

19 Close the text file.

3. Interleave the | and Q data, and byte swap if using little endian
order.

This step has two sets of code:

— Interleaving and byte swapping | and Q data for little endian order
— Interleaving | and Q data for big endian order

For more information on byte order, see “Little Endian and Big Endian (Byte
Order)” on page 207.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 237

238

Creating and Downloading Waveform Files
Creating Waveform Data

Line Code-Interleaving and Byte Swapping for Little Endian Order
20 char i gbuf f er[NUMVBAMPLES* 4] ;
21 for (i ndex=0; index<nunsanpl es; index++)
22 {
23 short ivalue = idatalindex];
24 short qgval ue = qdat a i ndex];
25 i gbuf fer[index*4] = (ivalue >> 8) & OxFF;
26 i gbuf fer[index*4+1] = ival ue & OxFF;
27 i gbuf fer[index*4+2] = (qval ue >> 8) & OxFF;
28 i gbuf fer[index*4+3] = gval ue & OxFF;
29 }
30 return O;
Line Code Description—Interleaving and Byte Swapping for Little Endian Order
20 Define a character array to store the interleaved I and Q data. The character array makes byte swapping easier,
since each array location accepts only 8 bits (1 byte). The array size increases by four times to accommodate
two bytes of | data and two bytes of Q data.
21-29 Create a loop to do the following:

— Save the current | data array value to a variable.

NOTE In rare instances, a compiler may define short as larger than 16 bits. If this
condition exists, replace short with the appropriate object or label that defines a
16-bit integer.

— Save the current Q data array value to a variable.

— Swap the low bytes (bits 0-7) of the data with the high bytes of the data (done for both

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files

Creating Waveform Data

Line

Code Description—Interleaving and Byte Swapping for Little Endian Order

21-29

the | and @ data), and interleave the | and Q data.

shift the data pointer right 8 bits to the beginning of the high byte (ivalue >> 8)
Little Endian Order

7 6 5 43 21 0 15 14 13 12 1110 9 8 Bit Position
11101001 1 01101 11 Data
* ______ > * Hex values = E9 B7

Data pointer Data pointer shifted 8 bits
— AND (boolean) the high | byte with OxFF to make the high | byte the value to store

in the 1Q array—(ivalue >> 8) & OxFF

15 14 1312 1110 9 8
101101 11
1

1 1 1 1 11 1
101101 1 1 Hexvalue=B7

— AND (boolean) the low | byte with OxFF (ivalue & OxFF) to make the low | byte the
value to store in the I/Q array location just after the high byte [index * 4 + 1]

Hex value =B7
Hex value =FF

| Data in I/Q Array after Byte Swap (Big Endian Order)

15 14 1312 110 9 8 7 6 5 4 3 2 1 0 BitPosition

101101 11 11101001 Data
Hex value = B7 E9

Swap the Q byte order within the same loop. Notice that the | and Q data interleave
with each loop cycle. This is due to the I/Q array shifting by one location for each |

and Q operation [index * 4 + n].
Interleaved 1/Q Array in Big Endian Order

15, 8 T, 0 15 8 T, o Bit Position
1011011111101001 1110010101101011 Data
\ AN)

~ ~

| Data Q Data

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

239

Creating and Downloading Waveform Files
Creating Waveform Data

Line Code-Interleaving | and Q data for Big Endian Order
20 short i gbuffer[NUVBAMPLES* 2] ;
21 for (i ndex=0; index<nunsanpl es; index++)
22 {
23 i gbuf fer[i ndex*2] = idata[index];

24 i gbuf fer[i ndex*2+1]
25 }
26 return O;

gdat a[i ndex] ;

Line Code Description—Interleaving | and Q data for Big Endian Order

20 Define a 16-bit integer (short) array to store the interleaved I and Q data. The array size increases by two times
to accommodate two bytes of | data and two bytes of Q data.

NOTE In rare instances, a compiler may define short as larger than 16 bits. If this
condition exists, replace short with the appropriate object or label that defines a
16-bit integer.

21-25 Create a loop to do the following:

— Store the | data values to the I/Q array location [index*2].
— Store the Q data values to the I/Q array location [index*2+1].

Interleaved 1/Q Array in Big Endian Order

LT 8 T 0 15 8 T, o Bit Position
1011011111101001 1110010101101011 Data
- AN /

Y N

| Data Q Data

To download the data created in the above example, see “Using Advanced
Programming Languages” on page 243.

240 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading Waveform Data

Downloading Waveform Data

This section examines methods of downloading I/Q waveform data created in
MATLAB (a simulation software) and C++ (an advanced programming
language). For more information on simulation and advanced programming
environments, see “Creating Waveform Data” on page 235.

To download data from simulation software environments, it is typically easier
to use one of the free download utilities (described on page 250), because
simulation software usually saves the data to a file. In MATLAB however, you
can either save data to a .mat file or create a complex array. To facilitate
downloading a MATLAB complex data array, Keysight created the Keysight
Waveform Download Assistant (one of the free download utilities), which
downloads the complex data array from within the MATLAB environment. This
section shows how to use the Waveform Download Assistant.

For advanced programming languages, this section closely examines the code
algorithm for downloading I/Q waveform data by breaking the programming
examples into functional parts and explaining the code in generic terms. This is
done to help you understand the code algorithm in downloading the
interleaved 1/Q data, so you can leverage the concept into your programming
environment. While not discussed in this section, you may also save the data to
a binary file and use one of the download utilities to download the waveform
data (see “Using the Download Utilities” on page 250).

If you do not need the level of detail this section provides, you can find
complete programming examples in “Programming Examples” on page 2583.
Prior to downloading the I/Q data, ensure that it conforms to the data
requirements shown on page 205. To learn about |/Q data for the signal
generator, see “Understanding Waveform Data” on page 206. For creating
waveform data, see “Creating Waveform Data” on page 235.

To avoid overwriting the current waveform in volatile memory, before
downloading files into volatile memory (WFML), change the file name or
turn off the ARB. For more information, on manually turning off the ARB,
refer to the User’s Guide.

To turn off the ARB remotely, send: : SOURce: RADi o: ARB: STATe OFF.

Using Simulation Software

This procedure uses a complex data array created in MATLAB and uses the
Keysight Waveform Download Assistant to download the data. To obtain the
Keysight Waveform Download Assistant, see “Using the Download Utilities” on
page 250.

There are two steps in the process of downloading an 1/Q waveform:

1. Open a connection session.
2. Download the I/Q data.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 241

Line

o1 M~ N

Creating and Downloading Waveform Files
Downloading Waveform Data

1. Open a connection session with the signal generator.

The following code establishes a LAN connection with the signal generator,
sends the IEEE SCPI command *i dn?, and if the connection fails, displays an
error message.

Code—-Open a Connection Session

io = agt_newconnection('tcpip','|P address');

% 0 = agt_newconnection(' gpib', <prinary address>, <secondary

addr ess>) ;

[status, status_description,query result] = agt_query(io,'*idn?");
if status == -

display ‘fail to connect to the signal generator’;

end;

Line

Code Description—Open a Connection Session with the Signal Generator

Sets up a structure (indicated above by i) used by subsequent function calls to establish a LAN connection to
the signal generator.

— agt_newconnection() is the function of Keysight Waveform Download Assistant used in
MATLAB to build a connection to the signal generator.

— If you are using GPIB to connect to the signal generator, provide the board, primary
address, and secondary address: io = agt_newconnection('gpib',0,19);
Change the GPIB address based on your instrument setting.

Send a query to the signal generator to verify the connection.

— agt_query() is an Keysight Waveform Download Assistant function that sends a query to
the signal generator.

— If signal generator receives the query *i dn?, status returns zero and query_result returns
the signal generator’'s model number, serial number, and firmware version.

3-5

If the query fails, display a message.

Line

o

242

2. Download the I/Q data

The following code downloads the generated waveform data to the signal
generator, and if the download fails, displays a message.

Code-Download the 1/Q data

[status, status_description] = agt_waveform oad(io, | Quave,
"wavefornfilel , 2000, 'no_play', ' normscale');

if status == -1

display ‘fail to download to the signal generator’;

end;

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading Waveform Data

Line Code Description—Download the I/Q data

6 Download the I/Q waveform data to the signal generator by using the function call (agt_waveformload) from
the Keysight Waveform Download Assistant. Some of the arguments are optional as indicated below, but if one
is used, you must use all arguments previous to the one you require.

Notice that with this function, you can perform the following actions:

— download complex I/Q data

— name the file (optional argument)

— set the sample rate (optional argument)
If you do not set a value, the signal generator uses its preset value, or if a waveform was
previously played, the value from that waveform.

— start or not start waveform playback after downloading the data (optional argument)
Use either the argument play or the argument no_play.

— whether to normalize and scale the I/Q data (optional argument)
If you normalize and scale the data within the body of the code, then use no_normscale,
but if you need to normalize and scale the data, use norm_scale. This normalizes the
waveform data to the DAC values and then scales the data to 70% of the DAC values.

— download marker data (optional argument)
If there is no marker data, the signal generator creates a default marker file, all marker set
to zero.

To verify the waveform data download, see “Loading, Playing, and Verifying a Downloaded Waveform” on page 247.

7-9 If the download fails, display an error message.

Using Advanced Programming Languages

This procedure uses code from the C++ programming example “Importing,
Byte Swapping, Interleaving, and Downloading | and Q Data—Big and Little
Endian Order” on page 275.

For information on creating I/Q waveform data, refer to “Creating Waveform
Data” on page 235.

There are two steps in the process of downloading an I/Q waveform:

1. Open a connection session.
2. Download the I/Q data.

1. Open a connection session with the signal generator.

The following code establishes a LAN connection with the signal generator or
prints an error message if the session is not opened successfully.

Line Code Description—Open a Connection Session

1 char* instCpenString ="l an[hostnarme or | P address]”;
[/ char* inst(enString ="gpi b<primary addr>, <secondary addr>";
I NST i d=i open(inst QpenString);
if (lid)
{
fprintf(stderr, "iopen failed (%)\n", instCpenString);
return -1;

~N O O~ N

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 243

Creating and Downloading Waveform Files
Downloading Waveform Data

Line Code Description—Open a Connection Session

1 Assign the signal generator’s LAN hostname, IP address, or GPIB address to a character string.

— This example uses the Keysight 10 library’s iopen() SICL function to establish a LAN
connection with the signal generator. The input argument, lan[hostname or IP address]
contains the device, interface, or commander address. Change it to your signal generator
host name or just set it to the IP address used by your signal generator. For example:
“lan[999.137.240.9]"

— If you are using GPIB to connect to the signal generator, use the commented line in place
of the first line. Insert the GPIB address based on your instrument setting, for example
“gpib0,19".

— For the detailed information about the parameters of the SICL function iopen(), refer to the
online “Keysight SICL User’s Guide for Windows”

2 Open a connection session with the signal generator to download the generated I/Q data.

The SICL function iopen() is from the Keysight 10 library and creates a session that returns an identifier to id.

— Ifiopen() succeeds in establishing a connection, the function returns a valid session id. The
valid session id is not viewable, and can only be used by other SICL functions.

— Ifiopen() generates an error before making the connection, the session identifier is always
set to zero. This occurs if the connection fails.

— To use this function in C++, you must include the standard header
#include <sicl.h> before the main() function.

3-7 If id = 0, the program prints out the error message and exits the program.

2. Download the I/Q data.

The following code sends the SCPI command and downloads the generated
waveform data to the signal generator.

Line CodeDescription-Download the I/Q Data

8 i nt bytesToSend,;

9 byt esToSend = nunsanpl es*4;

10 char s[20];

1M char cnd[200] ;

12 sprintf(s, "%", bytesToSend);

13 sprintf(cmd, ":MEM DATA \"WFML: FI LE1\ ", #%l%l", strlen(s),

byt esToSend) ;
14 iwite(id, cnd, strlien(cnd), 0, 0);
15 iwite(id, igbuffer, bytesToSend, 0, 0);
16 iwite(id, "\n", 1, 1, 0);
Line Code Description—Download the I/Q data
8 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal generator.

244 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading Waveform Data

Line

Code Description—Download the I/Q data

Calculate the total number of bytes, and store the value in the integer variable defined in line 8.

In this code, numsamples contains the number of waveform points, not the number of bytes. Because it
takes four bytes of data, two | bytes and two Q bytes, to create ane waveform point, we have to multiply
numsamples by four. This is shown in the following example:

numsamples = 500 waveform points
numsamples x 4 = 2000 (four bytes per point)
bytesToSend = 2000 (numsamples x 4)

For information on setting the number of waveform points, see “1. Create | and Q data.” on page 235.

10

Create a string large enough to hold the bytesToSend value as characters. In this code, string s is set to 20
bytes (20 characters—one character equals one byte)

1

Create a string and set its length (cmd[200]) to hold the SCPI command syntax and parameters. In this code,
we define the string length as 200 bytes (200 characters).

12

Store the value of bytesToSend in string s. For example, if bytesToSend = 2000; s = "2000”

sprintf() is a standard function in C++, which writes string data to a string variable.

13

Store the SCPI command syntax and parameters in the string emd. The SCPI command prepares the signal
generator to accept the data.
— strlen() is a standard function in C++, which returns length of a string.

— If bytesToSend = 2000, then s = “2000”, strlen(s) = 4, so
cmd = :MEM:DATA "WFM1:FILET\” #42000.

14

Send the SCPI command stored in the string cmd to the signal generator, which is represented by the session

id.

— iwrite() is a SICL function in Keysight 10 library, which writes the data (block data) specified
in the string cmd to the signal generator (id).

— The third argument of iwrite(), strlen(cmd), informs the signal generator of the number of
bytes in the command string. The signal generator parses the string to determine the
number of I/Q data bytes it expects to receive.

— The fourth argument of iwrite(), 0, means there is no END of file indicator for the string. This
lets the session remain open, so the program can download the I/Q data.

15

Send the generated waveform data stored in the I/Q array (igbuffer) to the signal generator.

— iwrite() sends the data specified in igbuffer to the signal generator (session identifier
specified in id).

— The third argument of iwrite(), bytesToSend, contains the length of the igbuffer in bytes. In
this example, it is 2000.

— The fourth argument of jwrite(), 0, means there is no END of file indicator in the data.

In many programming languages, there are two methods to send SCPI commands and
data:

— Method 1 where the program stops the data download when it encounters the first
zero (END indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores any zeros
in the data. This is the method used in our program.

For your programming language, you must find and use the equivalent of method two.
Otherwise you may only achieve a partial download of the | and Q data.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 245

246

Creating and Downloading Waveform Files
Downloading Waveform Data

Line

Code Description—Download the I/Q data

16

Send the terminating carriage (\n) as the last byte of the waveform data.

— iwrite() writes the data “\n” to the signal generator (session identifier specified in id).
— The third argument of iwrite(), 1, sends one byte to the signal generator.

— The fourth argument of iwrite(), 1, is the END of file indicator, which the program uses to
terminate the data download.

To verify the waveform data download, see “Loading, Playing, and Verifying a Downloaded
Waveform” on page 247.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

Loading, Playing, and Verifying a Downloaded Waveform

The following procedures show how to perform the steps using SCPI
commands. For front panel key commands, refer to the User’s Guide or to the

Key help in the signal generator.

Loading a File from Non-Volatile Memory

Select the downloaded I/Q file in non—-volatile (NVWFM) and load it into
volatile (WFMT). The file comprises three items: I/Q data, marker file, and file
header information.

Send one of the following SCPI command to copy the I/Q file, marker file and
file header information:

: MEMDry: COPY: NAME "<NWWFM fil e_name>", " <WFML: fi | e_name>"
: MEMory: GCPY: NAME "<NVMKR fi |l e_nane>", "<MKRL: fi | e_name>"
: MEMory: COPY: NAME "<NVHDR fi |l e_nane>","<HDR fil e_name>"

When you copy a waveform file, marker file, or header file information from
volatile or non-volatile memory, the waveform and associated marker and
header files are all copied. Conversely, when you delete an I/Q file, the
associated marker and header files are deleted. It is not necessary to send
separate commands to copy or delete the marker and header files.

Playing the Waveform

If you would like to build and play a waveform sequence, refer to “Building
and Playing Waveform Sequences” on page 2438.

Play the waveform and use it to modulate the RF carrier.
1. List the waveform files from the volatile memory waveform list:
Send the following SCPI command:
: MVEMory: CATal og? " WFML: "
2. Select the waveform from the volatile memory waveform list:
Send the following SCPI command:
: SQURce: RAD o: ARB: WAVef or m "WFML: <fi | e_nane>"
3. Play the waveform:
Send the following SCPI commands:
: SOURce: RAD 0: ARB: STATe ON

: QUTPut : MDul ati on: STATe ON
: QUTPut : STATe ON

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 247

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

Verifying the Waveform

Perform this procedure after completing the steps in the previous procedure,
“Playing the Waveform” on page 247.

1. Connect the signal generator to an oscilloscope as shown in the figure.

| OUT

QOouT \
EVENT 1 Oscilloscope
- N\ C ! Dooo ol—/———
P .
S = cooo o [OLLIN
/|Hl= goog ® 2 @ @
o = @ oo og © coeposes <
s} E BEB - © 0 0 o 2
Er|ooo coo
o ——— oo oo0 o O o aoc o aos @ ©® @ @
SIGNAL GENERATOR \. Om/‘
\ Gh 2

_ Trigger Input

2. Set an active marker point on the first waveform point for marker one.

Select the same waveform selected in “Playing the Waveform” on page
247.

Send the following SCPI commands:
: SQURce: RADI o0: ARB: MARKer : CLEar: ALL "WML: <fil e _name>", 1
: SOURce: RADI o0: ARB: MARKer : SET "WML: <fil e name>", 1,1, 1, 0.

3. Compare the oscilloscope display to the plot of the | and Q data from the
text file you created when you generated the data.

If the oscilloscope display, and the | and Q data plots differ, recheck your
code. For detailed information on programmatically creating and
downloading waveform data, see “Creating Waveform Data” on page 235
and “Downloading Waveform Data” on page 241. For information on the
waveform data requirements, see “Waveform Data Requirements” on
page 205.

Building and Playing Waveform Sequences

The signal generator can be used to build waveform sequences. This section
assumes you have created the waveform segment file(s) and have the
waveform segment file(s) in volatile memory. The following SCPI commands
can be used to generate and work with a waveform sequence. For more
information refer to the signal generator’s SCPI Command Reference and
User’s Guide.

If you would like to verify the waveform sequence, refer to “Verifying the
Waveform” on page 248.

248 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

1. List the waveform files from the volatile memory waveform list:
Send the following SCPI command:
: MMEMory: CATal og? " WFML: "

2. Select the waveform segment file(s) from the volatile memory waveform
list:

Send the following SCPI command:
: SQURce: RADI o: ARB: WAVef or m "WFML: <fi | e_nane>"

3. Save the waveform segment(s) (“ <wavef or mL>", “ <wavef or n2>", ...), to
non-volatile memory as a waveform sequence (“ <f i | e_nane>"), define
the number of repetitions (<reps>), each waveform segment plays, and
enable/disable markers (ML| M2| MB| M4| ...), for each waveform segment:

Send the following SCPI command:

: SQURce: RAD o0: ARB: SEQuence
"<file_ name>","<wavefor nl>", <reps>, M| M2| MB| M4, {" <wavef orm
2>", <reps>, ALL}

: SOURce: RADI 0: ARB: SEQuence? "<fil e_nanme>"

ML| M2| MB| Mt represent the number parameter of the marker selected (i.e.
1| 2| 3| 4). Entering ML| M2| MB| M causes the signal generator to display
an error. For more information on this SCPI command, refer to the signal
generator’s SCPI Command Reference.

4. Play the waveform sequence:

Send the following SCPI commands:

: SOURce: RAD o0: ARB: STATe ON
: QUTPut : MODul ati on: STATe ON
: QUTPut : STATe ON

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 249

Creating and Downloading Waveform Files
Using the Download Utilities

Using the Download Utilities

Table 5-13

250

Keysight provides free download utilities to download waveform data into the
signal generator. The table in this section describes the capabilities of three
such utilities.

For more information and to install the utilities, refer to the following URLs:

— Keysight Signal Studio Toolkit 2:
http://www.keysight.com/find/signalstudio

This software provides a graphical interface for downloading files.

— Keysight Waveform Download Assistant:
http.//www.keysight.com/find/downloadassistant

This software provides functions for the MATLAB environment to download
waveform data.

Features Keysight Signal Keysight
Studio Toolkit 2 Waveform
Download
Assistant
Downloads encrypted waveform files X
Downloads complex MATLAB waveform data X
Downloads MATLAB files (.mat) X
Downloads unencrypted interleaved 16-bit I/Q files # X
Interleaves and downloads earlier 14-bit E443xB | and Q files X

Swaps bytes for little endian order

Manually select big endian byte order for 14-bit and 16-bit I/Q X

files

Downloads user-created marker files X X
Performs scaling X X
Starts waveform play back X X
Sends SCPI Commands and Queries X X
Builds a waveform sequence X X

a. ASCIl or binary format.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files

Downloading E443xB Signal Generator Files

To download earlier E443xB model | and @ files, use the same SCPI commands
as if downloading files to an E443xB signal generator. The signal generator
automatically converts the E443xB files to the proper file format as described
in “Waveform Structure” on page 214 and stores them in the signal
generator’s memory. This conversion process causes the signal generator to
take more time to download the earlier file format. To minimize the time to
convert earlier E443xB files to the proper file format, store E443xB file
downloads to volatile memory, and then transfer them over to non-volatile
(NVWFM) memory.

You cannot extract waveform data downloaded as E443xB files.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 251

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files

E443xB Data Format

The following diagram describes the data format for the E443xB waveform
files. This file structure can be compared with the new style file format shown in
“Waveform Structure” on page 214. If you create new waveform files for the
signal generator, use the format shown in “Waveform Data Requirements” on
page 205.

E443xB ARB Data Format

Marker Data
\olatile Memory Path

- |l 14 bits DAC Data
| File MSB Offset Binary LSB
ARBI /waveform name | 2 I 14 |
Q File
ARBQ /waveform name | 2 I 14 I

14 bits DAC Data
/A ;
—Siale- Offset Binary

arb date

SCPI Commands

Use the following commands to download E443xB waveform files into the
signal generator.

To avoid overwriting the current waveform in volatile memory, before
downloading files into volatile memory (WFM1), change the file name or
turn off the ARB. For more information, on manually turning off the ARB,
refer to the User’s Guide.

To turn off the ARB remotely, send: : SOURce: RAD o: ARB: STATe CFF.

Extraction Method/ Command Syntax Options

Memory Type

SCPI/ : MVEM DATA "ARBI : <fil e_nanme>", <l waveform bl ock data>
volatile memory : MMEM DATA "ARBQ <fil e_name>", <Q waveform dat a>

SCPI/ : MMEM DATA "NVARBI : <fil e_nane>", <l waveform bl ock data>
non-volatile memory : MMEM DATA "NVARBQ <fil e_nane>", <Q waveform bl ock dat a>

The variables <I wavef orm bl ock dat a> and <Q wavef orm bl ock data>
represents data in the E443xB file format. The string variable <fi | e_name> is
the name of the | and Q data file. After downloading the data, the signal
generator associates a file header and marker file with the I/Q data file.

252 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Programming Examples

The programming examples contain instrument-specific information.
However, users can still use these programming examples by substituting
in the instrument-specific information for your signal generator. Model
specific exceptions for programming use will be noted at the top of each
programming section.

The programming examples use GPIB or LAN interfaces and are written in the
following languages:

— C++ (page 254)

— MATLAB (page 284)

— Visual Basic (page 301)
— HP Basic (page 308)

See Chapter 2 of this programming guide for information on interfaces and 10
libraries.

The example programs are also available on the signal generator
Documentation CD-ROM, which allows you to cut and paste the examples
into an editor.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 253

254

Creating and Downloading Waveform Files
Programming Examples

C++ Programming Examples

This section contains the following programming examples:

— “Creating and Storing Offset I/Q Data—Big and Little Endian Order” on
page 254

— “Creating and Storing I/Q Data—Little Endian Order” on page 260

— “Creating and Downloading I/Q Data—Big and Little Endian Order” on
page 262

— “Importing and Downloading I/Q Data—Big Endian Order” on page 267

— “Importing and Downloading Using VISA—Big Endian Order” on page 269

— “Importing, Byte Swapping, Interleaving, and Downloading | and Q Data—
Big and Little Endian Order” on page 275

— “Calculating the RMS Voltage for a Waveform Programming Using C++”
on page 283

Creating and Storing Offset I/Q Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is
“offset_iq_c++.txt”

This C++ programming example (compiled using Microsoft Visual C++ 6.0)
follows the same coding algorithm as the MATLAB programming example
“Creating and Storing I/Q Data” on page 284 and performs the following
functions:

— error checking

— data creation

— data normalization

— data scaling

— 1/Q signal offset from the carrier (single sideband suppressed carrier signal)

— Dbyte swapping and interleaving for little endian order data

— land Q interleaving for big endian order data

— binary data file storing to a PC or workstation

— reversal of the data formatting process (byte swapping, interleaving, and
normalizing the data)

After creating the binary file, you can use FTP, one of the download utilities, or
one of the C++ download programming examples to download the file to the
signal generator.

// This C++ example shows how to

// 1.) Create a simple IQ waveform

// 2.) Save the waveform into the ESG/PSG Internal Arb format
// This format is for the E4438C, E8267C, E8267D

// This format will not work with the ESG E443xB or the
Keysight MXG N518xA

// 3.) Load the internal Arb format file into an array

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

#include <stdio.h>
#include <string.h>

#tinclude <math.h>

const int POINTS = 1000; // Size of waveform

const char *computer = “PCWIN”;

int main(int argc, char* argv[])

{

// 1) Create Slmple IQ Slgnal >k 3k 3k >k 3k 5k >k 3k ok >k 3k ok >k 3k ok >k 3k ok >k 3k ok >k 3k ok >k k ok ok 3k ok >k kok ok k

// This signal is a single tone on the upper

// side of the carrier and is usually refered to as

// a Single Side Band Suppressed Carrier (SSBSC) signal.
// It is nothing more than a cosine wavefomm in I

// and a sine waveform in Q.

int points POINTS; // Number of points in the waveform

int cycles

101; // Determines the frequency offset from the

carrier

double Iwave[POINTS]; // I waveform

double Qwave[POINTS]; // Q waveform

short int waveform[2*POINTS]; // Holds interleaved I/Q data
double maxAmp = @; // Used to Normalize waveform data

0; // Used to Normalize waveform data

double minAmp
double scale = 1;

char buf; // Used for byte swapping

char *pChar; // Used for byte swapping
bool PC = true; // Set flag as appropriate

double phaseInc = 2.0 * 3.141592654 * cycles / points;
double phase = 9;

int i = 9;

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 255

Creating and Downloading Waveform Files
Programming Examples

for(i=0; i<points; i++)
{
phase = i * phaselnc;
Iwave[i] = cos(phase);

Qwave[i]

sin(phase);

// 2.) Save waveform in internal format *¥¥¥¥¥fdfdxxtrrrkrikrk
// Convert the I and Q data into the internal arb format

// The internal arb format is a single waveform containing
interleaved IQ

// data. The I/Q data is signed short integers (16 bits).
// The data has values scaled between +-32767 where

// DAC Value Description

// 32767 Maximum positive value of the DAC
// 0 Zero out of the DAC
// -32767 Maximum negative value of the DAC

// The internal arb expects the data bytes to be in Big Endian
format.

// This is opposite of how short integers are saved on a PC
(Little Endian).

// For this reason the data bytes are swapped before being saved.

// Find the Maximum amplitude in I and Q to normalize the data
between +-1

maxAmp = Iwave[@];
minAmp = Iwave[0];
for(i=0; i<points; i++)
{
if(maxAmp < Iwave[i])
maxAmp = Iwave[i];
else if(minAmp > Iwave[i])

minAmp = Iwave[i];

if(maxAmp < Qwave[i])

256 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

maxAmp = Qwave[i];
else if(minAmp > Qwave[i])
minAmp = Qwave[i];
}
maxAmp = fabs(maxAmp);
minAmp = fabs(minAmp);
if(minAmp > maxAmp)

maxAmp = minAmp;

// Convert to short integers and interleave I/Q data
scale = 32767 / maxAmp; // Watch out for divide by zero.
for(i=0; i<points; i++)
{
waveform[2*i] = (short)floor(Iwave[i]*scale + 0.5);
waveform[2*i+1] = (short)floor(Qwave[i]*scale + 0.5);
}
// If on a PC swap the bytes to Big Endian
if(strcmp(computer,”PCWIN”) == @)
//if(PC)
{

pChar = (char *)&waveform[@]; // Character pointer to short
int data

for(1=0; i<2*points; i++)
{
buf = *pChar;
*pChar = *(pChar+1);
*(pChar+l) = buf;

pChar+= 2;

}

// Save the data to a file

// Use FTP or one of the download assistants to download the file
to the

// signal generator

char *filename = “C:\\Temp\\PSGTestFile”;

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 257

Creating and Downloading Waveform Files
Programming Examples

FILE *stream = NULL;
stream = fopen(filename, “w+b”);// Open the file
if (stream==NULL) perror (“Cannot Open File”);

int numwritten = fwrite((void *)waveform, sizeof(short),
points*2, stream);

fclose(stream);// Close the file

// 3.) Load the internal Arb format file i¥k¥¥ksokkdkarsokkkkxk
// This process is just the reverse of saving the waveform

// Read in waveform as unsigned short integers.

// Swap the bytes as necessary

// Normalize between +-1

// De-interleave the I/Q Data

// Open the file and load the internal format data

stream = fopen(filename, “r+b”);// Open the file

if (stream==NULL) perror (“Cannot Open File”);

int numread = fread((void *)waveform, sizeof(short),
points*2, stream);

fclose(stream);// Close the file
// If on a PC swap the bytes back to Little Endian
if(strcmp(computer,”PCWIN”) == @)

pChar = (char *)&waveform[0]; // Character pointer to short
int data

for(i=0; i<2*points; i++)
{
buf = *pChar;
*pChar = *(pChar+l);
*(pChar+l) = buf;

pChar+= 2;

// Normalize De-Interleave the IQ data
double IwaveIn[POINTS];
double QwaveIn[POINTS];

258 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

for(i=@; i<points; i++)

{
IwaveIn[i] = waveform[2*i] / 32767.9;
QwavelIn[i] = waveform[2*i+1] / 32767.0;
}
return 0;

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 259

260

Creating and Downloading Waveform Files
Programming Examples

Creating and Storing I/Q Data—Little Endian Order

On the documentation CD, this programming example’s name is
“CreateStore_Data_c++.txt”

This C++ programming example (compiled using Metrowerks CodeWarrior 3.0)
performs the following functions:

— error checking

— data creation

— byte swapping and interleaving for little endian order data
— Dbinary data file storing to a PC or workstation

After creating the binary file, you can use FTP, one of the download utilities, or
one of the C++ download programming examples to download the file to the
signal generator.

#include <iostream>
#include <fstream>
#include <math.h>

#tinclude <stdlib.h>

using namespace std;

int main (void)
{
ofstream out_stream; // write the I/Q data to a file

const unsigned int SAMPLES =200; // number of sample pairs in
the waveform

const short AMPLITUDE = 32000; // amplitude between © and
full scale dac value

const double two_pi = 6.2831853;

//allocate buffer for waveform

short* igData = new short[2*SAMPLES];// need two bytes for each
integer

if (!ligDbata)
{
cout << "Could not allocate data buffer." << endl;

return 1;

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

out_stream.open("IQ _data");// create a data file
if (out_stream.fail())
{
cout << "Input file opening failed" << endl;
exit(1);
}

//generate the sample data for I and Q. The I channel will have
a sine

//wave and the Q channel will a cosine wave.

for (int i=0; i<SAMPLES; ++1i)
{
igData[2*i] = AMPLITUDE * sin(two_pi*i/(float)SAMPLES);
igData[2*i+1] = AMPLITUDE * cos(two_pi*i/(float)SAMPLES);
}

// make sure bytes are in the order MSB(most significant byte)
first. (PC only).

char* cptr = (char*)igData;// cast the integer values to
characters

for (int i=0; i< (4*SAMPLES); i+=2)// 4*SAMPLES

{
char temp = cptr[i];// swap LSB and MSB bytes
cptr[i]=cptr[i+l];
cptr[i+l]=temp;

}

// now write the buffer to a file

out_stream.write((char*)igData, 4*SAMPLES);
return 0;

}

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 261

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading I/Q Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is
“CreateDwnlLd_Data_c++.txt”

This C++ programming example (compiled using Microsoft Visual C++ 6.0)
performs the following functions:

— error checking

— data creation

— data scaling

— text file creation for viewing and debugging data

— Dbyte swapping and interleaving for little endian order data
— interleaving for big endian order data

— data saving to an array (data block)

— data block download to the signal generator

// This C++ program is an example of creating and scaling
// I and Q data, and then downloading the data into the
// signal generator as an interleaved I/Q file.

// This example uses a sine and cosine wave as the I/Q
// data.

!/

// Include the standard headers for SICL programming
#include <sicl.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

// Choose a GPIB, LAN, or RS-232 connection

char* instOpenString =”lan[galqgaDhcpl]”’;

//char* instOpenString ="gpib@,19”;

// Pick some maximum number of samples, based on the

// amount of memory in your computer and the signal generator.

const int NUMSAMPLES=500;

int main(int argc, char* argv[])

262 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

// Create a text file to view the waveform
// prior to downloading it to the signal generator.

// This verifies that the data looks correct.

char *ofile = “c:\\temp\\iq.txt”;

// Create arrays to hold the I and Q data

int idata[NUMSAMPLES];
int gdata[NUMSAMPLES];

// save the number of sampes into numsamples

int numsamples = NUMSAMPLES;

// Fill the I and Q buffers with the sample data

for(int index=0; index<numsamples; index++)

{
// Create the I and Q data for the number of waveform
// points and Scale the data (20000 * ...) as a precentage
// of the DAC full scale (-32768 to 32767). This example
// scales to approximately 70% of full scale.
idata[index]=23000 * sin((4*3.14*index)/numsamples);

gdata[index]=23000 * cos((4*3.14*index)/numsamples);

// Print the I and Q values to a text file. View the data
// to see if its correct and if needed, plot the data in a
// spreadsheet to help spot any problems.

FILE *outfile = fopen(ofile, “w”);

if (outfile==NULL) perror (“Error opening file to write”);

for(index=0; index<numsamples; index++)

{

263

Creating and Downloading Waveform Files
Programming Examples

fprintf(outfile, “%d, %d\n”, idata[index], qdata[index]);

}
fclose(outfile);

// Little endian order data, use the character array and for
loop.

// If big endian order, comment out this character array and for
loop,

// and use the next loop (Big Endian order data).

// We need a buffer to interleave the I and Q data.
// 4 bytes to account for 2 I bytes and 2 Q bytes.

char igbuffer[NUMSAMPLES*4];

// Interleave I and Q, and swap bytes from little
// endian order to big endian order.

for(index=0; index<numsamples; index++)

{
int ivalue = idata[index];
int gqvalue = qdata[index];
igbuffer[index*4] = (ivalue >> 8) & OxFF; // high byte of i
igbuffer[index*4+1] = ivalue & OxFF; // low byte of i
igbuffer[index*4+2] = (qvalue >> 8) & OxFF; // high byte of q
igbuffer[index*4+3] = qvalue & OxFF; // low byte of q
}

// Big Endian order data, uncomment the following lines of code.

// Interleave the I and Q data.

// short igbuffer[NUMSAMPLES*2]; // Big endian order,
uncomment this line

// for(index=0; index<numsamples; index++) // Big endian order,
uncomment this line

/7 { // Big endian order,
uncomment this line

264 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

// igbuffer[index*2]
uncomment this line

idata[index];

// igbuffer[index*2+1]
uncomment this line

/1Y

uncomment this line

gdata[index];

// Big endian order,

// Big endian order,

// Big endian order,

// Open a connection to write to the instrument

INST id=iopen(instOpenString);
if (!id)
{

fprintf(stderr, “iopen failed (%s)\n”, instOpenString);

return -1;

// Declare variables to hold portions of the SCPI command

int bytesToSend;
char s[20];
char cmd[200];

bytesToSend = numsamples*4; // calculate the number of

bytes

sprintf(s, “%d”, bytesToSend); // create a string s with that

number of bytes

// The SCPI command has four parts.
// Part 1

:MEM:DATA “filename”,#
// Part 2

// Part 3 = length of the data in bytes.

above.

// Part 4 = the buffer of data

length of Part 3 when written to a string

This is in s from

// Build parts 1, 2, and 3 for the I and Q data.

sprintf(cmd, “:MEM:DATA \”WFM1:FILE1\”, #%d%d”, strlen(s),

bytesToSend);
// Send parts 1, 2, and 3

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

265

2606

Creating and Downloading Waveform Files
Programming Examples

iwrite(id, cmd, strlen(cmd), 0, 9);

// Send part 4. Be careful to use the correct command here. 1In
many

// programming languages, there are two methods to send SCPI
commands :

// Method 1 = stop at the first ‘@’ in the data

// Method 2 = send a fixed number of bytes, ignoring €@’ in the
data.

// You must find and use the correct command for Method 2.
iwrite(id, igbuffer, bytesToSend, 0, 9);
// Send a terminating carriage return

iwrite(id, “\n”, 1, 1, 0);

printf(“Loaded file using the E4438C, E8267C and E8267D
format\n”);

return 0;

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Importing and Downloading |I/Q Data—Big Endian Order

On the documentation CD, this programming example’s name is
“ImpDwnLd_c++.txt”

This C++ programming example (compiled using Metrowerks CodeWarrier 3.0)
assumes that the data is in big endian order and performs the following
functions:

— error checking
— binary file importing from the PC or workstation.
— binary file download to the signal generator.

// Description: Send a file in blocks of data to a signal generator
//

#include <sicl.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

// ATTENTION:
// - Configure these three lines appropriately for your instrument

// and use before compiling and running

/7

char* instOpenString = "gpib7,19"; //for LAN replace with
“lan[<hostname or IP address>]”

const char* localSrcFile = "D:\\home\\TEST_WAVE"; //enter file
location on PC/workstation

const char* instDestFile = "/USER/BBG1/WAVEFORM/TEST_WAVE"; //for
non-volatile memory

//remove BBG1l from file path
// Size of the copy buffer
const int BUFFER_SIZE = 100*1024;

int

main()

{
INST id=iopen(instOpenString);
if ('id)

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 267

268

Creating and Downloading Waveform Files
Programming Examples

fprintf(stderr, "iopen failed (%s)\n", instOpenString);

return -1;

FILE* file = fopen(localSrcFile, "rb");
if (!file)
{
fprintf(stderr, "Could not open file: %s\n", localSrcFile);

return 0;

if(fseek(file, @, SEEK_END) < 0)
{
fprintf(stderr,"Cannot seek to the end of file.\n");

return 0;

long lenToSend = ftell(file);
printf("File size = %d\n", lenToSend);

if (fseek(file, ©, SEEK_SET) < 9)
{
fprintf(stderr,"Cannot seek to the start of file.\n");

return 0;

char* buf = new char[BUFFER_SIZE];

if (buf && lenToSend)

{
// Prepare and send the SCPI command header
char s[20];
sprintf(s, "%d", lenToSend);

int lenLen = strlen(s);

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

char s2[256];

sprintf(s2, "mmem:data \"%s\", #%d%d", instDestFile, lenLen,
lenToSend);

iwrite(id, s2, strlen(s2), 0, 9);

// Send file in BUFFER_SIZE chunks
long numRead;

do

{
numRead = fread(buf, sizeof(char), BUFFER_SIZE, file);

iwrite(id, buf, numRead, 0, 9);

} while (numRead == BUFFER_SIZE);

// Send the terminating newline and EOM
iwrite(id, "\n", 1, 1, 9);

delete [] buf;

else

fprintf(stderr, "Could not allocate memory for copy
buffer\n");

}

fclose(file);
iclose(id);
return 0;

}
Importing and Downloading Using VISA—Big Endian Order

On the documentation CD, this programming example’s name is
“Download_Visa_c++.txt”

This C++ programming example (compiled using Microsoft Visual C++ 6.0)
assumes that the data is in big endian order and performs the following
functions:

— error checking

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 269

270

Creating and Downloading Waveform Files
Programming Examples

— binary file importing from the PC or workstation
— Dbinary file download to the signal generator’s non-volatile memory

To load the waveform data to volatile (WFM1) memory, change the instDestfile
declaration to: “USER/BBG1/WAVEFORM/”.

//***

// PROGRAM NAME:Download_Visa_c++.cpp

/7

// PROGRAM DESCRIPTION:Sample test program to download ARB waveform
data. Send a

// file in chunks of ascii data to the signal generator.

//

// NOTE: You must have the Keysight IO Libraries installed to run
this program.

/7

// This example uses the LAN/TCPIP to download a file to the signal
generator's

// non-volatile memory. The program allocates a memory buffer on the
PC or

// workstation of 102400 bytes (100*1024 bytes). The actual size of
the buffer is

// limited by the memory on your PC or workstation, so the buffer
size can be

// increased or decreased to meet your system limitations.
//

// While this program uses the LAN/TCPIP to download a waveform file
into

// non-volatile memory, it can be modified to store files in
volatile memory

// WFM1 using GPIB by setting the instrOpenString =
"TCPIPO: : XXX .XXX.XXX.XXX::INSTR"

// declaration with "GPIB::19::INSTR"
//

// The program also includes some error checking to alert you when
problems arise

// while trying to download files. This includes checking to see if
the file exists.

//***

// IMPORTANT: Replace the xxx.xxx.xxx.xxx IP address in the
instOpenString declaration

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

// in the code below with the IP address of your signal generator.
(or you can use the

// instrument's hostname). Replace the localSrcFile and instDestFile
directory paths

// as needed.

//***

#include <stdlib.h>
#include <stdio.h>

#include <string.h>
#include "visa.h"

//

// IMPORTANT:

// Configure the following three lines correctly before compiling
and running

char* instOpenString ="TCPIPO: :XXX.XXX.XXX.XXx::INSTR"; // your
instrument's IP address

const char* localSrcFile

"\\Files\\IQ_DataC";

const char* instDestFile = "/USER/WAVEFORM/IQ DataC";

const int BUFFER_SIZE = 100*1024;// Size of the copy buffer

int main(int argc, char* argv[])

{

ViSession defaultRM, vi;

ViStatus status = 0;

status = viOpenDefaultRM(&defaultRM);// Open the default
resource manager

// TO DO: Error handling here

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 271

272

Creating and Downloading Waveform Files
Programming Examples

status = viOpen(defaultRM, instOpenString, VI_NULL, VI_NULL,

&vi);

if (status)// If any errors then display the error and exit the

program

{

fprintf(stderr, "viOpen failed (%s)\n", instOpenString);
return -1;
}

FILE* file = fopen(localSrcFile, "rb");// Open local source file

for binary reading

if (!file) // If any errors display the error and exit the

program

{

fprintf(stderr, "Could not open file: %s\n", localSrcFile);
return 0;
}

if(fseek(file, @, SEEK_END) < 0)

{
fprintf(stderr,"Cannot lseek to the end of file.\n");

return 0;

long lenToSend = ftell(file);// Number of bytes in the file

printf("File size = %d\n", lenToSend);

if (fseek(file, ©, SEEK_SET) < 9)

{

fprintf(stderr,"Cannot lseek to the start of file.\n");

return 0;

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

unsigned char* buf = new unsigned char[BUFFER_SIZE]; // Allocate
char buffer memory

if (buf && lenToSend)

{

// Do not send the EOI (end of instruction) terminator on any
write except the

// last one

viSetAttribute(vi, VI_ATTR_SEND_END_EN, @);

// Prepare and send the SCPI command header

char s[20];
sprintf(s, "%d", lenToSend);

int lenLen = strlen(s);

unsigned char s2[256];

// Write the command mmem:data and the header.The number lenLen
represents the

// number of bytes and the actual number of bytes is the variable
lenToSend

sprintf((char*)s2, "mmem:data \"%s\", #%d%d", instDestFile,
lenLen, lenToSend);

// Send the command and header to the signal generator

viWrite(vi, s2, strlen((char*)s2), 0);

long numRead;

// Send file in BUFFER_SIZE chunks to the signal generator

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 273

Creating and Downloading Waveform Files
Programming Examples

do

{

numRead = fread(buf, sizeof(char), BUFFER_SIZE, file);

viWrite(vi, buf, numRead, 9);

} while (numRead == BUFFER_SIZE);

// Send the terminating newline and EOI

viSetAttribute(vi, VI_ATTR_SEND_END_EN, 1);

char* newLine = "\n";

viWrite(vi, (unsigned char*)newLine, 1, 0);

delete [] buf;

else

fprintf(stderr, "Could not allocate memory for copy
buffer\n");

}

fclose(file);
viClose(vi);

viClose(defaultRM);

return 0;

274 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Importing, Byte Swapping, Interleaving, and Downloading | and Q
Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is
“ImpDwnLd2_c++.txt”

This C++ programming example (compiled using Microsoft Visual C++ 6.0)
performs the following functions:

/7
/7
//
//
/7
/7

//

error checking

binary file importing (earlier E443xB or current model signal generators)
byte swapping and interleaving for little endian order data

data interleaving for big endian order data

data scaling

binary file download for earlier E443xB data or current signal generator
formatted data

This C++ program is an example of loading I and Q
data into an E443xB, E4438C, E8267C, or E8267D signal

generator.

It reads the I and Q data from a binary data file

and then writes the data to the instrument.

Include the standard headers for SICL programming

#tinclude <sicl.h>

#tinclude <stdlib.h>

#include <stdio.h>

#include <string.h>

//

Choose a GPIB, LAN, or RS-232 connection

char* instOpenString ="gpibe,19”;

/7
//

Pick some maximum number of samples, based on the

amount of memory in your computer and your waveforms.

const int MAXSAMPLES=50000;

int main(int argc, char* argv[])

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

275

Creating and Downloading Waveform Files
Programming Examples

// These are the I and Q input files.

// Some compilers will allow ¢/’ in the directory

// names. Older compilers might need ‘\\’ in the

// directory names. It depends on your operating system
// and compiler.

char *ifile = “c:\\SignalGenerator\\data\\BurstAlI.bin”’;

char *gfile = “c:\\SignalGenerator\\data\\BurstA1lQ.bin”’;
// This is a text file to which we will write the

// I and Q data just for debugging purposes. It is

// a good programming practice to check your data

// in this way before attempting to write it to

// the instrument.

char *ofile = “c:\\SignalGenerator\\data\\iq.txt”;

// Create arrays to hold the I and Q data
int idata[MAXSAMPLES];
int qdata[MAXSAMPLES];

// Often we must modify, scale, or offset the data
// before loading it into the instrument. These
// buffers are used for that purpose. Since each
// sample is 16 bits, and a character only holds
// 8 bits, we must make these arrays twice as long
// as the I and Q data arrays.

char ibuffer[MAXSAMPLES*2];

char gbuffer[MAXSAMPLES*2];

// For the E4438C or E8267C/67D, we might also need to interleave
// the I and Q data. This buffer is used for that

// purpose. In this case, this buffer must hold

// both I and Q data so it needs to be four times

// as big as the data arrays.

276 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

char igbuffer[MAXSAMPLES*4];

// Declare variables which will be used later
bool done;
FILE *infile;

int index, numsamples, il, i2, ivalue;

// In this example, we’ll assume the data files have

// the I and Q data in binary form as unsigned 16 bit integers.

// This next block reads those binary files. If your

// data is in some other format, then replace this block

// with appropriate code for reading your format.

// First read I values

done = false;

index = 0;

infile = fopen(ifile, “rb”);

if (infile==NULL) perror (“Error opening file to read”);

while(!done)

{
il = fgetc(infile); // read the first byte
if(i1==EOF) break;
i2 = fgetc(infile); // read the next byte
if(i2==EOF) break;
ivalue=i1+i2*256; // put the two bytes together
// note that the above format is for a little endian
// processor such as Intel. Reverse the order for
// a big endian processor such as Motorola, HP, or Sun
idata[index++]=ivalue;
if(index==MAXSAMPLES) break;

}

fclose(infile);

// Then read Q values

index = 0;

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

277

Creating and Downloading Waveform Files
Programming Examples

infile = fopen(gfile, “rb”);

if (infile==NULL) perror (“Error opening file to read”);

while(!done)

{
i1 = fgetc(infile); // read the first byte
if(i1==EOF) break;
i2 = fgetc(infile); // read the next byte
if(i2==EOF) break;
ivalue=i1+i2*256; // put the two bytes together
// note that the above format is for a little endian
// processor such as Intel. Reverse the order for
// a big endian processor such as Motorola, HP, or Sun
gdata[index++]=ivalue;
if(index==MAXSAMPLES) break;

}

fclose(infile);

// Remember the number of samples which were read from the file.

numsamples = index;

// Print the I and Q values to a text file. If you are
// having trouble, look in the file and see if your I and
// Q data looks correct. Plot the data from this file if
// that helps you to diagnose the problem.

FILE *outfile = fopen(ofile, “w”);

if (outfile==NULL) perror (“Error opening file to write”);

for(index=0; index<numsamples; index++)

{

fprintf(outfile, “%d, %d\n”, idata[index], qdata[index]);
}
fclose(outfile);

// The E443xB, E4438C, E8267C or E8267D all use big-endian

// processors. If your software is running on a little-endian

278 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

// processor such as Intel, then you will need to swap the

// bytes in the data before sending it to the signal generator.

// The arrays ibuffer and gbuffer are used to hold the data
// after any byte swapping, shifting or scaling.

// In this example, we’ll assume that the data is in the format
// of the E443xB without markers. 1In other words, the data

// is in the range 0-16383.

// © gives negative full-scale output

// 8192 gives © V output

// 16383 gives positive full-scale output

// If this is not the scaling of your data, then you will need
// to scale your data appropriately in the next two blocks.

// ibuffer and gbuffer will hold the data in the E443xB format.
// No scaling is needed, however we need to swap the byte order
// on a little endian computer. Remove the byte swapping

// if you are using a big endian computer.

for(index=0; index<numsamples; index++)

{
int ivalue = idata[index];
int gqvalue = qdata[index];
ibuffer[index*2] = (ivalue >> 8) & OxFF; // high byte of i
ibuffer[index*2+1] = ivalue & OxFF; // low byte of i
gbuffer[index*2] = (qvalue >> 8) & OxFF; // high byte of q
gbuffer[index*2+1] = qvalue & OxFF; // low byte of q
}

// igbuffer will hold the data in the E4438C, E8267C, E8267D
// format. 1In this format, the I and Q data is interleaved.
// The data is in the range -32768 to 32767.

// -32768 gives negative full-scale output

// @ gives O V output

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 279

Creating and Downloading Waveform Files
Programming Examples

// 32767 gives positive full-scale output

// From these ranges, it appears you should offset the

// data by 8192 and scale it by 4. However, due to the
// interpolators in these products, it is better to scale
// the data by a number less than four. Commonly a good
// choice is 70% of 4 which is 2.8.

// By default, the signal generator scales data to 70%

// If you scale the data here, you may want to change the
// signal generator scaling to 100%

// Also we need to swap the byte order on a little endian
// computer. This code also works for big endian order data
// since it swaps bytes based on the order.

for(index=0; index<numsamples; index++)

{
int iscaled = 2.8*(idata[index]-8192); // shift and scale
int gscaled = 2.8*(qdata[index]-8192); // shift and scale
igbuffer[index*4] = (iscaled >> 8) & OxFF; // high byte of
i
igbuffer[index*4+1] = iscaled & OxFF; // low byte of i
igbuffer[index*4+2] = (qscaled >> 8) & OxFF; // high byte of
q
igbuffer[index*4+3] = gqscaled & OxFF; // low byte of q
}

// Open a connection to write to the instrument
INST id=iopen(instOpenString);
if ('id)
{
fprintf(stderr, “iopen failed (%s)\n”, instOpenString);

return -1;

// Declare variables which will be used later

int bytesToSend;

280 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

char s[20];
char cmd[200];

// The E4438C, E8267C and E8267D accept the E443xB format.

// so we can use this next section on any of these signal
generators.

// However the E443xB format only uses 14 bits.

bytesToSend = numsamples*2; // calculate the number of
bytes

sprintf(s, “%d”, bytesToSend); // create a string s with that
number of bytes

// The SCPI command has four parts.
// Part 1

:MEM:DATA “filename”,

// Part 2

length of Part 3 when written to a string

// Part 3 = length of the data in bytes. This is in s from
above.

// Part 4 = the buffer of data

// Build parts 1, 2, and 3 for the I data.

sprintf(cmd, “:MEM:DATA \”ARBI:FILE1\”, #%d%d”, strlen(s),
bytesToSend);

// Send parts 1, 2, and 3
iwrite(id, cmd, strlen(cmd), 0, 9);

// Send part 4. Be careful to use the correct command here. 1In
many

// programming languages, there are two methods to send SCPI
commands:

// Method 1 = stop at the first ‘@’ in the data

// Method 2 = send a fixed number of bytes, ignoring ‘@’ in the
data.

// You must find and use the correct command for Method 2.
iwrite(id, ibuffer, bytesToSend, 0, 9);
// Send a terminating carriage return

iwrite(id, “\n”, 1, 1, 0);

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 281

Creating and Downloading Waveform Files
Programming Examples

// Identical to the section above, except for the Q data.

sprintf(cmd, “:MEM:DATA \”ARBQ:FILE1\”, #%d%d”,
strlen(s),bytesToSend);

iwrite(id, cmd, strlen(cmd), 0, 9);
iwrite(id, gbuffer, bytesToSend, 0, 9);

iwrite(id, “\n”, 1, 1, 0);

printf(“Loaded FILE1l using the E443xB format\n”);

// The E4438C, E8267C and E8267D have a newer faster format which

// allows 16 bits to be used. However this format is not
accepted in

// the E443xB. Therefore do not use this next section for the
E443xB.

printf(“Note: Loading FILE2 on a E443xB will cause \”ERROR: 208,
I/0 error\”\n”);

// Identical to the I and Q sections above except

// a) The I and Q data are interleaved

// b)) The buffer of I+Q is twice as long as the I buffer was.
// c) The SCPI command uses WFM1 instead of ARBI and ARBQ.
bytesToSend = numsamples*4;

sprintf(s, “%d”, bytesToSend);

sprintf(cmd, “:mem:data \”WFM1:FILE2\”, #%d%d”,
strlen(s),bytesToSend);

iwrite(id, cmd, strlen(cmd), 0, 9);
iwrite(id, igbuffer, bytesToSend, 0, 0);
iwrite(id, “\n”, 1, 1, 9);

printf(“Loaded FILE2 using the E4438C, E8267C and E8267D
format\n”);

return 0;

282 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Calculating the RMS Voltage for a Waveform Programming Using C++

This example calculates the RMS voltage value of a waveform segment stored
as 16-bit alternating I/Q twos complement DAC values. Refer to the User’s
Guide. This example is named: “calculate_rms_data_c++.txt” and is not
included on the Documentation CD.

For a short the value must be a 16 bit quantity.
For waveforms of 4 Gsa or more, samples must be an int64.

Internally, the MXG ignores two or more zeros in a row when calculating
RMS voltage values.

There is no interface version of this example in the Programming Examples
chapter.

#include <math.h>

#ifndef WIN32

typedef long long int int64;
typedef long long unsigned uint64;
#telse // WIN32

typedef __ int64 int64;

typedef unsigned __ int64 uint64;
#tendif // WIN32

static const int NUM_DAC_BITS=16;
static const int DAC_MAX=(1 << NUM_DAC_BITS);

// calculates the rms of a chunk of a waveform stored as 16-bit
alternating

// I/Q twos complement DAC values.

// NOTE: short must be a 16 bit quantity.

// Also NOTE: For 4Gsa or more, samples must be an inté64.
double

calcRmsWaveformSegment(const signed short* iq data, unsigned
samples)

{

// a double cannot hold the full number accurately for very long
waveforms

// This type can handle up to (but not including) 8Gsa.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 283

Creating and Downloading Waveform Files
Programming Examples

uint64 sum_of_squares_accum = 0;
int ival;

int qval;

unsigned mag_squared;

double rmsDac;

unsigned 1i;

for (i=0; i<samples; i++)

{
ival = (int)(iq_data[i*2]);
gval = (int)(iq_data[i*2+1]);
mag_squared = (unsigned)(ival*ival) + (unsigned)(qval*qval);
sum_of_squares_accum += mag_squared;
}

// the rms in DAC counts (@ - 32768)

rmsDac = sqrt((double)sum_of_squares_accum / (double)samples);
// convert to normalized form (0 - 1.414).

return rmsDac * 2.0/(double) (DAC_MAX);

}

MATLAB Programming Examples
This section contains the following programming examples:

— “Creating and Storing I/Q Data” on page 284

— “Creating and Downloading a Pulse” on page 289

— “Downloading a Waveform, Markers, and Setting the Waveform Header”
on page 291

— “Playing Downloaded Waveforms” on page 299

Creating and Storing I/Q Data

On the documentation CD, this programming example’s name is
“offset_ig_ml.m’

This MATLAB programming example follows the same coding algorithm as the
C++ programming example “Creating and Storing Offset |I/Q Data—Big and
Little Endian Order” on page 254 and performs the following functions:

— error checking

— data creation

— data normalization

— data scaling

— 1/Q signal offset from the carrier (single sideband suppressed carrier signal)

284 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

— byte swapping and interleaving for little endian order data

— land Q interleaving for big endian order data

— binary data file storing to a PC or workstation

— reversal of the data formatting process (byte swapping, interleaving, and
normalizing the data)

function main

Program name: offset_iq_ml

Using MatLab this example shows how to

2.) Save the waveform into the EXG/MXG Internal Arb format

%

%

%

% 1.) Create a simple IQ waveform

%

% This format is for the N5182B
%

3.) Load the internal Arb format file into a MatLab array

% 1.) Create Simple IQ Signal
3k 3k 3k sk sk sk sk sk 3k sk sk ok sk sk sk sk >k sk sk sk sk sk sk sk >k sk sk sk sk sk sk sk sk ok okook sk sk sk sk ok

R

This signal is a single tone on the upper

R

side of the carrier and is usually refered to as

S

a Single Side Band Suppressed Carrier (SSBSC) signal.

R

% It is nothing more than a cosine wavefomm in I
% and a sine waveform in Q.

%

points = 1000; % Number of points in the waveform
cycles = 101; % Determines the frequency offset from the
carrier

phaseInc = 2*pi*cycles/points;

phase = phaseInc * [@:points-1];

Iwave = cos(phase);

Qwave = sin(phase);

% Alternate way to calculate the waveform RMS voltage

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 285

286

Creating and Downloading Waveform Files
Programming Examples

% rms = sqrt(sum(Iwave.*Iwave + Qwave*.Qwave)/points);

% 2.) Save waveform in internal format
3k 3k 3k 3k 3k 3k 3k sk sk ok 3k 3k >k Skook sk sk 3k 3k Sk skook 3k 3k sk sk skosk sk Rk kk

% Convert the I and Q data into the internal arb format

% The internal arb format is a single waveform containing
interleaved IQ

% data. The I/Q data is signed short integers (16 bits).

% The data has values scaled between +-32767 where

% DAC Value Description

% 32767 Maximum positive value of the DAC

% 0 Zero out of the DAC

% -32767 Maximum negative value of the DAC

% The internal arb expects the data bytes to be in Big Endian

format.

% This is opposite of how short integers are saved on a PC (Little
Endian).

% For this reason the data bytes are swapped before being saved.

% Interleave the IQ data
waveform(1:2:2*points) = Iwave;
waveform(2:2:2*points) = Qwave;
%[Iwave;Qwave];

%waveform = waveform(:)';

% Normalize the data between +-1

waveform = waveform / max(abs(waveform)); % Watch out for divide
by zero.

% Scale to use full range of the DAC

waveform = round(waveform * 32767); % Data is now effectively
signed short integer values

% waveform = round(waveform * (32767 / max(abs(waveform)))); %
More efficient than previous two steps!

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

% PRESERVE THE BIT PATTERN but convert the waveform to

% unsigned short integers so the bytes can be swapped.

% Note: Can't swap the bytes of signed short integers in MatLab.
waveform = uintl16(mod (65536 + waveform,65536)); %

% If on a PC swap the bytes to Big Endian
if strcmp(computer, 'PCWIN')
waveform = bitor(bitshift(waveform,-8),bitshift(waveform,8));

end
Save the data to a file

%
% Note: The waveform is saved as unsigned short integers. However,
% the acual bit pattern is that of signed short integers and
% that is how the ESG/PSG interprets them.

filename = 'C:\Temp\EsgTestFile';

[FID, message] = fopen(filename, 'w');% Open a file to write data
if FID == -1 error('Cannot Open File'); end

fwrite(FID,waveform, 'unsigned short');% write to the file

fclose(FID); % close the file

% 3.) Load the internal Arb format file
3k sk sk >k sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk ok ok sk sk sk >k sk sk sk sk sk k

% This process is just the reverse of saving the waveform
% Read in waveform as unsigned short integers.

% Swap the bytes as necessary

% Convert to signed integers then normalize between +-1

% De-interleave the I/Q Data

% Open the file and load the internal format data

[FID, message] = fopen(filename,'r');% Open file to read data
if FID == -1 error('Cannot Open File'); end

[internalWave,n] = fread(FID, 'uintl6');% read the IQ file

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 287

Creating and Downloading Waveform Files
Programming Examples

fclose(FID);% close the file

internalWave = internalWave'; % Conver from column array to row
array

% If on a PC swap the bytes back to Little Endian

if strcmp(computer, 'PCWIN') % Put the bytes into the correct
order

internallWave=
bitor(bitshift(internalWave,-8),bitshift(bitand(internalWave,255),8

))s

end

% convert unsigned to signed representation
internalWave = double(internalWave);
tmp = (internallWave > 32767.0) * 65536;

igWave = (internalWave - tmp) ./ 32767; % and normalize the data

% De-Interleave the IQ data

IwaveIn = igWave(1l:2:n);

QwaveIn = igWave(2:2:n);

288 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading a Pulse

m For the Keysight X-Series signal generators, the maximum frequency is 6.
For more frequency information, refer to the signal generator’s Data Sheet.

On the documentation CD, this programming example’s name is “pulsepat.m.
This MATLAB programming example performs the following functions:

— land Q data creation for 10 pulses

— marker file creation

— data scaling

— downloading using Keysight Waveform Download Assistant functions (see
“Using the Download Utilities” on page 250 for more information)

% verify that communication with the Keysight X-Series signal
generator has been extablished

[status, status_description, query_result] = agt_query(io, '*idn?');
if (status < @) return; end

% set the carrier frequency and power level on the signal generator
using the Keysight
%Waveform Download Assistant

[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency
6000000000") ;

[status, status_description] = agt_sendcommand(io, 'POWer 0');

% define the ARB sample clock for playback
sampclk = 40000000;

% download the ig waveform to the baseband generator for playback

[status, status_description] = agt_waveformload(io, IQData,
'pulsepat’, sampclk, 'play', 'no_normscale', Markers);

% turn on RF output power

[status, status_description] = agt_sendcommand(io, 'OUTPut:STATe
ON')

You can test your program by performing a simulated plot of the in-phase
modulation signal in Matlab (see Figure 5-2 on page 290). To do this, enter
pl ot (i) atthe Matlab command prompt.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 289

Creating and Downloading Waveform Files
Programming Examples

Figure 5-2 Simulated Plot of In-Phase Signal

0.8

0.7 H

0.6 H

0.5 H

0.3 H

0.1H

0.2 H

0 2000 4000 6000 8000 10000 12000

The following additional Matlab M-file pulse programming examples are also
available on the Documentation CD-ROM for your signal generator:

For the Keysight X-Series signal generator, the SOURce: FREQuency
<val ue> value must be changed as required in the following programs.
For more information on frequency limits, refer to the Data Sheet.

barker.m This programming example calculates and downloads
an arbitrary waveform file that simulates a simple 7-bit
barker RADAR signal to the vector signal generator.

chirp.m This programming example calculates and downloads
an arbitrary waveform file that simulates a simple
compressed pulse RADAR signal using linear FM chirp
to the vector signal generator.

FM.m This programming example calculates and downloads
an arbitrary waveform file that simulates a single tone
FM signal with a rate of 6 KHz, deviation of =/-
14.3 KHz, Bessel null of dev/rate=2.404 to the vector
signal generator.

nchirp.m This programming example calculates and downloads
an arbitrary waveform file that simulates a simple
compressed pulse RADAR signal using non-linear FM
chirp to the vector signal generator.

pulse.m This programming example calculates and downloads
an arbitrary waveform file that simulates a simple
pulse signal to the vector signal generator.

290 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

pulsedroop.m This programming example calculates and downloads
an arbitrary waveform file that simulates a simple
pulse signal with pulse droop to the vector signal
generator.

Downloading a Waveform, Markers, and Setting the Waveform Header

This example works on either a 32bit or 64bit system that is connected
over the LAN. So, the Waveform Download Assistant—which only works on
32bit systems—is not required, to use this program.

Additional documentation is available on this program through Matlab, by
adding your PC’s path to the Matlab’s path and then from the Matlab
command line type: “ hel p downl oad”.

This is example is used to download a waveform to the instrument.

On the documentation CD, this programming example’s name is
“Download.m”

This MATLAB programming example performs the following functions:

— downloads a waveform
— downloads the waveform’s marker information
— downloads the waveform’s header information

function Download(tcpipAddress, igWave, name, markers, header)
% Download(tcpipAddress, iqWave, name, markers, header);

% Copyright 2009 Keysight Technologies Inc.

%

% This function downloads a waveform and markers to an Keysight
X-Series signal generator,

% X-Series Vector Signal Generator. markers is a two dimentional

% array that contains 4 markers. The header contains the sample
rate, the

% waveform rms voltage, and the marker routings to the pulse
modulator and

% the ALC hold. Default values used by the header if values are not
present.

R

header.sampleRate = 100e6; % Waveform Sample Rate

N

header.rms = CalculateWaveformRMS(igWave); % Waveform RMS voltage

% header.peak = 1.414; % Waveform Peak voltage
% header.runtimeScaling = 70; % Runtime scaling in
percent

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 291

292

Creating and Downloading Waveform Files
Programming Examples

% header.pulse = 'None'; % Marker routing
'Non', 'M1','M2"','M3"', 'M4"

% header.alcHold = 'None'; % Marker routing
"Non', 'M1",'M2"','M3","'M4"

% header.description = 'Keysight Technologies'; % User provided
description

%
% INPUT PARAMETERS:

% tcpipAddress - '141.121.148.188' What ever works for your signal
Generator!

% name - Waveform name - 21 characters max

% igWave - Complex waveform, min length 60 points

% markers - markers(4,length(igWave)) 4 possible markers
% header - Structure containing waveform information.

% OUTPUT PARAMETERS:

% EXAMPLES:

% name = 'My Test'; % Waveform name

% tcpipAddress = '141.121.151.129°'; % Signal Generator IP
Address

% n = 1000; % Points in waveform

B

phase = (102*pi/n)*(0:(n-1));

S

igWave= complex(cos(phase),sin(phase)); % Create single tone

% markers = zeros(4,n); % Create markers

% markers(1,1:2) = 1;

% markers(2,1:4) = 1;

% markers(3,1:8) = 1;

% markers(4,1:16) = 1;

% header.sampleRate = 50e6; % Set Sample Rate to 50
MHz

% Download(tcpipAddress, igWave, name, markers, header);

3R

% Range checks

if nargin<2

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

error('ERROR: download() Insufficient input parmaeters.');
end
if length(igWave)<60

error('ERROR: download() igWave must contain 60 or more

points."');

end

if nargin<3 name = 'NO_NAME'; end

if nargin<4
markers = zeros(4,length(igWave));
markers(:,1:4) = 1;

end

if nargin<5
header = [];

end

if length(igWave) ~= length(markers)
error('ERROR: download() The length of the igWave and the

marker arrays must be the same.');

end

% Process waveform and marker data
[igData, rms] = FormatWaveform(igWave);

mkrData = FormatMarkers(markers);

% Download the Waveform

wfmCmd = CreateWaveformCommand(name, length(igWave));
mkrCmd = CreateMarkerCommand(name, length(markers));
hdrCmd = CreateHeaderCommand(name, rms, header);

bufSize = 8192;
t = tcpip(tcpipAddress, 5025);
t.OutputBufferSize = bufSize;

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 293

Creating and Downloading Waveform Files
Programming Examples

% Order dependency on download. 1:Waveform, 2:Markers, 3:Header
fopen(t);
fprintf(t, '%s',wfmCmd);

%fwrite(t,igData,'int16'); % Use loop to prevent the need for a
buffer as big as waveform

WriteData(t,igData,2,bufSize);
fprintf(t,'\n');

fprintf(t, 'syst:err?');
fgets(t)

fprintf(t, '%s',mkrCmd);
%fwrite(t,mkrData, 'int8');
WriteData(t,mkrData,1,bufSize);
fprintf(t,'\n');

fprintf(t, 'syst:err?’);
fgets(t)

fprintf(t, '%s\n',hdrCmd);
fprintf(t, 'syst:err?');
fgets(t)

fclose(t);

end

function WriteData(fid,data,format,bufSize)

% Write data using a loop to support large waveforms without having
to

% specify a huge buffer.

R X

INPUT PARAMETERS:

% fid - file id

% data - all the data

% format - data size to output in bytes 1,2,4 etc.
% bufSize - Buffer size in bytes

294 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

buf = floor(bufSize/format);
fullChunks = floor(length(data)/buf);
partialChunk = length(data)-(fullChunks*buf);

sfmt = 'int32';
if format==1
stfmt = 'int8"';
elseif format==2
sfmt = 'intl6';

end

stop=0;
for i=0:(fullChunks-1)
start = 1+(i*buf);
stop = (i+1)*buf;
fwrite(fid,data(start:stop),sfmt);
end
if partialChunk>0
fwrite(fid,data(stop+l:end),sfmt);

end

end

function [data, rms] = FormatWaveform(igWave)
% Scale the waveform to DAC values
[a,b] = size(igWave);
if a>b
igWave = igWave';
end
maxV = max(abs([real(igwWave) imag(igWave)]));
if maxV==0 maxV=1l; end % Prevent divide by zero
scale = 32767/maxV;

igWave = round(scale*igWave);

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 295

Creating and Downloading Waveform Files
Programming Examples

% Calcurate waveform RMS

rms = sqrt(mean(abs(igWave).”2)) / 32767,
% account for pulse duty cycle

pw = sum(abs(igWave)>0);

dutyCycle = pw/length(igWave);

rms = rms/dutyCycle;

% Interlace the I & Q vectors

data [real(igWave);imag(igWave)];

data

data(:)';

end

function mkr = FormatMarkers(markers)

% The markers are placed in the 4 LSBs of a byte

% in this order M4 M3 M2 M1
[c,d] = size(markers);
if c>d
markers = markers';
[c,d] = size(markers);
end
mkr = (markers(1,:)~=0);

if o1

mkr = mkr + 2*(markers(2,:)~=0);
end
if o2

mkr = mkr + 4*(markers(3,:)~=0);
end
if o3

mkr

mkr + 8*(markers(4,:)~=0);
end

end

function hdrCmd = CreateHeaderCommand(file_name, rms, header)

296 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

% [:SOURce]:RADio[1]|2]|3|4:ARB:HEADer:WRITe

"filename","description",<sample_rate>,<scaling>,<marker_polarity>,
<alc_hold>,<alt_power>,<pulse>,<mod_atten>,<mod_filter>,<output_fil

ter>, <peak_power>,<rms>
% This function doesn't do any range checking
hdr.sampleRate = 100e6;
hdr.rms = rms;
hdr.peak = 1.414;
hdr.runtimeScaling = 70; % In percent
hdr.pulse = 'None';
hdr.alcHold = 'None';
hdr.description = 'Keysight Technologies';
if ~isempty(header)
if isstruct(header)
if isfield(header, 'sampleRate")
hdr.sampleRate = header.sampleRate;
end
if isfield(header, 'rms")
hdr.rms = header.rms;
end
if isfield(header, 'peak")
hdr.peak = header.peak;
end

if isfield(header, 'runtimeScaling')

hdr.runtimeScaling = header.runtimeScaling;

end

if isfield(header, 'pulse’)
hdr.pulse = header.pulse;

end

if isfield(header, 'alcHold")
hdr.alcHold = header.alcHold;

end

if isfield(header, 'description’)

hdr.description = header.description;

end

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

297

Creating and Downloading Waveform Files
Programming Examples

end

end

hdrCmd = ['RADio:ARB:HEAD:WRIT "WFM1l:' file name '","'

hdr.description , ' num2str(hdr.sampleRate) ',
num2str(hdr.runtimeScaling) ',NONE,' hdr.alcHold ',UNSP,' hdr.pulse
' ,UNSP,UNSP,UNSP, ' num2str(hdr.peak) ',"' num2str(hdr.rms)];

end

function wfmCmd = CreateWaveformCommand(file name, points)
% :MMEM:DATA "<file name>",#ABC

% "<file _name>" the I/Q file name and file path within the signal
generator

% # indicates the start of the data block
% A the number of decimal digits present in B

% B a decimal number specifying the number of data bytes to follow
in C

B

num2str(4*points); % Bytes in waveform

A

num2str(length(B));
wfmCmd = [':MEM:DATA:UNPR "WFM1:' file_name '",#' A B];

end

function mkrCmd = CreateMarkerCommand(file name, points)

B

num2str(points); % Bytes in marker file

A = num2str(length(B));
mkrCmd = [':MEM:DATA:UNPR "MKR1l:' file_name '"",#' A B];

end

298 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Playing Downloaded Waveforms

This example works on either a 32bit or 64bit system that is connected
over the LAN. So, the Waveform Download Assistant—which only works on
32bit systems—is not required, to use this program.

Additional documentation is available on this program through Matlab, by
adding your PC’s path to the Matlab’s path and then from the Matlab
command line type: “hel p Pl ayWavef ornfi .

This is a simple example to play a waveform that was downloaded to the
instrument. This example can be easily modified to send additional SCPI
commands.

This programming example’s name is “PlayWaveform.m. This example is not
included on the Documentation CD.

This MATLAB programming example performs the following functions:

— plays a waveform that has been downloaded

function PlayWaveform(tcpipAddress, name)
% PlayWaveform(tcpipAddress, name);

% Copyright 2009 Keysight Technologies Inc.
%

3R

Play the waveform in the Signal Generator

R X

INPUT PARAMETERS:

R

tcpipAddress - '141.121.148.188' Whatever works for your signal

Generator!

% name - Waveform name - 21 characters max

% EXAMPLE:

% name = 'My Test'; % Waveform name

% tcpipAddress = '141.121.151.129°'; % Signal Generator IP
Address

% PlayWaveform(tcpipAddress, name); % play the waveform

playCmd = [':RAD:ARB:WAV "WFM1:' name '"'];

t = tcpip(tcpipAddress, 5025);

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 299

Creating and Downloading Waveform Files
Programming Examples

fopen(t);
fprintf(t, '%s\n',playCmd);

fprintf(t, 'syst:err?');
fgets(t)

fclose(t);

300 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

Visual Basic Programming Examples

Creating I/Q Data—Little Endian Order

On the documentation CD, this programming example’s name is
“Create_IQData_vb.txt”

This Visual Basic programming example, using Microsoft Visual Basic 6.0, uses
little endian order data, and performs the following functions:

— error checking

— lan Q integer array creation

— lan Q data interleaving

— byte swapping to convert to big endian order
— binary data file storing to a PC or workstation

Once the file is created, you can download the file to the signal generator using
FTP (see “FTP Procedures” on page 231).

¥ 3k ok ok sk ok ok 3k ok ok 3k ok ok 3k ok ok 3k ok ok sk ok ok 3k ok ok 3k ok >k 3k ok >k sk ok ok 3k ok ok sk ok >k 3k ok >k 3k ok ok ok ok >k ok ok >k sk ok >k ok ok ok >k ok >k ok 5k >k kok ok

Program Name: Create_IQData

' Program Description: This program creates a sine and cosine wave
using 200 I/Q data

samples. Each I and Q value is represented by a 2 byte integer. The
sample points are

' calculated, scaled using the AMPLITUDE constant of 32767, and then
stored in an array

' named iq_data. The AMPLITUDE scaling allows for full range I/Q
modulator DAC values.

Data must be in 2's complemant, MSB/LSB big-endian format. If your
PC uses LSB/MSB

' format, then the integer bytes must be swapped. This program
converts the integer

array values to hex data types and then swaps the byte positions
before saving the

' data to the IQ_DataVB file.

"3k ok ok sk ok ok sk ok ok ok ok ok 3k ok ok ok ok ok 3k ok ok 3k ok ok 3k ok ok 3k ok >k sk ok ok 3k ok ok 3k ok ok 3k ok >k 3k ok ok ok ok ok ok ok ok sk ok >k ok ok ok >k ok ok ok ok ok kok ok

Private Sub Create_IQData()
Dim index As Integer

Dim AMPLITUDE As Integer
Dim pi As Double

Dim loByte As Byte

Dim hiByte As Byte

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 301

302

Creating and Downloading Waveform Files
Programming Examples

Dim loHex As String

Dim hiHex As String

Dim strSrc As String

Dim numPoints As Integer
Dim FileHandle As Integer
Dim data As Byte

Dim iq_data() As Byte

Dim strFilename As String

strFilename = "C:\IQ _DataVB"

Const SAMPLES = 200 ' Number of sample PAIRS of I and Q integers
for the waveform

AMPLITUDE = 32767 ' Scale the amplitude for full range of the
signal generators

' I/Q modulator DAC
pi = 3.141592

Dim intIQ Data(® To 2 * SAMPLES - 1) 'Array for I and Q integers:
400

ReDim iq_data(® To (4 * SAMPLES - 1)) 'Need MSB and LSB bytes for
each integer value: 800

'Create an integer array of I/Q pairs

For index = @ To (SAMPLES - 1)

intIQ Data(2 * index) = CInt(AMPLITUDE * Sin(2 * pi * index
/ SAMPLES))

intIQ _Data(2 * index + 1) = CInt(AMPLITUDE * Cos(2 * pi *
index / SAMPLES))

Next index

‘Convert each integer value to a hex string and then write into the
igq_data byte array

'MSB, LSB ordered
For index = @ To (2 * SAMPLES - 1)

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

strSrc = Hex(intIQ Data(index)) 'convert
value

If Len(strSrc) <> 4 Then

the integer to a hex

strSrc = String(4 - Len(strSrc), "0") & strSrc 'Convert to

hex format i.e "800OF

End If
if needed to get 4

i.e '0' to "0000"

hiHex = Mid$(strSrc, 1, 2) 'Get the
(MSB)

loHex = Mid$(strSrc, 3, 2) 'Get the
(LSB)

loByte = CByte("&H" & loHex) 'Convert

hiByte = CByte("&H" & hiHex) 'Convert

ig_data(2 * index) = hiByte 'MSB

ig_data(2 * index + 1) = loByte 'LSB

Next index

'"Now write the data to the file

'Pad with 90's

'characters

first two hex values

next two hex values

to byte data type LSB
to byte data type MSB

into first byte

into second byte

FileHandle = FreeFile() 'Get a file number

numPoints = UBound(iq_data) 'Get the number of bytes in the file

Open strFilename For Binary Access Write As #FileHandle Len =

numPoints + 1

On Error GoTo file_error

For index = @ To (numPoints)

data = iq_data(index)

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

303

304

Creating and Downloading Waveform Files
Programming Examples

Put #FileHandle, index + 1, data 'Write the I/Q data to the
file

Next index

Close #FileHandle

Call MsgBox("Data written to file " & strFilename, vbOKOnly,
"Download")

Exit Sub

file_error:
MsgBox Err.Description

Close #FileHandle

End Sub

Downloading I/Q Data

On the signal generator’s documentation CD, this programming example’s
name is “Download_File_vb.txt”

This Visual Basic programming example, using Microsoft Visual Basic 6.0,
downloads the file created in “Creating I/Q Data—Little Endian Order” on
page 301 into non-volatile memory using a LAN connection. To use GPIB,
replace the instOpenString object declaration with “GPIB::19::INSTR”. To
download the data into volatile memory, change the instDestfile declaration to
“USER/BBG1/WAVEFORM/”.

The example program listed here uses the VISA COM 10 API, which
includes the WritelEEEBlock method. This method eliminates the need to
format the download command with arbitrary block information such as
defining number of bytes and byte numbers. Refer to “SCPI Command Line
Structure” on page 227 for more information.

This program also includes some error checking to alert you when problems
arise while trying to download files. This includes checking to see if the file
exists.

T3k 3k 3k ok sk sk sk sk >k 3k 3k ok 3k Sk sk sk 3k 3k ok sk Sk sk sk 3k 3k sk sk sk Sk sk sk 3k 3k ok ok 3k Sk sk sk >k ok sk sk sk sk sk 3k >k 3k ok Sk Sk sk sk >k 3k ok ok sk sk sk sk k ok kk

Program Name: Download File

' Program Description: This program uses Microsoft Visual Basic 6.0
and the Keysight

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

' VISA COM I/O Library to download a waveform file to the signal
generator.

The program downloads a file (the previously created €IQ _DataVB’
file) to the signal

generator. Refer to the Programming Guide for information on
binary

' data requirements for file downloads. The waveform data
'IQ DataVB' is

' downloaded to the signal generator's non-volatile memory(NVWFM)

' " JUSER/WAVEFORM/IQ DataVB". For volatile memory(WFM1) download to
the

' " JUSER/BBG1/WAVEFORM/IQ_DataVB" directory.

You must reference the Keysight VISA COM Resource Manager and VISA
COM 1.0 Type

Library in your Visual Basic project in the Project/References
menu.

' The VISA COM 1.0 Type Library, corresponds to VISACOM.tlb and the
Keysight

VISA COM Resource Manager, corresponds to AgtRM.DLL.

' The VISA COM 488.2 Formatted I/O 1.0, corresponds to the
BasicFormattedIO.d1ll

to

Use a statement such as "Dim Instr As VisaComLib.FormattedI0488"

create the formatted I/0 reference and use

' "Set Instr = New VisaComLib.FormattedIO488" to create the actual
object.

IEEETEEEEEEEETEEEEESTE]
K 3K 3K 3K 3k 3k ok 3k >k Kk kok ok

' IMPORTANT: Use the TCPIP address of your signal generator in the
rm.Open

' declaraion. If you are using the GPIB interface in your project
use "GPIB::19::INSTR"

in the rm.Open declaration.

¥ 3k ok ok 3k ok ok 3k ok >k 3k 3k >k 3k ok >k 3k ok >k 3k ok >k 3k ok ok 3k ok >k 3k ok >k 3k ok >k 3k 5k >k 3k sk >k 3k ok >k 3k ok >k 3k 5k >k 3k 3k >k 3k 5k >k 3k ok >k 3k 5k >k 3k ok >k kok ok

Private Sub Download_File()

The following four lines declare IO objects and instantiate them.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 305

306

Creating and Downloading Waveform Files
Programming Examples

Dim rm As VisaComLib.ResourceManager

Set rm = New AgilentRMLib.SRMCls

Dim SigGen As VisaComLib.FormattedI0488
Set SigGen = New VisaComLib.FormattedIO488

NOTE: Use the IP address of your signal generator in the rm.Open
declaration

Set SigGen.IO = rm.Open("TCPIPO: :000.000.000.000")

Dim data As Byte

Dim iq_data() As Byte

Dim FileHandle As Integer
Dim numPoints As Integer
Dim index As Integer

Dim Header As String

Dim response As String
Dim hiByte As String

Dim loByte As String

Dim strFilename As String

strFilename = "C:\IQ _DataVB" ‘File Name and location on PC

'Data will be saved to the signal
generator’s NVWFM ¢/USER/WAVEFORM/IQ DataVB
directory.

FileHandle = FreeFile()

On Error GoTo errorhandler

With SigGen 'Set up the signal generator to accept a
download

.I0.Timeout = 5000 'Timeout 50 seconds

.WriteString "*RST" 'Reset the signal generator.
End With

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

numPoints = (FileLen(strFilename)) 'Get number of bytes in the
file: 800 bytes

ReDim iq_data(@ To numPoints - 1) 'Dimension the iq_data array
to the

'size of the IQ DataVB file:
800 bytes

Open strFilename For Binary Access Read As #FileHandle ‘'Open the
file for binary read

On Error GoTo file_error

For index = @ To (numPoints - 1) '"Write the IQ DataVB data to the
ig_data array
Get #FileHandle, index + 1, data "(index+1) is the record
number
ig_data(index) = data
Next index
Close #FileHandle "Close the file

'"Write the command to the Header string. NOTE: syntax
Header = "MEM:DATA ""/USER/WAVEFORM/IQ_DataVB"","

"Now write the data to the signal generator's non-volatile memory
(NVWFM)

SigGen.WriteIEEEBlock Header, iq_data

SigGen.WriteString "*OPC?" 'Wait for the operation to
complete
response = SigGen.ReadString 'Signal generator reponse to

the OPC? query

Call MsgBox("Data downloaded to the signal generator"”, vbOKOnly,
"Download")

Exit Sub

errorhandler:

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 307

308

Creating and Downloading Waveform Files
Programming Examples

MsgBox Err.Description, vbExclamation, "Error Occurred",
Err.HelpFile, Err.HelpContext

Exit Sub
file_error:

Call MsgBox(Err.Description, vbOKOnly) 'Display any error
message

Close #FileHandle
End Sub

HP Basic Programming Examples

This section contains the following programming examples:

— “Creating and Downloading Waveform Data Using HP BASIC for
Windows®” on page 308

— “Creating and Downloading Waveform Data Using HP BASIC for UNIX” on
page 310

— “Creating and Downloading E443xB Waveform Data Using HP BASIC for
Windows” on page 312

— “Creating and Downloading E443xB Waveform Data Using HP Basic for
UNIX” on page 314

Creating and Downloading Waveform Data Using HP BASIC for
Windows®

On the documentation CD, this programming example’s name is
“hpbasicWin.txt.”

The following program will download a waveform using HP Basic for Windows
into volatile ARB memory. The waveform generated by this program is the
same as the default SI NE_TEST_WMwaveform file available in the signal
generator’s . This code is similar to the code shown for BASIC for UNIX but
there is a formatting difference in line 130 and line 140.

To download into non-volatile memory, replace line 190 with:
190 OUTPUT @PSG USING "#,K";":MMEM:DATA ""NVWFM:testfile"", #"

As discussed at the beginning of this section, | and Q waveform data is
interleaved into one file in 2’s compliment form and a marker file is associated
with this I/Q waveform file.

In the Qut put commands, USI NG “#, K’ formats the data. The pound symbol
(#) suppresses the automatic EOL (End of Line) output. This allows multiple
output commands to be concatenated as if they were a single output. The “ K’
instructs HP Basic to output the following numbers or strings in the default
format.

10 | RE-SAVE "BASIC_Win_file"

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

Num_points=200

ALLOCATE INTEGER Int_array(l:Num_points*2)

DEG

FOR I=1 TO Num_points*2 STEP 2
Int_array(I)=INT(32767*(SIN(I*360/Num_points)))

NEXT I

FOR I=2 TO Num_points*2 STEP 2
Int_array(I)=INT(32767*(COS(I*360/Num_points)))

NEXT I

PRINT "Data Generated"

Nbytes=4*Num_points

ASSIGN @PSG TO 719

ASSIGN @PSGb TO 719;FORMAT MSB FIRST

Nbytes$=VAL$ (Nbytes)

Ndigits=LEN(Nbytes$)

Ndigits$=VAL$(Ndigits)

WAIT 1

OUTPUT @PSG USING "#,K";":MMEM:DATA ""WFM1l:data_file"",#"

OUTPUT @PSG USING "#,K";Ndigits$

OUTPUT @PSG USING "#,K";Nbytes$

WAIT 1

OUTPUT @PSGb;Int_array(*)

OUTPUT @PSG;END

ASSIGN @PSG TO *

ASSIGN @PSGb TO *

PRINT

PRINT "*END*"

END

Program Comments

10:

Program file name

20:

Sets the number of points in the waveform.

30:

Allocates integer data array for | and Q waveform points.

40:

Sets HP BASIC to use degrees for cosine and sine functions.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

309

310

Creating and Downloading Waveform Files
Programming Examples

Program Comments (Continued)

50: Sets up first loop for | waveform points.

60: Calculate and interleave | waveform points.

70: End of loop

80 Sets up second loop for @ waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an 10 path to the signal generator using GPIB. 7 is the address of the GPIB card in the computer,
and 19 is the address of the signal generator. This |0 path is used to send ASCII data to the signal
generator.

140: Opens an |10 path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file, dat a_f i | e, that
will receive the waveform data. The name, dat a_fi | e, will appear in the signal generator's memory
catalog.

20010 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that PSGb is the binary |0 path.

240: Sends an End-of-Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.

Creating and Downloading Waveform Data Using HP BASIC for UNIX

On the documentation CD, this programming example’s name is
“hpbasicUx.txt.

The following program shows you how to download waveforms using HP Basic
for UNIX. The code is similar to that shown for HP BASIC for Windows, but
there is a formatting difference in line 130 and line 140.

To download into non-volatile memory, replace line 190 with:
190 OUTPUT @PSG USING "#,K";":MMEM:DATA ""NVWFM:testfile"", #"

As discussed at the beginning of this section, | and Q waveform data is
interleaved into one file in 2’s compliment form and a marker file is associated
with this I/Q waveform file.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

In the Qut put commands, USI NG “#, K’ formats the data. The pound symbol
(#) suppresses the automatic EOL (End of Line) output. This allows multiple
output commands to be concatenated as if they were a single output. The “K”
instructs HP BASIC to output the following numbers or strings in the default
format.

10 ! RE-SAVE "UNIX_ file"

20 Num_points=200

30 ALLOCATE INTEGER Int_array(l:Num_points*2)

40 DEG

50 FOR I=1 TO Num_points*2 STEP 2

60 Int_array(I)=INT(32767*(SIN(I*360/Num_points)))
70 NEXT I

80 FOR I=2 TO Num_points*2 STEP 2

90 Int_array(I)=INT(32767*(COS(I*360/Num_points)))
100 NEXT I

110 PRINT "Data generated "

120 Nbytes=4*Num_points

130 ASSIGN @PSG TO 719;FORMAT ON

140 ASSIGN @PSGb TO 719;FORMAT OFF

150 Nbytes$=VAL$(Nbytes)

160 Ndigits=LEN(Nbytes$)

170 Ndigits$=VAL$(Ndigits)

180 WAIT 1

190 OUTPUT @PSG USING "#,K";":MMEM:DATA ""WFMl:data_file"",#"
200 OUTPUT @PSG USING "#,K";Ndigits$

210 OUTPUT @PSG USING "#,K";Nbytes$

220 WAIT 1

230 OUTPUT @PSGb;Int_array(*)

240 WAIT 2

241 OUTPUT @PSG;END

250 ASSIGN @PSG TO *

260 ASSIGN @PSGb TO *

270 PRINT

280 PRINT "*END*"

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 311

312

Creating and Downloading Waveform Files
Programming Examples

END

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for | and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for | waveform points.

60: Calculate and interleave | waveform points.

70: End of loop

80 Sets up second loap for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an 10 path to the signal generator using GPIB. 7 is the address of the GPIB card in the computer,
and 19 is the address of the signal generator. This |0 path is used to send ASCII data to the signal
generator.

140: Opens an 10 path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file, dat a_f i | e, that
will receive the waveform data. The name, dat a_fi | e, will appear in the signal generator's memory
catalog.

20010 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that PSGb is the binary |0 path.

240: Sends an End-of-Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.

Creating and Downloading E443xB Waveform Data Using HP BASIC for
Windows

The following program shows you how to download waveforms using HP Basic
for Windows into volatile ARB memory. This program is similar to the following
program example as well as the previous examples. The difference between
BASIC for UNIX and BASIC for Windows is the way the formatting, for the most
significant bit (MSB) on lines 110 and 120, is handled.

To download into non-volatile ARB memory, replace line 160 with:
160 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVARBI:testfile"", #"

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

and replace line 210 with:
210 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVARBQ:testfile"", #"

First, the | waveform data is put into an array of integers called | wf m dat a and
the Q waveform data is put into an array of integers called Qwfm_data. The
variable Noyt es is set to equal the number of bytes in the | waveform data.
This should be twice the number of integers in | wf m dat a, since an integer is
2 bytes. Input integers must be between O and 16383.

In the Qut put commands, USI NG “#, K’ formats the data. The pound symbol
(#) suppresses the automatic EOL (End of Line) output. This allows multiple
output commands to be concatenated as if they were a single output. The “ K’
instructs HP Basic to output the following numbers or strings in the default
format.

10 | RE-SAVE "ARB_IQ Win_ file"
20 Num_points=200

30 ALLOCATE INTEGER
Iwfm_data(1:Num_points),Qwfm_data(l:Num_points)

40 DEG
50 FOR I=1 TO Num_points

60 Iwfm_data(I)=INT(8191*(SIN(I*360/Num_points))+8192)
70 Qwfm_data(I)=INT(8191*(COS(I*360/Num_points))+8192)
80 NEXT I

90 PRINT "Data Generated"

100 Nbytes=2*Num_points

110 ASSIGN @Esg TO 719

120 IASSIGN @Esgb TO 719;FORMAT MSB FIRST

130 Nbytes$=VAL$ (Nbytes)

140 Ndigits=LEN(Nbytes$)

150 Ndigits$=VAL$(Ndigits)

160 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBI:file_name_1"",6#"
170 OUTPUT @Esg USING "#,K";Ndigits$

180 OUTPUT @Esg USING "#,K";Nbytes$

190 OUTPUT @Esgb;Iwfm_data(*)

200 OUTPUT @Esg;END

210 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBQ:file_name_1"",6#"
220 OUTPUT @Esg USING "#,K";Ndigits$

230 OUTPUT @Esg USING "#,K";Nbytes$

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 313

314

Creating and Downloading Waveform Files
Programming Examples

240 OUTPUT @Esgb;Qwfm_data(*)
250 OUTPUT @Esg;END

260 ASSIGN @Esg TO *

270 ASSIGN @Esgb TO *

280 PRINT

290 PRINT "*END*"

300 END

Program Comments

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for | and Q waveform points. Sets them to be integer arrays.
40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates | waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: The | and Q waveform files have the same name

90 to 300: See the table on page 309 for program comments.

Creating and Downloading E443xB Waveform Data Using HP Basic for
UNIX

This programming example’s name is “e443xb_hpbasicUx2.txt” This example
is not included on the Documentation CD.

The following program shows you how to download waveforms using HP
BASIC for UNIX. It is similar to the previous program example. The difference is
the way the formatting for the most significant bit (MSB) on lines is handled.

First, the | waveform data is put into an array of integers called | wf m dat a and
the Q waveform data is put into an array of integers called QM m dat a. The
variable Noyt es is set to equal the number of bytes in the | waveform data.
This should be twice the number of integers in | wf m dat a, since an integer is
represented 2 bytes. Input integers must be between 0 and 16383.

In the Qut put commands, USI NG “#, K’ formats the data. The pound symbol
(#) suppresses the automatic EOL (End of Line) output. This allows multiple
output commands to be concatenated as if they were a single output. The “K”
instructs HP BASIC to output the following numbers or strings in the default
format.

10 ! RE-SAVE "ARB_IQ file"

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Programming Examples

20 Num_points=200

30 ALLOCATE INTEGER
Iwfm_data(l:Num_points),Qwfm_data(1l:Num_points)

40 DEG
50 FOR I=1 TO Num_points

60 Iwfm_data(I)=INT(8191*(SIN(I*360/Num_points))+8192)
70 Qwfm_data(I)=INT(8191*(COS(I*360/Num_points))+8192)
80 NEXT I

90 PRINT "Data Generated"

100 Nbytes=2*Num_points

110 ASSIGN @Esg TO 719;FORMAT ON

120 ASSIGN @Esgb TO 719;FORMAT OFF
130 Nbytes$=VAL$(Nbytes)

140 Ndigits=LEN(Nbytes$)

150 Ndigits$=VAL$(Ndigits)

160 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBI:file_name_1"",6#"
170 OUTPUT @Esg USING "#,K";Ndigits$
180 OUTPUT @Esg USING "#,K";Nbytes$
190 OUTPUT @Esgb;Iwfm_data(*)

200 OUTPUT @Esg;END

210 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBQ:file_name_1"",6#"
220 OUTPUT @Esg USING "#,K";Ndigits$
230 OUTPUT @Esg USING "#,K";Nbytes$
240 OUTPUT @Esgb;Qwfm_data(*)

250 OUTPUT @Esg;END

260 ASSIGN @Esg TO *

270 ASSIGN @Esgb TO *

280 PRINT

290 PRINT "*END*"

300 END

Program Comments

10: Program file name.

20 Sets the number of points in the waveform.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 315

Creating and Downloading Waveform Files
Programming Examples

Program Comments (Continued)

30: Defines arrays for | and Q waveform points. Sets them to be integer arrays.
40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates | waveform points.

70: Calculates Q waveform paints.

80: End of loop.

160 and 210: The I and Q waveform files have the same name

90 to 300 See the table on page 312 for program comments.

316 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading Waveform Files
Troubleshooting Waveform Files

Troubleshooting Waveform Files

Symptom

Possible Cause

ERROR 224, Text file busy

Attempting to download a waveform that has the same name as the waveform
currently being played by the signal generator.

To solve the problem, either change the name of the waveform being downloaded
or turn off the ARB.

ERROR 628, DAC over range

The amplitude of the signal exceeds the DAC input range. The typical causes are
unforeseen overshoot (DAC values within range) or the input values exceed the DAC
range.

To solve the problem, scale or reduce the DAC input values. For more information,
see “DAC Input Values” on page 209.

This error can also occur if an encrypted file (. SECUREWAVE) is being downloaded
to the signal generator from a PC or USB Media with a different suffix (i.e. not
SECUREWAVE).

To solve the problem, use the Use as or Copy File to Instrument softkey
menus to download the encrypted file to the instrument. For more information, see
“Encrypted I/Q Files and the Securewave Directory” on page 226.

ERROR 629, File format invalid

The signal generator requires a minimum of 60 samples to build a waveform and
the same number of | and Q data points.

ERROR -321, Out of memory

There is not enough space in the ARB memary for the waveform file being
downloaded.

To solve the problem, either reduce the file size of the waveform file or delete
unnecessary files from ARB memory. Refer to “” on page 220.

No RF Output

The marker RF blanking function may be active. To check for and turn RF blanking
off, refer to “Configuring the Pulse/RF Blank” on page 318. This problem
occurs when the file header contains unspecified settings and a previously played
waveform used the marker RF blanking function.

For more information on the marker functions, see the User’s Guide.

Undesired output signal

Check for the following:

— The data was downloaded in little endian order. See “Little Endian
and Big Endian (Byte Order)” on page 207 for more information.

— The waveform contains an odd number of samples. An odd number
of samples can cause waveform discontinuity. See “Waveform
Phase Continuity” on page 217 for more information.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 317

Creating and Downloading Waveform Files
Troubleshooting Waveform Files

Configuring the Pulse/RF Blank

If the default marker is used,

Mode toggle the Pulse/RF Blank (None)
Arb softkey to None. For more
¢ aRE information on markers, refer to
on “Marker File” on page 214.
Nodulation Hode ArD
Select
Oual AREM HaweFarm®)
Marker Polaritus Harker Routing]
Feal Time I/0 BRE SetupM Pulse/RF Blank
BaSBEEBH' Marker Routingw > (Hore) ™
Triooer Tupe
(Cont inuous , ¥ ALC Hold’
“““‘“‘\\A‘ Free Run) Sat. MarkersH (Maone)

> Trioger Source
(ExE 3" V"‘“\...
L R T e VPR
Hore 1 of 3 Syl |

Select Dual Arb > More > Marker Utilities on X-Series
signal generators to access this menu.

SCPI commands:

[:SOURce]:RADio[1]:ARB:MDEStination:PULSe NONE|M1|M2|M3|M4
[:SOURce]:RADio[1]:ARB:MDEStination:PULSe?

For details on each key, use the key help. Refer to “Getting Key Help” on page 30 and the User’s Guide. For additional SCPI command
information, refer to the SCPI Command Reference.

318 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Keysight Technologies
X-Series Signal Generators

Programming Guide

6 Creating and Downloading User-Data Files

NOTE The following sections and procedures contain remote SCPI commands.
For front panel key commands, refer to the Key Help in the signal
generator.

This chapter explains the requirements and processes for creating and
downloading user data, and contains the following sections:

— User File Data (Bit/Binary) Downloads on page 327

— Pattern RAM (PRAM) Data Downloads on page 346

— FIR Filter Coefficient Downloads on page 360

— Using the Equalization Filter on page 364

— Save and Recall Instrument State Files on page 365

— User Flatness Correction Downloads Using C++ and VISA on page 379

— Data Transfer Troubleshooting on page 384

KEYSIGHT

TECHNOLOGIES

319

Overview

320

Creating and Downloading User-Data Files

Overview

User data is a generic term for various data types created by the user and
stored in the signal generator. This includes the following data (file) types:

Bit

Binary

PRAM

FIR Filter
State

User Flatness
Correction

This file type lets the user download payload data for
use in streaming or framed signals. It lets the user
determine how many bits in the file the signal generator
uses.

This file type provides payload data for use in streaming
or framed signals. It differs from the bit file type in that
you cannot specify a set number of bits. Instead the
signal generator uses all bits in the file for streaming
data and all bits that fill a frame for framed data. If there
are not enough bits to fill a frame, the signal generator
truncates the data and repeats the file from the
beginning.

With this file type, the user provides the payload data
along with the bits to control signal attributes such as
bursting. This file type is available for only the real-time
Custom and TDMA modulation formats.

This file type stores user created custom filters.

This file type lets the user store signal generator
settings, which can be recalled. This provides a quick
method for reconfiguring the signal generator when
switching between different signal setups.

This file type lets the user store amplitude corrections
for frequency.

Prior to creating and downloading files, you need to take into consideration the
file size and the amount of remaining signal generator memory. For more
information, see “Signal Generator Memory” on page 321

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Signal Generator Memory

Signal Generator Memory

The signal generator provides two types of memory, volatile and non-volatile.

User FIR references are only applicable to vector signal generator models
with an installed baseband generator option.

Volatile Random access memory that does not survive cycling
of the signal generator power. This memory is
commonly referred to as waveform memory (WFM1) or
pattern RAM (PRAM). Refer to Table 6-1 for the file
types that share this memory:

Table 6-1 Signal Generators and Volatile Memory File Types

Volatile Memory Type Signal Generator Model
N5166B and N5182B with
N5172B with Option 656 or 657
Option 653 or 655

1/Q X X

Marker X X

File header X X

User PRAM - -

User Binary X X

User Bit - -

Waveform Sequences n/ad n/a

(multiple 1/Q files played together)

a. Waveform sequences are always in non-volatile memory.

Non-volatile Storage memory where files survive cycling of the signal
generator power. Files remain until overwritten or
deleted. Refer to Table on page 322 for the file types
that share this memory:

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 321

Creating and Downloading User-Data Files
Signal Generator Memory

Table 6-2 Signal Generators and Non-Volatile Memory Types

Non-Volatile Memory Type Signal Generator Model
N5166B and N5182B with
N5172B with Option 656 or 657
Option 653 or 655

1/Q X X

Marker X X

File header X X

Sweep List X X

User PRAM - X

User Binary X X

User Bit - X

User FIR X X

Instrument State X X

Waveform Sequences X X

(multiple 1/Q files played together)

The following figure shows the signal generator’s directory structure for the
user—data files.

Root directory

Keysight X-Series signal generator: Internal | _-'J
Storage media ¢ Volatile memory directory
(i.e. Nonvolatile memory) USER \

S Do o =

BIN FIR STATE USERFLAT WAVEFORM

Y Volatile memory data

X-Series signal generator USB media:

File listing with extensions2 (WFM1)
..--""
WAVEFORM/PRAM
Y
_______j -— Keysight MXG!
NONVOLATILE

1. This NONVOLATILE directory shows the files with the same extensions as the USB media and is useful with ftp.
2. The Keysight X-Series signal generator can use optional “USB media” to store non-volatile waveform data.

322 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Signal Generator Memory

Memory Allocation

Volatile Memory

The signal generator allocates volatile memory in blocks of 1024 bytes. For
example, a user—data file with 60 bytes uses 1024 bytes of memory. For a file
that is too large to fit into 1024 bytes, the signal generator allocates additional
memory in multiples of 1024 bytes. For example, the signal generator allocates
3072 bytes of memory for a file with 2500 bytes.

3 x 1024 bytes = 3072 bytes of memory

As shown in the examples, files can cause the signal generator to allocate
more memory than what is actually used, which decreases the amount of
available memory.

User—data blocks consist of 1024 bytes of memory. Each user-data file has a
file header that uses 512 bytes for the Keysight X-Series signal generator, or
256 bytes for the ESG/PSG in the first data block for each user-data file.

Non-Volatile Memory

Non-volatile files are stored on the non-volatile internal signal generator
memory (i.e. internal storage) or to the USB media, if available. The Keysight
X-Series signal generator non-volatile internal memory is allocated according
to a Microsoft compatible file allocation table (FAT) file system. The signal
generator allocates non-volatile memory in clusters according to the drive size
(see Table 6-3). For example, referring to Table 6-3, if the drive size is 15 MB
and if the file is less than or equal to 4k bytes, the file uses only one 4 KB
cluster of memory. For files larger than 4 KB, and with a drive size of 15 MB,
the signal generator allocates additional memory in multiples of 4KB clusters.
For example, a file that has 21,538 bytes consumes 6 memory clusters (24,000
bytes).

On the Keysight X-Series signal generators, the non-volatile memory is also
referred to as internal storage and USB media. The Internal and USB media
files /USERS/NONVOLATILE Directory contains file names with full extensions
(i.e. .marker, .header, etc.).

For more information on default cluster sizes for FAT file structures, refer to
Table 6-3 and to http://support.microsoft.com/.

Table 6-3 Drive Size and Non-volatile Memory Clusters

Drive Size (logical volume) | Cluster Size (Bytes)
(Minimum Allocation Size)

OMB-15MB 4K
16 MB - 127 MB 2K
128 MB - 255 MB 4K
256 MB - 511 MB 8K

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 323

Creating and Downloading User-Data Files
Signal Generator Memory

Table 6-3 Drive Size and Non-volatile Memory Clusters
Drive Size (logical volume) | Cluster Size (Bytes)
(Minimum Allocation Size)

512 MB - 1023 MB 16k

1024 MB - 2048 MB 32K

2048 MB - 4096 MB 64K

4096 MB - 8192 MB 128K

8192 MB - 16384 MB 256K

Memory Size

The amount of available memory, volatile and non-volatile, varies by signal
generator option and the size of the other files that share the memory. The
baseband generator (BBG) options contain the volatile memory. Table 6-4
shows the maximum available memory assuming that there are no other files
residing in memory.

324 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Signal Generator Memory

Table 6-4

Maximum Signal Generator Memory

Volatile (WFM1/PRAM) Memory

Non-Volatile (NVWFM) Memory

Option Size Option Size
N5166B
653, 655 (BBG) | 32 MSa (160 MB) Standard 600 MSa (3 GB)
009 7.5GSa (30 GB)

022

512 MSa (2.5 GB)

USB Flash Drive (UFD)

user determined

N5172B and N5182B

653, 655, 656,
657 (BBG)

32 MSa (160 MB)

Standard
006
009

600 MSa (3 GB)
2 GSa (8 GB)
7.5 GSa (30 GB)

021 (72B only)
022
023 (828 only)

256 MSa (1.25 GB)
512 MSa (2.5 GB)
1024 MSa (5 GB)

USB Flash Drive (UFD)

user determined

Checking Available Memory

Whenever you download a user-data file, you must be aware of the amount of
remaining signal generator memory. Table 6-5 shows to where each user-data

file type is downloaded and from which memory type the signal generator

accesses the file data. Information on downloading a user-data file is located

within each user-data file section.

The FIR filter (file) types only apply to vector signal generator models with
an installed baseband generator option.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

325

Creating and Downloading User-Data Files
Signal Generator Memory

Table 6-5 User-Data File Memory Location
User-Data File | Download Access
Type Memory Memory
Bit Non-volatile | Volatile
Binary Non-volatile | Volatile
PRAM Volatile Volatile
Instrument Non-volatile | Non-volatile
State
FIR Non-volatile | Non-volatile
Flatness Non-volatile | Non-volatile

Bit and binary files increase in size when the signal generator loads the data
from non-volatile to volatile memory. For more information, see “User File
Size” on page 332.

Use the following SCPI commands to determine the amount of remaining
memory:

Volatile Memory : MVEM CAT? “ WFML”
The query returns the following information:

<menory used>, <nenory
remai ni ng>, <“fil e_nanmes”>

Non-Volatile Memory : MEM CAT: ALL?
The query returns the following information:

<menory used>, <nenory
remai ni ng>, <*fil e_names”>

The signal generator calculates the memory values based on the number
of bytes used by the files residing in volatile or non-volatile memory, and
not on the memory block allocation. To accurately determine the available
memory, you must calculate the number of blocks of memory used by the
files. For more information on memory block allocation, see “Memory
Allocation” on page 323.

326 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

User File Data (Bit/Binary) Downloads

If you encounter problems with this section, refer to “Data Transfer
Troubleshooting” on page 384.

To verify the SCPI parser’s responsiveness when remotely using the
:MEM:DATA SCPI command to upload files, the file’s upload should be
verified using the *STB? command. Refer to the SCPI Command Reference.

The signal generator accepts externally created and downloaded user file data
for real-time modulation formats that have user file as a data selection (shown
as <“file_name”> in the data selection SCPI command). When you select a user
file, the signal generator incorporates the user file data (payload data) into the
modulation format’s data fields. You can create the data using programs such
as MATLAB or Mathcad.

The signal generator uses two file types for downloaded user file data: bit and
binary. With a bit file, the signal generator views the data up to the number of
bits specified when the file was downloaded. For example, if you specify to use
153 bits from a 160 bit (20 bytes) file, the signal generator transmits 153 bits
and ignores the remaining 7 bits. This provides a flexible means in which to
control the number of transmitted data bits. It is the preferred file type and the
easiest one to use.

With a binary file, the signal generator sees all bytes (bits) in a downloaded file
and attempts to use them. This can present challenges especially when
working with framed data. In this situation, your file needs to contain enough
bits to fill a frame or timeslot, or multiple frames or timeslots, to end on the
desired boundary. To accomplish this, you may have to remove or add bytes. If
there are not enough bits remaining in the file to fill a frame or timeslot, the
signal generator truncates the data causing a discontinuity in the data pattern.

You download a user file to either the Bit or Binary memory catalog (directory).
Unlike a PRAM file (covered later in this chapter), user file data does not
contain control bits, it is just data. The signal generator adds control bits to the
user file data when it generates the signal. There are two ways that the signal
generator uses the data, either in a continuous data pattern (unframed) or
within framed boundaries. Real-time Custom uses only unframed data.

For unframed data transmission, the signal generator requires a minimum
of 60 symbols. For more information, see “Determining Memory Usage for
Custom User File Data” on page 333.

You create the user file to either fill a single timeslot/frame or multiple

timeslots/frames. To create multiple timeslots/frames, simply size the file with
enough data to fill the number of desired timeslots/frames

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 327

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

User File Bit Order (LSB and MSB)

The signal generator views the data from the most significant bit (MSB) to the
least significant bit (LSB). When you create your user file data, it is important
that you organize the data in this manner. Within groups (strings) of bits, a bit’s
value (significance) is determined by its location in the string. The following
shows an example of this order using two bytes.

Most Significant Bit (MSB) This bit has the highest value (greatest weight) and is located at the far left of
the bit string.

Least Significant Bit (LSB) This bit has the lowest value (bit position zero) and is located at the far right of
the bit string.

Bit Position 1514 1312 11 10 9 8 7 6 5 4 3 2 1 0
Data 1 01 101 1111101001

/‘ X

MSB LSB

Bit File Type Data

The bit file is the preferred file type and the easiest to use. When you download
a bit file, you designate how many bits in the file the signal generator can
modulate onto the signal. During the file download, the signal generator adds
a 10-byte file header that contains the information on the number of bits the
signal generator is to use.

Although you download the data in bytes, when the signal generator uses the
data, it recognizes only the bits of interest that you designate in the SCPI
command and ignores the remaining bits. This provides greater flexibility in
designing a data pattern without the concern of using an even number of bytes
as is needed with the binary file data format. The following figure illustrates this
concept. The example in the figure shows the bit data SCPI command
formatted to download three bytes of data, but only 23 bits of the three bytes
are designated as the bits of interest. (For more information on the bit data
SCPI command format, see “Downloading User Files” on page 334 and
“Commands for Bit File Downloads” on page 338.)

SCPI Command :MEM:DATA:BIT <"file_name">,<bit_interest>,<datablock>

:MEM:DATA:BIT "3byte",23, # 1/3[28x|

¢ ASCII representation of the data (3 bytes)
Start block data’ number of bytes
number of decimal digits

Bits of interest
Downloaded Data: [01011010001001100111100]|0 4—__ Ignored bit (LSB

MSB - W—/ \W \W

)

Byte 1 Byte 2 Byte 3
Hex Value: 5A 26 78
ASCII Representation: Z & X

328 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

The following figure shows the same downloaded data from the above example
as viewed in the signal generator’s bit file editor (see the users cuide for more
information) and with using an external hex editor program.
SCPI command to download the data :MEM:DATA:BIT "3byte",23,#13Z8&x
As Seen in the Signal Generator’s Bit File Editor

FREQUENCY AMPLITUDE
4.000 00000000 sz | -136.00 den
’7 ron Designated number of bits
0 L—
|
Bit File Editor Pos:0 (size:zz FEVTE Hex values
Offset Binary Data/” Hex Data —
0 | E101 1010 0010 0110 0111 100 [SAZE7E
20
H Bit data

As S in a Hex Edit
S Seen in a Hex Editor Designated number of bits (hex value = 23 decimal)

58 01|00 00 00 00 00 00 00 17|5a 26 78
N \ﬁ!
10 byte file header 3 bytes of data
(added by signal generator)

In the bit editor, notice that the ignored bit of the bit-data is not displayed,
however the hex value still shows all three bytes. This is because bits 1 through
7 are part of the first byte, which is shown as ASCII character x in the SCP!I
command line. The view from the hex editor program confirms that the
downloaded three bytes of data remains unchanged. To view a downloaded bit
file with an external hex editor program, FTP the file to your PC/UNIX
workstation. For information on how to FTP a file, see “FTP Procedures” on
page 342.

Even though the signal generator views the downloaded data on a bit basis, it
groups the data into bytes, and when the designated number of bits is not a

multiple of 8 bits, the last byte into one or more 4-bit nibbles. To make the last
nibble, the signal generator adds bits with a value of zero. The signal generator
does not show the added bits in the bit editor and ignores the added bits when
it modulates the data onto the signal, but these added bits do appear in the

hex value displayed in the bit file editor. The following example, which uses the

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 329

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

same three bytes of data, further demonstrates how the signal generator

displays the data when only two bits of the last byte are part of the bits of
interest.

SCPI command to download the data :MEM:DATA:BIT "3byte",18,#13Z2&x

Designated 18 bits
Downloaded Data: 40101101000100110,0111100 0w
LSB

MSB Y
Byte 1 Byte 2 Byte 3
Hex Value: 5A 26 78

As Seen in the Signal Generator’s Bit File Editor

FREQUENCY AMPLITUDE :
Added bits
4.000000 00000 & | -136.00 den as seen in
. | he h |
Designated number of bits HH" the hex value
| A ' / Hex value changes to 5A264 J
N
Bit File Editor Fos:0 (sizer1a) BVTE KO 101101 OQO 100110,01[0 0]
Offsel ~ Binary I]at(lm/ WJW—)
23 0101 1010 0010 0110 m] . \ 5,4.25“), Byte 1 Byte 2 Nibble
Designated bits 5A 26 4

As Seen in a Hex Editor Designated number of bits (hex value = 18 decimal)

58 01|00 00 00 00 00 00 00 12} 5a 26 78,_ |
|\ | 1:%h/ |

N v
10 byte file header 3 bytes of data
(added by signal generator)

Notice that the bit file editor shows only two bytes and one nibble. In addition,
the signal generator shows the nibble as hex value 4 instead of 7 (78 is byte 3—
ASCII character x in the SCPI command line). This is because the signal
generator sees bits 17 and 18, and assumes bits 19 and 20 are 00. As viewed
by the signal generator, this makes the nibble 0100. Even though the signal
generator extrapolates bits 19 and 20 to complete the nibble, it ignores these
bits along with bits 21 through 24. As seen with the hex editor program, the
signal generator does not actually change the three bytes of data in the
downloaded file.

For information on editing a file after downloading, see “Modifying User File
Data” on page 341.

330 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

Binary File Type Data

With the Binary file type, the signal generator sees all of the bytes within the
downloaded file and attempts to use all of the data bits. When using this file
type, the biggest challenge is creating the data so that the signal generator
uses all of the bits (bytes) contained within the file. This is referred to as using
an even number of bytes. The method of creating the user file data pattern
depends on whether you are using unframed or framed data. The following two
sections illustrate the complexities of using the binary file format. You can
eliminate these complexities by using the bit file format (see “Bit File Type
Data” on page 328).

Unframed Binary Data

When creating unframed data, you must think in terms of bits per symbol; so
that your data pattern begins and ends on the symbol boundary, with an even
number of bytes. For example, to use T6QQAM modulation, the user file needs to
contain 32 bytes:

— enough data to fill 16 states 4 times
— end on a symbol boundary

— create 64 symbols (the signal generator requires a minimum of 60 symbols
for unframed data)

To do the same with 32QAM, requires a user file with 40 bytes.

When you do not use an even number of bytes, the signal generator repeats
the data in the same symbol where the data stream ends. This means that your
data would not end on the symbol boundary, but during a symbol. This makes
it harder to identify the data content of a symbol. The following figure
illustrates the use of an uneven number of bytes and an even number of bytes.

Unframed Data
MSB LSB

Datapattern: 1 0 1 1 01 1 011001100

Uneven Number of Bytes
: Data repeats during a symbol :
32QAM 5 bits/symbol: lOllo&lOl1801100:1011811011001100:101
Symbol Symbol Symbol : Symbol Symbol Symbol Sypbol

Using an uneven number of bytes makes it harder to identify the data within a symbol.

Even Number of Bytes

: Data repeats at the symbol boundary

16QAM 4 bits/symbol: 1 0 1 1. 011011001 100'101101103110001100 Datg
’ : repeats
Symbol Symbol Symbol Symbol * Symbol Symbol Symbol Symbol

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 331

332

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

Framed Binary Data

When using framed data, ensure that you use an even number of bytes and
that the bytes contain enough bits to fill the data fields within a timeslot or
frame. When there are not enough bits to fill a single timeslot or frame, the
signal generator replicates the data pattern until it fills the timeslot/frame.

The signal generator creates successive timeslots/frames when the user file
contains more bits than what it takes to fill a single timeslot or frame. When
there are not enough bits to completely fill successive timeslots or frames, the
signal generator truncates the data at the bit location where there is not
enough bits remaining and repeats the data pattern. This results in a data
pattern discontinuity. For example, a frame structure that uses 348 data bits
requires a minimum file size of 44 bytes (352 bits), but uses only 43.5 bytes
(348 bits). In this situation, the signal generator truncates the data from bit 3 to
bit O (bits in the last byte). Remember that the signal generator views the data
from MSB to LSB. For this example to have an even number of bytes and
enough bits to fill the data fields, the file needs 87 bytes (696 bits). This is
enough data to fill two frames while maintaining the integrity of the data
pattern, as illustrated in the following figure.

Framed Data

Uneven Number of Bytes
(some data truncated)

Frame 1 Frame 2
348 data bits ‘ ctrl ‘ |Ctrl | 348 data bits ‘ ctrl ‘
352 bits (44 bytes): 110100110110...01101111 LSB Frame 1 data repeated

~
Frame 1 data Truncated data (bits 0—3)

MSB not enough bits remaining to fill the next frame

Even Number of Bytes

(all bits used)
Frame 1 Frame 2

348 data bits ‘ Ctrl | |Ctrl | 348 data bits ‘ Ctrl ‘

696 bits (87 bytes): 011101100110110101110100110110...01101111

Data fills both frames (348 bits per frame) with no truncated bits

For information on editing a file after downloading, see “Modifying User File
Data” on page 341.

User File Size

For Custom, when the signal generator creates the signal, it loads the data
from non-volatile memory into volatile memory, which is also the same
memory that the signal generator uses for Arb—based waveforms. For user
data files, volatile memory is commonly referred to as pattern ram memory
(PRAM). Because Custom user files use volatile memory, their maximum file
size depends on the baseband generator (BBG) option and the amount of
available PRAM (volatile memory that resides on the BBG). Table 6-6 shows
the maximum user file size for each baseband generator memory option.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

Table 6-6 Maximum User File Size
Modulation Baseband Generator Memory Option
Format Standard | 021 022 023
Custom?@ 32 MB 256 MB 512 MB 1024 MB

a. File size with no other files residing in volatile memory.

For more information on signal generator memory, see “Signal Generator
Memory” on page 321. To determine how much memory is remaining in non-
volatile and volatile memory, see “Checking Available Memory” on page 325.

Determining Memory Usage for Custom User File Data

For Custom user files, the signal generator uses both non-volatile and volatile
(PRAM/waveform) memory: you download the user file to non-volatile
memory. To determine if there is enough non-volatile memory, check the
available non-volatile memory and compare it to the size of the file to be
downloaded.

After you select a user file and turn the format on, the signal generator loads
the file into volatile memory for processing:

— It translates each data bit into a 32-bit word (4 bytes).

The 32-bit words are not saved to the original file that resides in non-
volatile memory.

— It creates an expanded data file named AUTOGEN_PRAM_1 in volatile
memory while also maintaining a copy of the original file in volatile memory.
It is the AUTOGEN_PRAM_1 file that contains the 32-bit words and
accounts for most of the user file PRAM memory space.

— If the transmission is using unframed data and there are not enough bits in
the data file to create 60 symbols, the signal generator replicates the data
pattern until there is enough data for 60 symbols. For example, GSM uses 1
bit per symbol. If the user file contains only 24 bits, enough for 24 symbols,
the signal generator replicates the data pattern two more times to create a
file with 72 bits. The expanded AUTOGEN_PRAM_T1 file size would show 288
bytes (72 bits x 4 bytes/bit).

Calculating Volatile Memory (PRAM) Usage for Unframed Data

Use this procedure to calculate the memory size for either a bit or binary file.
To properly demonstrate this process, the procedure employs a user file that
contains 70 bytes (560 bits), with the bit file using only 557 bits.

1. Determine the AUTOGEN_PRAM _1 file size:

The signal generator creates a 32-bit word for each user file bit (1 bit
equals 4 bytes).

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 333

334

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

Binary file 4 bytes x (70 bytes x 8 bits) = 2240 bytes
Bit file 4 bytes x 557 bits= 2228 bytes

2. Calculate the number of memory blocks that the AUTOGEN_PRAM_1 file
will occupy:

Volatile memory allocates memory in blocks of 1024 bytes.
Binary file 2240 / 1024 = 2.188 blocks
Bit file 2228 /1024 = 2.176 blocks
3. Round the memory block value to the next highest integer value.

For this example, the AUTOGEN_PRAM_1 file will use three blocks of
memory for a total of 3072 bytes.

4. Determine the number of memory blocks that the copy of the original file
occupies in volatile memory.

For this example the bit and binary file sizes are shown in the following list:
— Binary file = 70 bytes < 1024 bytes = 1T memory block
— Bit file = 80 bytes < 1024 bytes = 1 memory block
Remember that a bit file includes a 10-byte file header.

5. Calculate the total volatile memory occupied by the user file data:

AUTOGEN_PRAM Original File
1

3 blocks 1 block

1024 (3 + 1) = 4096 bytes

Downloading User Files

The signal generator expects bit and binary file type data to be downloaded as
block data (binary data in bytes). The |EEE standard 488.2-1992 section 7.7.6
defines block data.

This section contains two examples to explain how to format the SCPI
command for downloading user file data. The examples use the binary user file
SCPI command, however the concept is the same for the bit file SCPI
command:

— Command Format
— “Command Format in a Program Routine” on page 335

Command Format

This example conceptually describes how to format a data download command
(#ABC represents the block data):

: MEM DATA <"fil e_nane" >, #ABC

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

<"fil e_nane"> the data file path and name

indicates the start of the block data

A the number of decimal digits present in B

B a decimal number specifying the number of data bytes
to follow in C

C the file data in bytes

:MEM:DATA ‘“bin:my file”

| ,#324012%S5!14&07#8g*Yo@7. . .

R | I
| | [] |

file location file_name A B C

bi n: the location of the file within the signal generator file
system

ny _file the data file name as it will appear in the signal
generator’s memory catalog

indicates the start of the block data

3 B has three decimal digits

240 240 bytes (1,920 bits) of data to follow in C

1298! 4&07#89* YO@ . . . the ASCII representation of some of the
block data (binary data) downloaded to the signal
generator, however not all ASCII values are printable

In actual use, the block data is not part of the command line as shown above,
but instead resides in a binary file on the PC/UNIX. When the program
executes the SCPI command, the command line notifies the signal generator
that it is going to receive block data of the stated size and to place the file in
the signal generator file directory with the indicated name. Immediately
following the command execution, the program downloads the binary file to
the signal generator. This is shown in the following section, “Command Format
in a Program Routine”

Some commands are file location specific and do not require the file location as
part of the file name. An example of this is the bit file SCPI command shown in
“Commands for Bit File Downloads” on page 338.

Command Format in a Program Routine

This section demonstrates the use of the download SCPI command within the
confines of a C++ program routine. The following code sends the SCPI
command and downloads user file data to the signal generator’s Binary
memory catalog (directory).

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 335

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

Line Code-Download User File Data
1 i nt bytesToSend,;
2 byt esToSend = nunsanpl es;
3 char s[20];
4 char cnd[200];
5 sprintf(s, "%l", bytesToSend);
6 sprintf(cnmd, ": MEM DATA \"BIN FILEL\", #%%l", strlen(s),
7 byt esToSend) ;
8 iwite(id, cmd, strlen(cnd), 0, 0);
9 iwite(id, databuffer, bytesToSend, 0, 0);

iwite(id, "\n", 1, 1, 0);

Line Code Description—Download User File Data
1 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal
generator.
2 Calculate the total number of bytes, and store the value in the integer variable defined in line 1.
3 Create a string large enough to hold the bytesToSend value as characters. In this code, string s is

set to 20 bytes (20 characters—one character equals one byte)

4 Create a string and set its length (cma[200]) to hold the SCPI command syntax and parameters. In
this code, we define the string length as 200 bytes (200 characters).

5 Store the value of bytesToSend in string s. For example, if bytesToSend = 2000; s = "2000".

sprintf() is a standard function in C++, which writes string data to a string variable.

6 Store the SCPI command syntax and parameters in the string emd. The SCPI command prepares
the signal generator to accept the data.
— strlen() is a standard function in C++, which returns length of a string.

— If bytesToSend = 2000, then s = “2000”, strlen(s) = 4, so
cmd = :MEM:DATA "BIN:FILET\” #42000.

7 Send the SCPI command stored in the string cmd to the signal generator contained in the variable

id.

— iwrite() is a SICL function in Keysight 10 library, which writes the data (block data)
specified in the string cmd to the signal generator.

— The third argument of iwrite(), strlen(cmd), informs the signal generator of the
number of bytes in the command string. The signal generator parses the string to
determine the number of data bytes it expects to receive.

— The fourth argument of iwrite(), 0, means there is no END of file indicator for the
string. This lets the session remain open, so the program can download the user
file data.

336 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

Line

Code Description—-Download User File Data

Send the user file data stored in the array (databuffer) to the signal generator.

— iwrite() sends the data specified in databuffer to the signal generator (session
identifier specified in id).

— The third argument of iwrite(), bytesToSend, contains the length of the databuffer
in bytes. In this example, it is 2000.

— The fourth argument of iwrite(), 0, means there is no END of file indicator in the
data.

In many programming languages, there are two methods to send SCPI commands
and data:

— Method 1 where the program stops the data download when it encounters
the first zero (END indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores
any zeros in the data. This is the method used in our program.

For your programming language, you must find and use the equivalent of method
two. Otherwise you may only achieve a partial download of the user file data.

Send the terminating carriage (\n) as the last byte of the waveform data.

— iwrite() writes the data “\n” to the signal generator (session identifier specified in
id).
— The third argument of iwrite(), 1, sends one byte to the signal generator.

— The fourth argument of iwrite(), 1, is the END of file indicator, which the program
uses to terminate the data download.

To verify the user file data download, see “Commands for Bit File Downloads” on page 338
and “Commands for Binary File Downloads” on page 339.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 337

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

Commands for Bit File Downloads

Because the signal generator adds a 10-byte file header during a bit file
download, you must use the SCPI command shown in Table 6-7. If you FTP or
copy the file for the initial download, the signal generator does not add the 10-
byte file header, and it does recognize the data in the file (no data in the
transmitted signal).

Bit files enable you to control how many bits in the file the signal generator
modulates onto the signal. Even with this file type, the signal generator
requires that all data be contained within bytes. For more information on bit
files, see “Bit File Type Data” on page 328.

Table 6-7 Bit File Type SCPI Commands

Type Command Syntax

Command | : MEM DATA'BIT <"fil e_name">, <bit_count >, <bl ock_dat a>

This downloads the file to the signal generator.

Query :MEM DATA BI T? <"fil e_nane">

Within the context of a program this query extracts the user file data. Executing the query in a
command window causes it to return the following information:
<bi t _count >, <bl ock_dat a>.

Query : MEM CAT: Bl T?
This lists all of the files in the bit file directory and shows the remaining non-volatile memory:

<bytes used by bit files> <avail abl e non-vol atil e
menory>, <"fil e_names">

Command Syntax Example
The following command downloads a file that contains 17 bytes:
:MEM DATA'BIT "new file", 131, #21702%5! 4&07#8g* YO

Since this command is file specific (Bl T), there is no need to add the file
path to the file name.

After execution of this command, the signal generator creates a file in the
bit directory (memory catalog) named “new_file” that contains 27 bytes.
Remember that the signal generator adds a 10-byte file header to a bit file.
When the signal generator uses this file, it will recognize only 131 of the
136 bits (17 bytes) contained in the file.

For information on downloading block data, see “Downloading User Files”
on page 334.

338 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

Commands for Binary File Downloads

To download a user file as a binary file type means that the signal generator,
when the file is selected for use, sees all of the data contained within the file.
For more information on binary files, see “Binary File Type Data” on page 331.
There are two ways to download the file: to be able to extract the file or not.
Each method uses a different SCPI command, which is shown in Table 6-8.

Table 6-8 Binary File Type Commands

Command Command Syntax

Type

For SCPI | : MEMory: DATA: UNPRot ect ed "bin: fil e_nane", <dat abl ock>

Extraction This downloads the file to the signal generator. You can extract the file within the
context of a program.

Frpa | put <file_nane> /user/bin/file_name

No : MEM DATA "bin: fil e_nane", <bl ock data>

extraction This downloads the file to the signal generator. You cannot extract the file.

Query : MEM DATA? "bin:fil e_nane”
This returns information on the named file: <bi t _count >, <bl ock_dat a>.
Within the context of a program, this query extracts the user file, provided it was
download with the proper command.

Query : MEM CAT: Bl N?
This lists all of the files in the bit file directory and shows the remaining non-volatile
memory:
<bytes used by bit files> <avail able non-volatile
nenory>, <"fil e _nanmes">

a. See “FTP Procedures” on page 342.

File Name Syntax

There are three ways to format the file name, which must also include the file
path:

— "BINfile_name"

— "file_name@l N'

— "luser/BINfile_name"

Command Syntax Example

The following command downloads a file that contains 34 bytes:

: MEM DATA
"BIN new file", #234778 4807#8g* YO@. ?: * Ru[+@3#_", >l

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 339

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

After execution of this command, the signal generator creates a file in the

Binary (Bin) directory (memory catalog) named “new_file” that contains 34
bytes.

For information on downloading block data, see “Downloading User Files”
on page 334.

340 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

Selecting a Downloaded User File as the Data Source

This section describes how to format SCPI commands for selecting a user file
using commands from the Custom modulation formats. While the commands
shown come from only two formats, the concept remains the same when
making the data selection for any of the other real-time modulation formats
that accept user data. To find the data selection commands for both framed
and unframed data for the different modulation formats, see the signal
generator’s SCPI Command Reference.

1. Select the user file:

Unframed Data
: RAD o0: QUSTom DATA "BIT: fil e_nane"
: RAD o: QUSTom DATA "BIN fil e_nare"

2. Configure the remaining signal parameters.
3. Turn the modulation format on:

: RAD 0;: QUSTom STATe On

Modulating and Activating the Carrier

Use the following commands to modulate the carrier and turn on the RF

output. For a complete listing of SPCI commands, refer to the SCPI Command
Reference.

: FREQuency: FI Xed 2.5G#Z

: POMr: LEVel -10.0DBM

: QUTPut : MDul at i on: STATe ON
: QUTPut : STATe ON

Modifying User File Data
There are two ways to modify a file after downloading it to the signal generator:

— Use the signal generator’s bit file editor. This works for both bit and binary
files, but it converts a binary file to a bit file and adds a 10-byte file header.
For more information on using the bit file editor, see the signal generator’s
User’s Guide. You can also access the bit editor remotely using the signal
generator’s web server. For web server information, refer to the
Programming Guide.

— Use a hex editor program on your PC or UNIX workstation, as described
below.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 341

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

Modifying a Binary File with a Hex Editor
1. FTP the file to your PC/UNIX.

For information on using FTP, see FTP Procedures. Ensure that you use
binary file transfers during FTP operations.

2. Modify the file using a hex editor program.
3. FTP the file to the signal generator’s BIN memory catalog (directory).

Modifying a Bit File with a Hex Editor
1. FTP the file to your PC/UNIX.

For information on using FTP, see FTP Procedures. Ensure that you use
binary file transfers during FTP operations.

2. Modify the file using a hex editor program.
If you need to decrease or increase the number of bits of interest, change
the file header hex value.

80 Byte File From Signal Generator
02 80 hex = 640 bits designated as bits of interest

oooo00o0 . ES ol]oo oo oo oo oo oo 02 go0lsSa 26 78 S5b 2B 37
00000010: 47 37 20 23 2f 34 61 63 39 3f 25 Ze 69 52 33 22
O0000020: 40 2Ze 74 59 75 76 3a 3e 36 26 24 46 47 fGa 3c 7b
00000030: Sc 4b 6e 2d 2b 20 2e 68 47 3f 22 60 7e 75 2a 39
00000040: 6b 5f 21 60 7e 2o 3a 37 Se 6o G2 2e 2o 3f 6= 74
O0000050 .

Modified File (80 Bytes to 88 Bytes)
02 bd hex = 701 bits designated as bits of interest

oooooooo. 58 DlIDD 00 00 00 00 00 02 deSu 26 78 5b 2b 37
00000010: 47 37 20 23 2f 34 61 63 39 3f 25 2e 69 52 33 22
00000020: 40 2Ze 74 59 75 76 3a 3e 36 26 24 44 47 fGa 3c 7b
00000030: Sc 4b e 2d 2b 20 2e 68 47 3f 22 60 7e 75 2a 39
00000040: 6b 5f 21 60 Te 2c 3a 37 Se Gc Ge 2Ze 2o 3f Ge 74
(00000050 . |23 26 3c 6b 2a 76 3f Ge|__

L |

Added bytes

3. FTP the file to the signal generator’s BIT memory catalog (directory).

FTP Procedures

Avoid using the *OPC? or *WAI commands to verify that the FTP process
has been completed. These commands can potentially hang up due to the
processing of other SCPI parser operations. Refer to the SCPI Command
Reference.

If you are remotely FTPing files and need to verify the completion of the
FTP process, then query the instrument by using SCPI commands such as:
""MEM:DATA:', "MEM:CAT', *STB?', 'FREQ?', *IDN?', 'OUTP:STAT?'. Refer to
the SCPI Command Reference.

342 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

There are three ways to FTP a file:

— use the Microsoft Internet Explorer FTP feature
— use the signal generator’s internal web server
— use the PC or UNIX command window

Using Microsoft’s Internet Explorer

1. Enter the signal generator’s hostname or IP address as part of the FTP
URL.

ftp://<host name> or <IP address>
2. Press Enter on the keyboard or Go from the Internet Explorer window.
The signal generator files appear in the Internet Explorer window.

3. Drag and drop files between the PC and the Internet Explorer window

Using the Signal Generator’s Internal Web Server
1. Enter the signal generator’s hostname or IP address in the URL.
http://<host name> or <IP address>

2. Click the Signal Generator FTP Access button located on the left side of
the window.

The signal generator files appear in the web browser’s window.
3. Drag and drop files between the PC and the browser’s window

For more information on the web server feature, refer to the Programming
Guide.

Using the Command Window (PC or UNIX)

1. From the PC command prompt or UNIX command line, change to the
proper directory:

— When downloading from the signal generator, the directory in
which to place the file.

— When downloading to the signal generator, the directory that
contains the file.

2. From the PC command prompt or UNIX command line, type ft p
<i nstrument nane>.

Where i nstrunment nane is the signal generator’s hostname or IP
address.

3. Atthe User: prompt, press Enter (no entry is required).

4. Atthe Passwor d: prompt, press Enter (no entry is required).

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 343

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

5. At the ft p prompt, type the desired command:

To Get a File From the Signal Generator
get /user/<directory>/<file_namel> <file_name>
To Place a File in the Signal Generator

put <file_nane> /user/<directory>/<file nanmel>

— <fil e_namel>is the name of the file as it appears in the signal
generator’s directory.

— <fil e_nanme>is the name of the file as it appears in the PC/UNIX
current directory.

— <di rect ory>is the signal generator’s Bl T or Bl Ndirectory.

6. At the ft p prompt, type: bye
7. At the command prompt, type: exi t

Real-Time Custom High Data Rates

Custom has two modes for processing data: serial and parallel. When the data
bit rate exceeds 50 Mbps, the signal generator processes data in parallel
mode, which means processing the data symbol by symbol versus bit by bit
(serial). This capability exists in only the Custom format when using a
continuous data stream. This means that it does not apply to a downloaded
PRAM file type (covered later in this chapter).

In parallel mode, for a 256QAM modulation scheme, Custom has the capability
to reach a data rate of up to 400 Mbps. The FIR filter width is what determines
the data rate. The following table shows the maximum data rate for each
modulation type. Because the signal generator’s maximum symbol rate is 50
Msps, a modulation scheme that has only 1 bit per symbol is always processed
in serial mode.

Modulation Type | Bit Rate Range for Internal Data (bit rate = symbol rate x bits per symbol)

16 Symbol Wide FIR 32 Symbol Wide FIR | 64 Symbol Wide FIR
Filter Filter Filter

BPSK, 2FSK, MSK 1bps-50Mbps 1bps-25 Mbps 1bps-12.5Mbps

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
User File Data (Bit/Binary) Downloads

Modulation Type | Bit Rate Range for Internal Data (bit rate = symbol rate x bits per symbol)
C4FM, OQPSK, 2bps-100Mbps 2bps-50Mbps 2bps-25Mbps
4FSK

IS95 OQPSK,

QPSK

P4DQPSK,

IS95 QPSK

GRAYQPSK,

4QAM

D8PSK, EDGE, 3bps-150Mbps 3bps-75Mbps 3bps-37.5Mbps
8FSK, 8PSK

16FSK, 16PSK, 4bps-200Mbps 4bps-100Mbps 4bps-50Mbps
16QAM

Q32AM bbps-250Mbps 5bps-125Mbps bbps-62.5Mbps
640AM 6bps-300Mbps 6bps-150Mbps 6bps-75Mbps
128QAM 7bps-350Mbps 7bps-175Mbps 7bps-87.5Mbps
256QAM 8bps-400Mbps 8bps-200Mbps 8bps-100Mbps

The only external effect of the parallel mode is in the EVENT 1 output signal. In
serial and parallel mode, the signal generator outputs a narrow pulse at the
EVENT 1 connector. But in parallel mode, the output pulse width increases by
a factor of bits-per-symbol wide, as shown in the following figure.

32QAM (5 bits per symbol)
bit rate = bits per symbol x symbol rate

10 Msps
‘20 ns, ‘ 10.000001 Msps |
- 100ns —p
> - \ |
| \ |
| |

NOTE: The pulse widths values are only for example purposes. The actual width may vary from the above values.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 345

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads

Pattern RAM (PRAM) Data Downloads

346

Refer to Table on page 322 for a list of applicable signal generators.

If you encounter problems with this section, refer to “Data Transfer
Troubleshooting” on page 384.

To verify the SCPI parser’s responsiveness when remotely using the :MEM:DATA SCPI command
to upload files, the file’s upload should be verified using the *STB? command. Refer to the SCPI
Command Reference.

This section contains information to help you transfer user-generated PRAM
data from a system controller to the signal generator’s PRAM. It explains how
to download data directly into PRAM and modulate the carrier signal with the
data.

The control bits included in the PRAM file download, control the following
signal functions:

— bursting
— timing signal at the EVENT 1 rear panel connector
— data pattern reset

PRAM data downloads apply to only real-time Custom modulation formats.

PRAM files differ from bit and binary user files. Bit and binary user files (see

page 327) download to non-volatile memory and the signal generator loads
the user file data into PRAM (volatile/waveform memory) for use. The signal
generator adds the required control bits when it generates the signal.

A PRAM file downloads directly into PRAM, and it includes seven of the
required control bits for each data bit. The signal generator adds the remaining
control bits when it generates the signal. You download the file using either a
list or block data format. Programs such as MATLAB or MathCad can generate
the data.

This type of signal control enables you to design experimental or proprietary
framing schemes.

After selecting the PRAM file, the signal generator builds the modulation
scheme by reading data stored in PRAM, and constructing framing protocols
according to the PRAM file data and the modulation format. You can
manipulate PRAM data by changing the standard protocols for a modulation
format such as the symbol rate, modulation type, and filter either through the
front panel interface or with SCPI commands.

Understanding PRAM Files

The term PRAM file comes from earlier Keysight products (E443xB ESG). PRAM
is another term for waveform memory (WFM1), which is also known as volatile
memory. This means that PRAM files and waveform files occupy the same

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads

memory location. The signal generator’s volatile memory (waveform memory)
storage path is/ user / BBGL/ wavef or m For more information on memory, see
“Signal Generator Memory” on page 321.

The following figure shows a PRAM byte and illustrates the difference between
it and a bit/binary user file byte. Notice the control bits in the PRAM byte.

MSB LSB MsB LSB
¥ b » <
PRAM File DataByte: (1 1 0 1 0 1 0,1, User File DataByte:, 1 0 0 1 1 1 0 1
\ — _/
Control bits Data bit .
Data bits

Only three of the seven control bits elicit a response from the signal generator.
The other four bits are reserved. Table 6-9 describes the bits for a PRAM byte.

Table 6-9 PRAM Data Byte

Bit | Function Value | Comments

0 Data 01 This is the data bit. It is “unspecified” when burst (bit 2) is set to 0.

1 Reserved 0 Always 0

2 Burst 0/1 1=RFon
0 = RF off
For non-bursted, non-TDMA systems, to have a continuous signal, set this bit to 1 for all
bytes. For framed data, set this bit to 1 for on timeslots and 0O for off timeslots.

3 Reserved 0 Always 0

4 Reserved 1 Always 1

5 Reserved 0 Always 0

6 EVENT1 0/1 To have the signal generator output a single pulse at the EVENT 1 cannector, set this bit to

Output 1. Use this output for functions such as a triggering external hardware to indicate when the

data pattern begins and restarts, or creating a data-synchronous pulse train by toggling
this bit in alternate bytes.

7 Pattern Reset 01 0 = continue to next sequential memary address.

1 =end of memary and restart memory playback.
This bit is set to O for all bytes except the last byte of PRAM. To restart the pattern, set the
last byte of PRAM to 1.

As seen in Table 6-9, only four bits, shown in the following list, can change

state:

— bit O—data

— Dbit 2—bursting

— Dbit 6—EVENT 1 rear panel output
— bit 7—pattern reset

Because a PRAM byte has only four bits that can change states, there are only
15 possible byte patterns as shown in Table 6-10. The table also shows the
decimal value for each pattern, which is needed for downloading data using
the list format shown on page 351.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 347

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads

Table 6-10 PRAM Byte Patterns and Bit Positions
| o == =
3 I I 1 1
- (=8 e) e e
. . HIEIRE SRS =) Bit
Bit Function i - E E E E Pattern
8| 2| 5| S| 5| % 5| | Decimal
Sl Y 8 8| 8 5 & B Value
[~ L o o o o o o
Bit Position 716 5|4 |3(211|0 ---
Bit Pattern 1110117101101 213
11171011 10]11071]0 212
111101 1]0]0]0]|1 209
1117101 1]10|0]0]|0 208
1101011011011 149
110101 1]0]01]0]|1 145
110(0|117]0|0]0]|0O 144
o101 |10|1]0]H"1 85
o101]0|1]01]0O 84
O[1]0[1T]010]0]1 81
o|1(o0l1]0|0]O0O]O 80
ojlof(Of[T|10|1]01]n1 21
oj(o0jol1T]0|11]01]0 20
o001 |0|0]0]n1 17
oj(o0j0l1T]0|l0]0]O 16

Viewing the PRAM Waveform

After the waveform data is written to PRAM, the data pattern can be viewed
using an oscilloscope. There is approximately a 12-symbol delay between a
state change in the burst bit and the corresponding effect at the RF out. This
delay varies with symbol rate and filter settings, and requires compensation to
advance the burst bit in the downloaded PRAM file.

348 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads

PRAM File Size

Because volatile memory resides on the baseband generator (BBG), the
maximum PRAM file size depends on the installed baseband generator option.

After downloading, the signal generator translates each downloaded data bit
into a 32-bit word:

— 1 downloaded data bit
— 7 downloaded control bits as shown in Table on page 347
— 24 bits added by the signal generator

To properly size a PRAM file, you must determine the file size after the 32-bit
translation process. The signal generator measures a PRAM file size in units of
bytes; each 32-bit word equals 4 bytes.

Determining the File Size

The following example shows how to calculate a downloaded file size using a
PRAM file that contains 89 bytes (data bits plus 7 control bits per data bit):

89 bytes + [(89 x 24 bits) / 8] = 356 bytes

Because the file downloads one fourth of the translated 32-bit word, another
method to calculate the file size is to multiply the downloaded file size by four:

89 bytes x 4 = 356 bytes

See also “Signal Generator Memory” on page 321 and “Checking Available
Memory” on page 325.

Minimum File Size

A PRAM file requires a minimum of 60 bytes to create a signal. If the
downloaded file contains less than 60 bytes, the signal generator replicates the
file until the file size meets the 60 byte minimum. This replication process
occurs after you select the file and turn the modulation format on. The
following example shows this process using a downloaded 14-byte file:

— During the file download, the 14 bytes are translated into 56 bytes (fourteen
32-bit words).

14 bytes x 4 = 56 bytes

FREQUENCY

4.000 000 000 00 s

AMPLITUDE

136.00 den
’7 @ File size increases

| |~ by a factor of 4

Catalog of UFM1 Files 1656 butes used 13L033L0S but ree
File Hame Tupe Size Nodified

1 PRAME_LIST_IUBYTES WFHL (56)y Z-i—i— —1—-
2 RAMP_TEST_HFM __ LFM1 0 Y RER

— After selecting and turning the format on, the signal generator replicates
the file contents to create the 60 byte minimum file size

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 349

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads

60 bytes / 14 bytes = 4.29 file replications

The signal generator rounds this real value up to the next highest integer. In
this example, the signal generator replicates the fourteen 32-bit words (56
bytes) by a factor of 5, which makes the final file size 280 bytes. This
equates to a 70 byte file.

14 bytes x b = 70 bytes

70 + [(70 x 24) / 8] = 280 bytes
Or

56 bytes x b = 280 bytes

FREQUENCY AMPLITUOE

1.00000000000 &z | -10.00 den

EHULP| T/0| File size increases
| |_— by afactor of 5

Catalog of UFM1 Files 1880 butes used 134033402 butes
File Hame Tupe Size dified

1 PRAMS_LIST_{LEYTES WFHL e
2 RAMP_TEST_HFM __LFHL BT /i ——i—-

350 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads

SCPI Command for a List Format Download

Using the list format, enter the data in the command line using comma
separated decimal values. This file type takes longer to download because the
signal generator must parse the data. When creating the data, remember that
the signal generator requires a minimum of 60 bytes. For more information on
file size limits, see “PRAM File Size” on page 349.

Command Syntax

: MEMory: DATA: PRAM FI LE: LI ST
<"file_name">, <ui nt8>[, <uint8>, <...>]

ui nt8 The decimal equivalent of an unsigned 8-bit integer
value. For a list of usable decimal values and their
meaning with respect to the generated signal, see
Table on page 348.

Command Syntax Example

The following example, when executed, creates a new file in volatile (waveform)
memory with the following attributes:

— creates a file named new_file

— outputs a single pulse at the EVENT 1 connector

— bursts the data pattern 1100 seven times over 28 bytes
— transmits 32 non-bursted bytes

— resets the data pattern so it starts again

: MEMory: DATA: PRAM FI LE: LI ST

<"new file">, 85, 21, 20, 20, 21, 21, 20, 20,21,21,20,20,21,21,
20,20,21,21,20,20,21,21,20,20,21,21,20,20,16,16,16,16,16,16,16,16,16,16,16,
16,16,16,

16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,144

The following list defines the meaning of the different bytes seen in the
command line:

85 Sendapulse to the EVENT 1 output, and burst the signal with a data bit of 1.

21 Burst the signal with a data bit of 1.

20 Burstthe signal with a data bit of 0.

16 Do not burst the signal (RF output off), and set the data bit to 0.

14 Reset the data pattern, do not burst the signal (RF output off), and set the data bit to 0.

SCPI Command for a Block Data Download

The IEEE standard 488.2-1992 section 7.7.6 defines block data. The signal
generator is able to download block data significantly faster than list formatted
data (see page 351), because it does not have to parse the data. When

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 351

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads

creating the data, remember that the signal generator requires a minimum of
60 bytes. For more information on file size limits, see “PRAM File Size” on
page 349.

Command Syntax

. MEMory: DATA: PRAM FI LE: BLOCk <"fil e_nane" >, <bl ockdat a>

The following sections explain how to format the SCPI command for
downloading block data:

— Command Syntax Example

— Command Syntax in a Program Routine

Command Syntax Example

This example conceptually describes how to format a block data download
command (#ABC represents the block data):

- MEMory: DATA: PRAM FI LE: BLOCk <"fi |l e_name" >, #ABC

<"fil e_nanme"> the file name as it will appear in the signal generator

indicates the start of the block data

A the number of decimal digits present in B

B a decimal number specifying the number of data bytes
to follow in C

C the PRAM file data in bytes

:MEMory:DATA: PRAM: FILE : BLOCk “my_file”| , #|3|24 O|12%S 14&07#8g*Y9%@7. . . |

file_name A B c
ny_file the PRAM file name as it will appear in the signal
generator’'s WFM1 memory catalog
indicates the start of the block data
3 B has three decimal digits
240 240 bytes of data to follow in C

1298! 4&07#89* YO@ . . . the ASCII representation of some of the
block data (binary data) downloaded to the signal
generator, however not all ASCII values are printable

In actual use, the block data is not part of the command line as shown above,
but instead resides in a binary file on the PC/UNIX. When the program
executes the SCPI command, the command line notifies the signal generator
that it is going to receive block data of the stated size, and to place the file in
the signal generator file directory with the indicated name. Immediately

352 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Line

OO IO oM~ wnN —

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads

following the command execution, the program downloads the binary file to
the signal generator. This is shown in the following section, “Command Syntax
in a Program Routine”

Command Syntax in a Program Routine

This section demonstrates the use of the download SPCI command within the
confines of a C++ program routine. The following code sends the SCPI
command and downloads a 240 byte PRAM file to the signal generator’s
WEM1 (waveform) memory catalog. This program assumes that there is a char
array, databuffer, that contains the 240 bytes of PRAM data and that the
variable numbytes stores the length of the array.

Code—Download PRAM File Data

i nt byt esToSend,;

byt esToSend = nunbyt es;

char s[4];

char cnd[200];

sprintf(s, "%l", bytesToSend);

sprintf(cnd, ": MEM DATA: PRAM FI LE: BLOCk \"FI LE1\ ", #%l%",
strlen(s), bytesToSend);

iwite(id, cmd, strlen(cnd), 0, 0);

iwite(id, databuffer, bytesToSend, 0, 0);

iwite(id, "\n", 1, 1, 0);

Line

Code Description—Download PRAM File Data

Define an integer variable (bytesToSend) to store the number of bytes to send to the signal
generator.

Store the total number of PRAM bytes in the integer variable defined in line 1. numbytes contains
the length of the databuffer array referenced in line 8.

Create a string large enough to hold the bytesToSend value as characters plus a null character
value. In this code, string s is set to 4 bytes (3 characters for the bytesToSend value and one null
character—one character equals one byte).

Create a string and set its length (cma[200]) to hold the SCPI command syntax and parameters. In
this code, we define the string length as 200 bytes (200 characters).

Store the value of bytesToSend in string s. For this example, bytesToSend = 240; s = "240”

Store the SCPI command syntax and parameters in the string emd. The SCPI command prepares
the signal generator to accept the data.

— sprintf() is a standard function in C++, which writes string data to a string
variable.
— strlen() is a standard function in C++, which returns length of a string.

— bytesToSend = 240, then s = “240” plus the null character, strlen(s) = 4, so
cmd = :MEM:DATA:PRAM:FILE:BLOCk "FILET\” #3240.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 353

354

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads

Line

Code Description—-Download PRAM File Data

Send the SCPI command stored in the string cmd to the signal generator contained in the variable

id.

— iwrite() is a SICL function in Keysight 10 library, which writes the data (block data)
specified in the string cmd to the signal generator.

— The third argument of iwrite(), strlen(cmd), informs the signal generator of the
number of bytes in the command string. The signal generator parses the string to
determine the number of data bytes it expects to receive.

— The fourth argument of iwrite(), 0, means there is no END of file indicator for the
string. This lets the session remain open, so the program can download the PRAM
file data.

Send the PRAM file data stored in the array, databuffer, to the signal generator.

— iwrite() sends the data specified in databuffer (PRAM data) to the signal generator
(session identifier specified in id).

— The third argument of iwrite(), bytesToSend, contains the length of the databuffer
in bytes. In this example, it is 240.

— The fourth argument of iwrite(), 0, means there is no END of file indicator in the
data.

In many programming languages, there are two methods to send SCPI commands
and data:

— Method 1 where the program stops the data download when it encounters
the first zero (END indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores
any zeros in the data. This is the method used in our program.

For your programming language, you must find and use the equivalent of method
two. Otherwise you may only achieve a partial download of the user file data.

Send the terminating carriage (\n) as the last byte of the waveform data.

— iwrite() writes the data “\n” to the signal generator (session identifier specified in
id).
— The third argument of iwrite(), 1, sends one byte to the signal generator.

— The fourth argument of iwrite(), 1, is the END of file indicator, which the program
uses to terminate the data download.

Selecting a Downloaded PRAM File as the Data Source

The following steps show the process for selecting a PRAM file using
commands from the Custom modulation format.

1. Select the data type:
: RAD 0: QUSTom DATA PRAM
2. Select the PRAM file:

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads

: RAD o: CUSTom DATA: PRAM <"fi | e_nane" >

Because the command is file specific (PRAM), there is no need to include
the file path with the file name.

3. Configure the remaining signal parameters.

4, Turn the modulation format on:

: RAD 0: QUSTom STATe On

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 355

356

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads

Modulating and Activating the Carrier

Use the following commands to modulate the carrier and turn on the RF
output. For a complete listing of SPCI commands, refer to the SCPI Command
Reference.

: FREQuency: Fl Xed 1. 8GHZ

: PONér: LEVel -10. 0DBM

: QUTPut : MDul at i on: STATe ON
: QUTPut : STATe ON

Storing a PRAM File to Non-Volatile Memory and Restoring to
Volatile Memory

After you download the file to volatile memory (waveform memory), you can
then save it to non-volatile memory. Remember that a PRAM file downloads to
waveform memory. Conversely, when you store a PRAM file to non-volatile
memory, it uses the same directory as waveform files. When storing or
restoring a file, you must include the file path as part of the file_name variable.

Command Syntax

The first file_name variable is the current location of the file and its name; the
second file_name variable is the destination to store the file and its name.

There are three ways to format the file_name variable to include the file path:

Volatile Memory to Non-Volatile Memory

: MEMory: CCPY "WFML: fi | e_nane", "NW¥FM fi | e_nane"

: MEMory: CCPY "fil e _nane@V¥M", "fil e _name @WWM

- MEMory: COPY

"/ user/bbgl/waveformfile name","/user/wavefornifil e _nane"

Non-Volatile Memory to Volatile Memory

: MEMory: CCOPY "NWWFM fil e_name", "WML: fi |l e_nane”

: MEMory: CCPY "fil e _nane@WWWFM', "fil e_name @W¥ML"

: MEMor y: COPY

"/user/waveform file_name","/user/bbgl/ waveformfil e_nane"

Extracting a PRAM File

When you extract a PRAM file, you are extracting the translated 32-bit word-
per—byte file. You cannot extract just the downloaded data. Extracting a PRAM
file is similar to extracting a waveform file in that you use the same commands,
and the PRAM file resides in either volatile memory (waveform memory) or the
waveform directory for non-volatile memory. After extraction, you can

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads

download the file to the same signal generator or to another signal generator
with the proper option configuration that supports the downloaded file. There
are two ways to download a file after extraction:

— with the ability to extract later
— with no extraction capability

Ensure that you do not use the : MENDr y: DATA: PRAM FI LE: BLOCk command to
download an extracted file. If you use this command, the signal generator will treat the file as a
new PRAM file and translate the LSB of each byte into a 32-bit word, corrupting the file data.

Command Syntax

This section lists the commands for extracting PRAM files and downloading
extracted PRAM files. To download an extracted file, you must use block data.
For information on block data, see “SCPI Command for a Block Data
Download” on page 3571. In addition, there are three ways to format the
file_name variable, which must also include the file path, as shown in the
following tables.

There are two commands for file extraction:

— : MEM DATA? <"file_name">
— :MWVEM DATA? <"fil enane">

The following table uses the first command to illustrate the command format,
however the format is the same if you use the second command.

Table 6-11 Extracting a PRAM File
Extraction Command Syntax Options
Method/Memory Type
SCPI/volatile memory : MEM DATA? "WFML: fi | e_nane"
: MEM DATA? "file_name@V¥M"
: MEM DATA? "/user/bbgl/waveformfil e_nane"
SCPI/non-volatile : MEM DATA? "NWAWFM fi | e_nane"
memory : MEM DATA? "fil e_name@WWM
: MEM DATA? "/user/waveform fil e_name"
FTP/volatile memory® get /user/bbgl/waveform file_nane
FTP/non-volatile get /user/waveformifile_name
memory?

a. See “FTP Procedures” on page 342.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 357

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads

Table 6-12 Downloading a File for Extraction
Download Method/ Command Syntax Options
Memory Type
SCPI/volatile memary : MEM DATA: UNPRot ect ed "WML: fi | e_nare", <bl ockdat a>

: MEM DATA: UNPRot ect ed "fil e_name@V¥ML", <bl ockdat a>
: MEM DATA: UNPRot ect ed

"/ user/bbgl/ wavef orni fil e_name", <bl ockdat a>

SCPI/non-volatile : MEM DATA: UNPRot ect ed "NVWWM fi | e_name", <bl ockdat a>
memory : MEM DATA: UNPRot ect ed "fi | e_nane@WWFM', <bl ockdat a>
: MEM DATA: UNPRot ect ed

"/ user/wavefornifil e name", <bl ockdat a>

FTP/volatile memory? put <file_nanme> /user/bbgl/ wavefornfile_name
FTP/non-volatile put <file_name> /user/wavefornifile_name
memory?

a. See “FTP Procedures” on page 342.

There are two commands that download a file for no extraction:

— : MEM DATA <"fil e_nane">, <bl ockdat a>
— : MMVEM DATA <"fil enane" >, <bl ockdat a>

The following table uses the first command to illustrate the command format,
however the format is the same if you use the second command.

Table 6-13 Downloading a File for No Extraction
Download Method/ Command Syntax Options
Memory Type
SCPI/volatile memory : MEM DATA "WFML: fi | e_nane", <bl ockdat a>

: MEM DATA "fil e_name@W¥FM.", <bl ockdat a>
: MVEM DATA "user/ bbgl/ wavef orni fil e_name", <bl ockdat a>

SCPI/non-volatile : MEM DATA "NWWFM fi | e_nane", <bl ockdat a>
memory : MEM DATA "fil e_name@WWM', <bl ockdat a>
: MEM DATA /user/wavefornifil e _name", <bl ockdat a>

Modifying PRAM Files

The only way to change PRAM file data is to modify the original file on a
computer and download it again. The signal generator does not support
viewing and editing PRAM file contents. Because the signal generator

358 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Pattern RAM (PRAM) Data Downloads

translates the data bit into a 32-bit word, the file contents are not

recognizable, and therefore not editable using a hex editor program, as shown
in the following figure.
60 byte PRAM file prior to downloading 00000000 2 ES 15 15 15 15 14 15 14 15 14 14 15 15 15 14 14
00000010. 14 15 15 15 14 15 14 14 15 14 14 15 15 14 14 15
00000020 15 14 14 14 14 14 15 15 14 14 15 15 14 15 15 14
0oo0o030.: 14 14 15 14 14 15 15 15 15 15 14 90 _
. . 00000000: 00 01 01 40 00 01 OO0 40 00 01 00 40 00 01 0O 40
60 byte PRAM file after downloading |soa00010: o0 o1 00 40 00 0o 00 40 00 01 00 40 Do 0O 00 40
0oo00020: 00 01 00 40 00 00 OO0 40 00 00 00 40 00 Ol 0O 40
00000030: 00 01 00 40 00 01 OO0 40 00 OO0 OO0 40 00 00 0O 40
00000040: 00 00 00 40 00 01 OO0 40 00 01 00 40 00 01 0O 40
00000050: 00 00 00 40 00 O1 OO0 40 00 OO0 OO 40 00 00 OO 40
0oo0o00g0: 00 01 00 40 00 00 OO0 40 00 00 00 40 00 Ol 0O 40
00000070: 00 01 00 40 00 00 OO 40 00 OO OO 40 00 O1 0O 40
00000080: 00 01 00 40 00 00 OO0 40 00 00 OO0 40 00 00 0O 40
000000%0: 00 00 00 40 00 OO0 OO0 40 00 O1 OO 40 00 O1 00O 40
000000a0: OO0 Q0O OO0 40 00 0O OO0 40 00 01 00 40 00 Ol 0O 40
000000bO: 00 00 00 40 00 01 00 40 00 01 00 40 00 00 OO0 40
000000cO: 00 00 00 40 00 00 OO0 40 00 01 00 40 00 00 OO0 40
oooooodo: 00 00 00 40 00 01 00 40 00 01 00 40 00 01 OO0 40
0o0000=0: 00 01 00 40 00 01 OO0 40 00 00 00 40 00 00 0O OO
0o0000ED: _
Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 359

Creating and Downloading User-Data Files
FIR Filter Coefficient Downloads

FIR Filter Coefficient Downloads

If you encounter problems with this section, refer to “Data Transfer
Troubleshooting” on page 384.

The signal generator accepts finite impulse response (FIR) filter coefficient
downloads. After downloading the coefficients, these user-defined FIR filter
coefficient values can be selected as the filtering mechanism for the active
digital communications standard.

Data Requirements
There are two requirements for user—defined FIR filter coefficient files:
1. Data must be in ASCII format.

The signal generator processes FIR filter coefficients as floating point
numbers.

2. Data must be in List format.

FIR filter coefficient data is processed as a list by the signal generator’s
firmware. See Sample Command Line.

Data Limitations

Modulation filters are real and have an oversample ratio (OSR) of two or
greater.

On the N5166B, N5172B, and N5182B with Options 653, 655, or 656, 657,
respectively, equalization filters are typically complex and must have an
OSR of one (refer to “Using the Equalization Filter” on page 364 and to the
User’s Guide).

The X-Series signal generators support both Real and Complex filters.
Complex filters can only be used with equalization filters. Refer to Table and to
Table . For more on equalization filters, refer to “Using the Equalization Filter”
on page 364.

Type of Filter ~ Description

Real The I'and Q samples are independently filtered by a single set of real coefficients.
Complex The samples are treated as complex (I +jQ) and convolved with the filter coefficients which are
specified as (I +jQ) in the time domain.

Filter lengths of up to 1024 taps are allowed. The oversample ratio (OSR) is the
number of filter taps per symbol. Oversample ratios from 1 through 32 are
possible.

360 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
FIR Filter Coefficient Downloads

The sampling period (At) is equal to the inverse of the sampling rate (FS). For
modulation filters, the sampling rate is equal to the symbol rate multiplied by
the oversample ratio. For example, the GSM symbol rate is 270.83 ksps. With
an oversample ratio of 4, the sampling rate is 1083.32 kHz and At (inverse of
FS) is 923.088 nsec.

Filter Type Oversampling Ratio | Number of Taps | Symbols/Coefficients
(OSR) (Maximum) (Maximum)

Equalization® | ' 256 --

ARB Custom | =2 -- 512/1024

Modulation®

Dual ARB >2 - 32/1024

Real-Time

Modulation®

a. When I/Q timing skew, I/Q delay, or the ACP internal I/Q channel
optimization features are active, the effective number of taps for the
equalization filter are reduced.

b. The filter may be sampled to a higher or lower OSR.

c. The filter will be decimated to a 16 or lower OSR depending on the
symbol rate.

Downloading FIR Filter Coefficient Data

The signal generator stores the FIR files in the FIR (/USER/FIR) directory, which
utilizes non-volatile memory (see also “Signal Generator Memory” on

page 321). Use the following SCPI command line to download FIR filter
coefficients (file) from the PC to the signal generator’s FIR directory:

: MEMory: DATA FIR <"fil e_nanme">, [REAL,] osr, coeffi ci ent

- MEMory: DATA FIR
<"file_name">, COWl ex, osr, real Coefficient,imagi naryCoeffic
ient,...

Use the following SCPI command line to query list data from the FIR file:

: MEMory: DATA FIR? <"file_nane">

Sample Command Line

The following SCPI command will download a typical set of real modulation FIR
filtter coefficient values and name the file “FIR1":

: MEMory: DATA FIR

"FIR1", 4,0, 0, 0, 0, 0, 0. 000001, 0. 000012, 0. 000132, 0. 001101,

0. 006743, 0. 030588, 0. 103676, 0. 265790, 0. 523849, 0. 809508, 1, 1, 0.
809508, 0. 523849,

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 361

Creating and Downloading User-Data Files
FIR Filter Coefficient Downloads

0. 265790, 0. 103676, 0. 030588, 0. 006743, 0. 001101, 0. 000132, 0. 0000
12, 0. 000001, O,

0,0,0,0
FI R1 assigns the name FIR1 to the associated OSR (over
sample ratio) and coefficient values (the file is then
represented with this name in the FIR File catalog)
4 specifies the oversample ratio
0,0,0,0,0,
0. 000001, ... the FIR filter coefficients

Selecting a Downloaded User FIR Filter as the Active Filter

For information on manual key presses for the following remote
procedures, refer to the User's Guide.

FIR Filter Data for Custom Modulation

The following remote command selects user FIR filter data as the active filter
for a custom modulation format.

: RAD o: QUSTom FI LTer <"fil e_nane">

This command selects the user FIR filter, specified by the file name, as the
active filter for the custom modulation format. After selecting the file, activate
the TDMA format with the following command:

: RAD 0: QUSTom STATe On

362 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
FIR Filter Coefficient Downloads

Modulating and Activating the Carrier

The following commands set the carrier frequency and power, and turns on the
modulation and the RF output.

1. Set the carrier frequency to 2.5 GHz:
: FREQuency: Fl Xed 2. 5GH#
2. Set the carrier power to -10.0 dBm:
: PONér: LEVel -10. 0DBM
3. Activate the modulation:
: QUTPut : MDul at i on: STATe ON
4. Activate the RF output:
: QUTPut : STATe ON

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 363

Creating and Downloading User-Data Files
Using the Equalization Filter

Using the Equalization Filter

This section applies to vector models with an installed baseband generator
option.

An equalization FIR file can be created externally, uploaded via SCPI, and
subsequently selected from the file system (refer to the User’s Guide). For
information related to downloading FIR file coefficients, refer to the “FIR Filter
Coefficient Downloads” on page 360. For information regarding working with
FIR file coefficients manually, refer to the User’s Guide. For more information
on equalization filters, refer to the User’s Guide.

This filter can be used to correct and/or impair the RF and External I/Q outputs
for the internal I/Q source. This filter will be convolved with the ACP Internal
I/Q Channel Optimization filter if that filter is selected, the result of which will
be truncated to the center 256 taps. The equalization filter operates at
125MHz (200MHz for N5166B/72B/82B), so all equalization filters must be
resampled to 125MHz (200MHz for N5166B/72B/82B) prior to selection, if they
are sampled at some other rate.

The signal generator supports equalization filters—either Complex or Real—
that are programmable FIR filters with two inputs (I, Q) and two outputs (I, Q)
per sample. This 256-tap filter has two modes of operation:

The maximum number of taps is 256 (with 2 coefficients per tap for a
complex filter) for equalization filters. The minimum number of taps is 2.

Equalization filters can also be referred to as predistortion filters or
correction filters.

Type of Filter ~ Description

Real The I'and Q samples are independently filtered by a single set of real coefficients.

Complex The samples are treated as complex (I +jQ) and convolved with the filter coefficients which are
specified as (I +jQ) in the time domain.

The equalization filter can be turned on and off.

364 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

Save and Recall Instrument State Files

References to waveform files and some of the other data file types
mentioned in the following sections are not available for all models and
options of signal generator. Refer to the instrument’s Data Sheet for the
signal generator and options being used.

The signal generator can save instrument state settings to memory. An
instrument state setting includes any instrument state that does not survive a
signal generator preset or power cycle such as frequency, amplitude,
attenuation, and other user-defined parameters. The instrument state settings
are saved in memory and organized into sequences and registers. There are 10
sequences with 100 registers per sequence available for instrument state
settings. These instrument state files are stored in the USER/STATE directory.
See also, “Signal Generator Memory” on page 321.

The save function does not store data such as Arb waveforms, table entries, list
sweep data, and so forth. The save function saves a reference to the waveform
or data file name associated with the instrument state. Use the store
commands or store softkey functions to store these data file types to the signal
generator’s memory catalog.

Before saving an instrument state that has a data file or waveform file
associated with it, store the file. For example, if you are editing a multitone arb
format, store the multitone data to a file in the signal generator’s memory
catalog (multitone files are stored in the USER/MTONE directory). Then save
the instrument state associated with that data file. The settings for the signal
generator such as frequency and amplitude and a reference to the multitone
file name will be saved in the selected sequence and register number. Refer to
the signal generator’s User’s Guide, Key and Data Field Reference, or the
signal generator’s Help hardkey for more information on the save and recall
functions.

Save and Recall SCPI Commands

The following command sequence saves the current instrument state, using
the *SAV command, in register 01, sequence 1. A comment is then added to
the instrument state.

*SAV 01, 1
:MEM STAT: COW 01, 1, "I nstrunent state conment”

If there is a waveform or data file associated with the instrument state, there
will be a file name reference saved along with the instrument state. However,
the waveform/data file must be stored in the signal generator’'s memory

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 365

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

catalog as the *SAV command does not save data files. For more information
on storing file data such as modulation formats, arb setups, and table entries
refer to the signal generator’s User’s Guide.

If a saved instrument state contains a reference to a waveform file, ensure
that the waveform file resides in volatile memory before recalling the
instrument state. For more information, see the User’s Guide.

The recall function recalls a saved instrument state. If there is a data file
associated with the instrument state, the file will be loaded along with the
instrument state. The following command recalls the instrument state saved in
register 01, sequence 1.

*RCAL 01,1

Save and Recall Programming Example Using VISA and C#

The following programming example uses VISA and C# to save and recall
signal generator instrument states. Instruments states are saved to and
recalled from your computer. This console program prompts the user for an
action: Backup State Files, Restore State Files, or Quit.

The Backup State Files choice reads the signal generator’s state files and
stores it on your computer in the same directory where the State_Files.exe
program is located. The Restore State Files selection downloads instrument
state files, stored on your computer, to the signal generator’s State directory.
The Quit selection exists the program. The figure below shows the console
interface and the results obtained after selecting the Restore State Files
operation.

The program uses VISA library functions. Refer to the Keysight VISA User’s
Manual available on Keysight's website: http:\\www.keysight.com for more
information on VISA functions.

The program listing for the State_Files.cs program is shown below. It is
available on the CD-ROM in the programming examples section under the
same name.

S\WINNT Microsoft.NET \Framework'¥1.1.4322" State_Files1.e:

1 kup state files

2> Restore state files

3> Quit

Enter 1.2,0r 3. Your choice: 2

Restoring sequence HB. register

251 sequence HB. register

sequence HB. register
sequence HB. register
sequence HB. register
sequence HB. register
sequence HB. register
sequence HB. register
sequence Hl. register
sequence Hl. register
sequence Hl. register
sequence Hl. register
sequence Hl. register
sequence Hl. register

1> Backup state files

2> Restore state files

3> Quit

Enter 1.2,.0r 3. Your choice:

366 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

C# and Microsoft .NET Framework

The Microsoft .NET Framework is a platform for creating Web Services and
applications. There are three components of the .NET Framework: the common
language runtime, class libraries, and Active Server Pages, called ASP.NET.
Refer to the Microsoft website for more information on the .NET Framework.

The .NET Framework must be installed on your computer before you can run
the State_Files program. The framework can be downloaded from the Microsoft
website and then installed on your computer.

Perform the following steps to run the State_Files program.

1. Copy the State_Files.cs file from the CD-ROM programming examples
section to the directory where the .NET Framework is installed.

2. Change the TCPIPO address in the program from TCPIP0::000.000.000.000
to your signal generator’s address.

3. Save the file using the .cs file name extension.

4. Run the Command Prompt program. Start > Run > "cmd.exe". Change the
directory for the command prompt to the location where the .NET
Framework was installed.

5. Type csc.exe State_Files.cs at the command prompt and then press the
Enter key on the keyboard to run the program. The following figure shows
the command prompt interface.

mmand Prompt (3}

Microsoft Windows 2888 [Version 5.88.21951]
{C> Copyright 1985-2808 Microsoft Corp.

C:sWINNT~Microsoft .NET“Framework-wl.1.4322%csc.exe State_Files.cs

The State_Files.cs program is listed below. You can copy this program from the
examples directory on the signal generator’s Documentation CD-ROM.

The State_Files.cs example uses the ESG in the programming code but can
be used with X-Series signal generators.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 367

368

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

VAR E R R E R E R LR R R R R e e R R R e R R R LR E L LR LR LR L LR L E LR

// FileName: State_Files.cs
//

// This C# example code saves and recalls signal generator
instrument states. The saved

// instrument state files are written to the local computer
directory computer where the

// State_Files.exe is located. This is a console application that
uses DLL importing to

// allow for calls to the unmanaged Keysight IO Library VISA DLL.
!/

// The Keysight VISA library must be installed on your computer for
this example to run.

// Important: Replace the visaOpenString with the IP address for
your signal generator.

//

[%R sk ko kst ok ook ok sk stk ok sk koo s ok k stk ok ok sk stk ok ok stk ok sk skokokok ok sk ok ok ok
using System;

using System.IO;

using System.Text;

using System.Runtime.InteropServices;

using System.Collections;

using System.Text.RegularExpressions;

namespace State_Files

class MainApp
{

// Replace the visaOpenString variable with your instrument's
address.

static public string visaOpenString =
"TCPIPO::000.000.000.000"; //"GPIBO::19";

//"TCPIPO: :ESG3::INSTR";

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

public const uint DEFAULT_TIMEOUT = 30 * 1000;// Instrument
timeout 30 seconds.

public const int MAX_READ DEVICE_STRING = 1024; // Buffer
for string data reads.

public const int TRANSFER_BLOCK_SIZE = 4096;// Buffer for
byte data.

// The main entry point for the application.

[STAThread]

static void Main(string[] args)

{

uint defaultRM;// Open the default VISA resource manager

if (VisaInterop.OpenDefaultRM(out defaultRM) == @) // If no
errors, proceed.

{

uint device;

// Open the specified VISA device: the signal generator

if (VisaInterop.Open(defaultRM,
visaOpenString,VisaAccessMode.NoLock,

DEFAULT_TIMEOUT, out device)

// if no errors proceed.

{

bool quit = false;

while (!quit)// Get user input
{

Console.Write("1) Backup state files\n" +

"2) Restore state files\n" +
"3) Quit\nEnter 1,2,or 3. Your choice:

string choice =
switch (choice)

{

")

Console.ReadLine();

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 369

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

case "1":
{
BackupInstrumentState(device); // Write instrument
state
break; // files to the computer
}
case "2":
{
RestoreInstrumentState(device); // Read instrument
state

break;// files to the sig gen
}
case "3":
{
quit = true;
break;

}
default:

{

break;

}

VisaInterop.Close(device);// Close the device

}

else

{

Console.WriteLine("Unable to open

}

VisaInterop.Close(defaultRM); // Close the default
resource manager

}

else

{

Console.WriteLine("Unable to open the VISA resource
manager");

+ visaOpenString);

370 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

/* This method restores all the sequence/register state files
located in

the local directory (identified by a ".STA" file name
extension)

to the signal generator.*/

static public void RestoreInstrumentState(uint device)

{

DirectoryInfo di = new DirectoryInfo(".");// Instantiate object
class

FileInfo[] rgFiles = di.GetFiles("*.STA"); // Get the state
files

foreach(FileInfo fi in rgFiles)

{
Match m = Regex.Match(fi.Name, @"~(\d)_(\d\d)");

if (m.Success)

{

string sequence

m.Groups[1].ToString();

string register = m.Groups[2].ToString();

Console.WriteLine("Restoring sequence #" + sequence +

, register #" + register);

/* Save the target instrument's current state to the specified
sequence/

register pair. This ensures the index file has an entry for the
specified

sequence/register pair. This workaround will not be necessary in
future

revisions of firmware.*/

WriteDevice(device,"*SAV " + register + ", + sequence +

"\n",
true); // << on SAME line!
// Overwrite the newly created state file with the state
// file that is being restored.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 371

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

WriteDevice(device, "MEM:DATA \"/USER/STATE/" + m.ToString()
N
false); // << on SAME line!

WriteFileBlock(device, fi.Name);

WriteDevice(device, "\n", true);

}

/* This method reads out all the sequence/register state files from
the signal

generator and stores them in your computer's local directory with a
".STA"

extension */

static public void BackupInstrumentState(uint device)
{
// Get the memory catalog for the state directory
WriteDevice(device, "MEM:CAT:STAT?\n", false);
string catalog = ReadDevice(device);
/* Match the catalog listing for state files which are named
(sequence#) (register#) e.g. 001, 1 01, 2_05*/
Match m = Regex.Match(catalog, "\"(\\d_\\d\\d),");
while (m.Success)
{
// Grab the matched filename from the regular expresssion
string nextFile = m.Groups[1].ToString();
// Retrieve the file and store with a .STA extension
// in the current directory

Console.WriteLine("Retrieving state file: + nextFile);

WriteDevice(device, "MEM:DATA? \"/USER/STATE/" + nextFile +
II\II\nIIJ true);

ReadFileBlock(device, nextFile + ".STA");
// Clear newline

ReadDevice(device);

372 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

// Advance to next match in catalog string

m = m.NextMatch();
}

/* This method writes an ASCII text string (SCPI command) to the
signal generator.

If the bool "sendEnd" is true, the END line character will be sent
at the

conclusion of the write. If "sendEnd is false the END line will
not be sent.*/

static public void WriteDevice(uint device, string scpiCmd, bool
sendEnd)

{
byte[] buf = Encoding.ASCII.GetBytes(scpiCmd);
if (!sendEnd) // Do not send the END line character

{

VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable,
0);

}
uint retCount;
VisaInterop.Write(device, buf, (uint)buf.Length, out retCount);
if (!sendEnd) // Set the bool sendEnd true.

{

Visalnterop.SetAttribute(device, VisaAttribute.SendEndEnable,
1);

// This method reads an ASCII string from the specified device
static public string ReadDevice(uint device)

{

string retvValue = "";

byte[] buf = new byte[MAX_READ_DEVICE_STRING]; // 1024 bytes
maximum read

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 373

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

uint retCount;

if (VisaInterop.Read(device, buf, (uint)buf.Length -1, out
retCount) == 0)

{
retValue = Encoding.ASCII.GetString(buf, @, (int)retCount);
}

return retValue;

}

/* The following method reads a SCPI definite block from the signal
generator

and writes the contents to a file on your computer. The trailing

newline character is NOT consumed by the read.*/

static public void ReadFileBlock(uint device, string fileName)
{
// Create the new, empty data file.
FileStream fs = new FileStream(fileName, FileMode.Create);

// Read the definite block header:
#{lengthDatalLength}{datalLength}

uint retCount = 0;

byte[] buf = new byte[10];

VisaInterop.Read(device, buf, 2, out retCount);
Visalnterop.Read(device, buf, (uint)(buf[1]-'@©'), out retCount);

uint fileSize = UInt32.Parse(Encoding.ASCII.GetString(buf, o,
(int)retCount));

// Read the file block from the signal generator
byte[] readBuf = new byte[TRANSFER_BLOCK SIZE];

uint bytesRemaining = fileSize;

while (bytesRemaining != 9)
{
uint bytesToRead = (bytesRemaining < TRANSFER_BLOCK_SIZE) ?
bytesRemaining : TRANSFER_BLOCK_SIZE;

VisaInterop.Read(device, readBuf, bytesToRead, out retCount);

374 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

fs.Write(readBuf, 0, (int)retCount);
bytesRemaining -= retCount;
}

// Done with file

fs.Close();

}

/* The following method writes the contents of the specified file to
the

specified file in the form of a SCPI definite block. A newline is

NOT appended to the block and END is not sent at the conclusion of
the

write.*/

static public void WriteFileBlock(uint device, string fileName)
{
// Make sure that the file exists, otherwise sends a null block
if (File.Exists(fileName))
{
FileStream fs = new FileStream(fileName, FileMode.Open);

// Send the definite block header:
#{lengthDatalLength}{dataLength}

string fileSize = fs.Length.ToString();

string fileSizelength = fileSize.lLength.ToString();
WriteDevice(device, "#" + fileSizelength + fileSize, false);
// Don't set END at the end of writes

VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable,

0);

// Write the file block to the signal generator

byte[] readBuf = new byte[TRANSFER_BLOCK_SIZE];

int numRead = 0;

uint retCount = 0;

while ((numRead = fs.Read(readBuf, ©, TRANSFER_BLOCK_SIZE)) !=
9)

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 375

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

VisaInterop.Write(device, readBuf, (uint)numRead, out
retCount);

}
// Go ahead and set END on writes

VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable,
1);

// Done with file
fs.Close();
}

else
{
// Send an empty definite block
WriteDevice(device, "#10", false);
}

}

}

// Declaration of VISA device access constants

public enum VisaAccessMode

{
NoLock = 0,
Exclusivelock = 1,
SharedLock = 2,
LoadConfig = 4

}

// Declaration of VISA attribute constants

public enum VisaAttribute

{
SendEndEnable

Ox3FFFo016,

TimeoutValue Ox3FFFOO1A

// This class provides a way to call the unmanaged Keysight IO
Library VISA C

376 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

// functions from the C# application

public class VisaInterop
{
[D11Import("agvisa32.dll", EntryPoint="viClear")]

public static extern int Clear(uint session);

[D11lImport("agvisa32.dll", EntryPoint="viClose")]

public static extern int Close(uint session);

[D11Import("agvisa32.dl1l", EntryPoint="viFindNext")]

public static extern int FindNext(uint findList, byte[]
desc);

[D11lImport("agvisa32.dll", EntryPoint="viFindRsrc")]
public static extern int FindRsrc(

uint session,

string expr,

out uint findList,

out uint retCnt,

byte[] desc);

[D11lImport("agvisa32.dll", EntryPoint="viGetAttribute")]

public static extern int GetAttribute(uint vi, VisaAttribute
attribute, out uint attrState);

[D11Import("agvisa32.dll", EntryPoint="viOpen")]
public static extern int Open(

uint session,

string rsrcName,

VisaAccessMode accessMode,

uint timeout,

out uint vi);

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 377

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

[D11lImport("agvisa32.dll", EntryPoint="viOpenDefaultRM")]

public static extern int OpenDefaultRM(out uint session);

[D11lImport("agvisa32.dll", EntryPoint="viRead")]
public static extern int Read(

uint session,

byte[] buf,

uint count,

out uint retCount);

[D11Import("agvisa32.dll", EntryPoint="viSetAttribute")]

public static extern int SetAttribute(uint vi, VisaAttribute
attribute, uint attrState);

[D11lImport("agvisa32.dll", EntryPoint="viStatusDesc")]

public static extern int StatusDesc(uint vi, int status,
byte[] desc);

[D11Import("agvisa32.dll", EntryPoint="viWrite")]
public static extern int Write(

uint session,

byte[] buf,

uint count,

out uint retCount);

378 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
User Flatness Correction Downloads Using C++ and VISA

User Flatness Correction Downloads Using C++ and VISA

Figure 6-1

This sample program uses C++ and the VISA libraries to download user-
flatness correction values to the signal generator. The program uses the LAN
interface but can be adapted to use the GPIB interface by changing the
address string in the program.

You must include header files and resource files for library functions needed to
run this program. Refer to “Running C++ Programs” on page 63 for more
information.

The FlatCal program asks the user to enter a number of frequency and
amplitude pairs. Frequency and amplitude values are entered through the
keyboard and displayed on the console interface. The values are then
downloaded to the signal generator and stored to a file named flatCal_data.
The file is then loaded into the signal generator’'s memory catalog and
corrections are turned on. The figure below shows the console interface and
several frequency and amplitude values. Use the same format, shown in the
figure below, for entering frequency and amplitude pairs (for example, 12ghz,
1. 2db).

FlatCal Console Application

Example Program to Download User Flatness Corrections I’

Enter number of frequency and amplitude pairs: 2 .
Enter Power 2: 2.4db
Flatness Data saved to file : flatCal_data

Flatness Corrections Enabled

Press any key to continue

The program uses VISA library functions. The non-formatted viWrite VISA
function is used to output data to the signal generator. Refer to the Keysight
VISA User’s Manual available on Keysight's website:
http:\\www.keysight.com for more information on VISA functions.

The program listing for the FlatCal program is shown below. It is available on
the Documentation CD-ROM in the programming examples section as
flatcal.cpp.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 379

380

Creating and Downloading User-Data Files
User Flatness Correction Downloads Using C++ and VISA

VAR E R R E R E R LR R R R R e e R R R e R R R LR E L LR LR LR L LR L E LR

// PROGRAM NAME:FlatCal.cpp

/7

// PROGRAM DESCRIPTION:C++ Console application to input frequency
and amplitude

// pairs and then download them to the signal generator.

//

// NOTE: You must have the Keysight IO Libraries installed to run
this program.

!/

// This example uses the LAN/TCPIP interface to download frequency
and amplitude

// correction pairs to the signal generator. The program asks the
operator to enter

// the number of pairs and allocates a pointer array listPairs[]
sized to the number

// of pairs.The array is filled with frequency nextFreq[] and
amplitude nextPower|[]

// values entered from the keyboard.

//

//***

// IMPORTANT: Replace the 000.000.000.000 IP address in the
instOpenString declaration

// in the code below with the IP address of your signal generator.

//***

#include <stdlib.h>
#tinclude <stdio.h>
#tinclude "visa.h"

#include <string.h>

// IMPORTANT:

// Configure the following IP address correctly before compiling
and running

char* instOpenString ="TCPIPO::000.000.000.000: :INSTR";//your PSG's
IP address

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
User Flatness Correction Downloads Using C++ and VISA

const int MAX_STRING_LENGTH=20;//length of frequency and power
strings

const int BUFFER_SIZE=256;//length of SCPI command string

int main(int argc, char* argv[])
{
ViSession defaultRM, vi;

ViStatus status = 0;

status = viOpenDefaultRM(&defaultRM);//open the default
resource manager

//TO DO: Error handling here

status = viOpen(defaultRM, instOpenString, VI_NULL, VI_NULL,
&vi);

if (status)//if any errors then display the error and exit the
program

{
fprintf(stderr, "viOpen failed (%s)\n", instOpenString);

return -1;

printf("Example Program to Download User Flatness
Corrections\n\n");

printf("Enter number of frequency and amplitude pairs: ");

int num = 9;

scanf("%d", &num);

if (num > @)

{

int lenArray=num*2;//length of the pairsList[] array. This
array

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 381

Creating and Downloading User-Data Files
User Flatness Correction Downloads Using C++ and VISA

//will hold the frequency and amplitude arrays

char** pairsList = new char* [lenArray]; //pointer array

for (int n=0; n < lenArray; n++)//initialize the pairsList
array

//pairsList[n]=0;

for (int i=0; i < num; i++)

{

char* nextFreq = new char[MAX_STRING_LENGTH+1];
//frequency array

char* nextPower = new
char[MAX_STRING_LENGTH+1];//amplitude array

//enter frequency and amplitude pairs i.e 1@ghz .1db
printf("Enter Freq %d: ", i+1);
scanf("%s", nextFreq);
printf("Enter Power %d: ",i+l);
scanf("%s", nextPower);
pairsList[2*1i] = nextFreq;//frequency

pairsList[2*i+1]=nextPower;//power correction

unsigned char str[256];//buffer used to hold SCPI command

//initialize the signal generator's user flatness table
sprintf((char*)str,":corr:flat:pres\n"); //write to buffer
viWrite(vi, str,strlen((char*str),0); //write to PSG
char c = ',";//comma separator for SCPI command

for (int j=0; j< num; j++) //download pairs to the PSG

{

sprintf((char*)str,":corr:flat:pair %s %c
%s\n",pairsList[2*j], c, pairsList[2*j+1]); // << on
SAME line!

viWrite(vi, str,strlen((char*)str),0);

382 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
User Flatness Correction Downloads Using C++ and VISA

//store the downloaded correction pairs to PSG memory

const char* fileName = "flatCal data";//user flatness file
name

//write the SCPI command to the buffer str

sprintf((char*)str, ":corr:flat:store \"%s\"\n", fileName);
//write to buffer

viWrite(vi,str,strlen((char*)str),0);//write the command to
the PSG

printf("\nFlatness Data saved to file : %s\n\n", fileName);

//load corrections

sprintf((char*)str,":corr:flat:load \"%s\"\n", fileName);
//write to buffer

viWrite(vi,str,strlen((char*)str),0); //write command to the
PSG

//turn on corrections
sprintf((char*)str, ":corr on\n");
viWrite(vi,str,strlen((char*)str),0");
printf("\nFlatness Corrections Enabled\n\n");
for (int k=0; k< lenArray; k++)
{
delete [] pairsList[k];//free up memory

}

delete [] pairsList;//free up memory

viClose(vi);//close the sessions

viClose(defaultRM);

return 0;

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 383

Creating and Downloading User-Data Files
Data Transfer Troubleshooting

Data Transfer Troubleshooting

This section applies to vector models with an installed baseband generator
option.
This section is divided by the following data transfer methods:
“User File Download Problems” on page 384
“PRAM Download Problems” on page 385
“User FIR Filter Coefficient File Download Problems” on page 387
Each section contains the following troubleshooting information:

— alist of symptoms and possible causes of typical problems encountered
while downloading data to the signal generator

— reminders regarding special considerations and file requirements

— tips on creating data, transferring data, data application and memory usage

User File Download Problems

Table 6-14 Use-File Download Trouble - Symptoms and Causes

Symptom Possible Cause

Data does not completely fill an integer number of timeslots.

At the RF output, If a user file fills the data fields of more than one timeslot in a continuously repeating framed
some data modulated, transmission, the user file will be restarted after the last timeslot containing completely filled data
some data missing fields. For example, if the user file contains enough data to fill the data fields of 3.5 timeslots,

firmware will load 3 timeslots with data and restart the user file after the third timeslot. The last
0.5 timeslot worth of data will never be modulated.

Data Requirements
— The user file selected must entirely fill the data field of each timeslot.

— The user file must be a multiple of 8 bits, so that it can be represented in
ASCII characters.

— Available volatile memory must be large enough to support both the data
field bits and the framing bits.

384 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Data Transfer Troubleshooting

Requirement for Continuous User File Data Transmission

“Integer Number of Timeslots” Requirement for Multiple-Timeslots

If a user file fills the data fields of more than one timeslot in a continuously
repeating framed transmission, the user file is restarted after the last timeslot
containing completely filled data fields. For example, if the user file contains
enough data to fill the data fields of 3.5 timeslots, the firmware loads 3
timeslots with data and restart the user file after the third timeslot. The last 0.5
timeslot worth of data is never modulated.

To solve this problem, add or subtract bits from the user file until it completely
fills an integer number of timeslots

“Multiple-of-8-Bits” Requirement

For downloads to bit and binary memory, user file data must be downloaded in
multiples of 8 bits (bytes), since SCPI specifies data in bytes. Therefore, if the
original data pattern’s length is not a multiple of 8, you need to:

— add bits to complete the ASCII character

— replicate the data pattern to generate a continuously repeating pattern with
no discontinuity

— truncate the excess bits

The “multiple-of-8-bits” data length requirement is in addition to the
requirement of completely filling the data field of an integer number of
timeslots.

Using Externally Generated, Real-Time Data for Large Files

When the data fields must be continuous data streams, and the size of the data
exceeds the available PRAM, real-time data and synchronization can be
supplied by an external data source to the front panel DATA, DATA CLOCK, and
SYMBOL SYNC connectors. This data can be continuously transmitted, or can
be framed by supplying a data—-synchronous burst pulse to the EXT1 INPUT
connector on the front panel. Additionally, the external data can be
multiplexed into internally generated framing

PRAM Download Problems

Table 6-15

PRAM Download - Symptoms and Causes

Symptom Possible Cause

The transmitted pattern is interspersed
with random, unwanted data.

Pattern reset bit not set.

Insure that the pattern reset bit (bit 7, value 128) is set on the last byte of your
downloaded data.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 385

Creating and Downloading User-Data Files
Data Transfer Troubleshooting

Table 6-15 PRAM Download - Symptoms and Causes

Symptom Possible Cause

PRAM download exceeds the size of PRAM memaory.

ERROR -223, Too much data Either use a smaller pattern or get more memory by ordering the appropriate
hardware option.

Data Requirements
— The signal generator requires a file with a minimum of 60 bytes

— For every data bit (bit 0), you must provide 7 bits of control information (bits

1-7).
Table 6-16 PRAM Data Byte

Bit | Function Value | Comments

0 Data 01 This is the data bit. It is “unspecified” when burst (bit 2) is set to 0.

1 Reserved 0 Always 0

2 Burst 0/1 1=RFon
0 =RF off
For non-bursted, non-TDMA systems, to have a continuous signal, set this bit to 1 for all
bytes. For framed data, set this bit to 1 for on timeslots and 0O for off timeslots.

3 Reserved 0 Always 0

4 Reserved 1 Always 1

5 Reserved 0 Always O

6 EVENT1 0/1 To have the signal generator output a single pulse at the EVENT 1 cannector, set this bit to

Output 1. Use this output for functions such as a triggering external hardware to indicate when the

data pattern begins and restarts, or creating a data-synchronous pulse train by toggling
this bit in alternate bytes.

7 Pattern Reset 01 0 = continue to next sequential memary address.
1 =end of memary and restart memory playback.
This bit is set to O for all bytes except the last byte of PRAM. To restart the pattern, set the
last byte of PRAM to 1.

386 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Creating and Downloading User-Data Files
Data Transfer Troubleshooting

User FIR Filter Coefficient File Download Problems

Table 6-17 User FIR File Download Trouble — Symptoms and Causes

Symptom Possible Cause

There is not enough memory available for the FIR coefficient file being
downloaded.

ERROR -321, Out of memory
To solve the problem, either reduce the file size of the FIR file or delete
unnecessary files from memory.

User FIR filter has too many coefficients.

ERROR ~223, Too much data The filter specification cannot have more than 1024 taps (2048 coefficients

for a complex filter).

Data Requirements
— Data must be in ASCII format.
— Downloads must be in list format.

— Filters containing more symbols than the hardware allows (32 for real-time
modulation filters, 512 for Arb Custom Modulation filters, and 256 for
Equalization filters) will not be selectable for the configuration.

Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide 387

Creating and Downloading User-Data Files
Data Transfer Troubleshooting

388 Keysight CXG, EXG, and MXG X-Series Signal Generators Programming Guide

Symbols
.NET framework 365

Numerics
2’s complement data format 211

A

abort function 68
address
GPIB address 38
IP address 43
ARB waveform file downloads
data requirements
waveform 205
download utilities 204
waveform download utilities 250
ASCII, data 71
Auto-IP 45
AUXILIARY INTERFACE, See RS-232

B

BASIC
ABORT 68
CLEAR T
ENTER 72
LOCAL 70,71
LOCAL LOCKOUT 70
OUTPUT 71
REMOTE 69
See HP BASIC
big-endian
byte order, interleaving and byte swapping 237
changing byte order 208
example, programming 301
binary
data
framed 332
unframed 331
file
downloads commands 339
modifying hex editor 342
bit
file
downloads and commands 338
modifying hex editor 342
order, user file 328
status, monitoring 173
values 172
bits and bytes 206
byte order
byte swapping 208
changing byte order 208
interleaving 1/Q data 237

C

C
AC-coupled FM signals
generating externally applied 91
CW signals, generating 88
data questionable
status register, reading 104

Index

FM signals, generating internally applied 93
reading the service request interrupt 110
Sockets LAN, programming 120
states, saving and recalling 101
C and VISA
GPIB
queries 85
GPIB, interface check 75
C/C++22
C#
programming examples 64
remote control 22
VISA, example 366
C++
programming examples 63, 254
VISA, generating a step-swept signal 96
C++ and VISA
generating a step-swept signal 96
cable
USB 60
carrier
activating, FIR filters 363
modulating, FIR filters 363
Checking Available Memory 325
clear
command 71
function 71
CLS command 176
command
CLS 176
format programming, user file data 335
format user file, downloading 334
prompt 46, 150
window PC, using 343
window UNIX, using 343
commands
downloads, binary file 339
downloads, bit file 338
GPIB 68,69, 70, 71,72
Keysight X-Series, menu path 30
computer interface 15
computer-to-instrument communication
VISA
configuration, automatic 19
VISA configuration, (manual) 19
condition registers, description 181
Configuration
|0 Libraries 18
configuring, VXI-11 50
connection wizard 16
controller 39
creating waveform data
C++, using 235
saving to a text file for review 237
creating waveform files
overview 203
crossover cable, private LAN 45
csc.exe 365
custom
modulation data, FIR filter 362
real-time, high data rates 344
user file data, memory usage 333

389

D

DAC input values 209
data
binary, framed 332
binary, unframed 331
encryption 225
format, e443xb signal generator 252
requirements, waveform 205
data questionable
See also data questionable registers
filters
BERT transition 200
calibration transition 197
frequency transition 194
power transition 191
transition 189
groups
BERT status 199
calibration status 196
frequency status 193
power status 190
status 187
status register
reading, using VISA and C 104
data questionable registers
BERT event 201
BERT event enable 201
BERT, condition 200
calibration condition 197
calibration event 197
calibration event enable 198
condition 187
event 189
event enable 189
frequency condition 194
frequency event 194
frequency event enable 195
power condition 191
power event 191
power event enable 192
data rates, high
custom, real-time 344
data requirements, FIR filter downloads 360
data types
binary 320
bit 320
defined 320
FIR filter states 320
PRAM 320
user flatness correction 320
decryption 225
developing programs 62
device, add 20
DHCP 23, 45
directory, root 322
DNS 46
documentation 11
download
binary file data 331
bit file data 328
user file data
FTP procedures 342
unencrypted files for extraction 358

390

unencrypted files for no extraction 358
user flatness 365
utilities
IntuiLink for signal generators 204
Keysight Signal Studio, Toolkit 204
Waveform Download Assistant 204
waveform data
advanced programming languages 243
commands 225
e443xb signal generator files 210, 251
encrypted files for extraction 230
FTP procedures 231
memory locations 225
overview 203, 241
simulation software 241
unencrypted files for extraction 228
unencrypted files for no extraction 228
user-data files, using 319
download libraries 21
downloaded PRAM files
data sources 354
downloading
block data
SCPI command 351
SCPI command, programming syntax 353
C++, using 254
MATLAB 289
Visual Basic 304
downloads, PRAM data
e4438c 346
€8267d 346

E

e443xb
files
downloading 251, 252
formatting 210, 252
programming examples 275
edit VISA config 20
EnableRemote 69
encryption
downloading
for extraction 230
extracting waveform data 229, 230
I/Q files 225
securewave directory
esg 225
psg 225
waveform data 225
enter function 72
equalization
filter 364
filter, user 364
errors 32, 47
ESE commands 176
even number of samples 216
event enable register
description 181
event registers
description 181
examples
save and recall 366
Telnet 56

external media
See USB media
external memory
See USB media
externally applied AC-coupled FM signals
generate, using VISA and C 91
extract user file data 358
extracting
PRAM files 356

F

file size
determining
PRAM 349
minimum
PRAM 349
PRAM 349
file types
See data types
files
decryption 225
encryption 225
error messages 32
extraction commands and file paths 227
header information 214, 225
large, generating real-time data 385
PRAM, modifying 358
transfer methods 226
transferring 56
waveform download utilities 250
waveform structure 214
filter
equalization 364
user, equalization 364
filters
See transition filters
FIR
filter data
custom modulation 362
filters
carrier, activating 363
carrier, modulating 363
data limitations 360
firmware
loading older versions, caution 13
firmware status, monitoring 173
front panel
USB
connector, Type-A 60
flash memory sticks 60
media 60
USB media 60
FTP
commands for downloading and extracting files 358
downloading and extracting files, commands 229-230
internet explorer, using 343
methods 226
procedures for downloading files 231, 342
using 56
web server procedure 233, 343

G
Getting Started Wizard 38

Index

global settings
Keysight X-Series 30, 318
GPIB
address 38,115
configuration 38
controller 39
interface 15, 38
interface cards 36, 67
IO libraries 21
Keysight X-Series, setting address 38
listener 39
overview 36, 67
program examples 40, 68, 75, 85
SCPI commands 39
talker 39
troubleshooting 38
using VISA and C 75
verifying operation 38
guides, content of 11

H

hardware
layers, remote programming 14
status, monitoring 173
help mode
setting
Keysight X-Series 30
hex editor
binary file, modifying 342
bit file, modifying 342
hexadecimal data 301
hostname 43, 115
hostname, setting
DHCP/Auto I/P LAN, Keysight mxg 45
Keysight mxg 44
Keysight mxg menus 43
HP BASIC 22
HP Basic
local lockout 76
queries 80

I/0 libraries
See |0 libraries
I/Q data
creating, advanced programming languages 235
encryption 225
interleaving
big endian and little endian 237
byte swapping 237
little endian, byte swapping 237
waveform data, creating 212
memory locations 221, 239
saving to a text file for review 237
scaling 210
waveform structure 216
iabort 68
ibloc 70, 71
ibstop 68
ibwrt 71
iclear 71
IEEE standard 36, 67
igpibllo 70

391

iloc 70
input values, DAC 209
installation guide content 11
instrument
communication 17,19
state files
overview 365
SCPI commands, recalling 365
SCPI commands, saving 365
instrument status, monitoring 168
interactive 10 16, 47
interface
cards 36, 67
GPIB 38
LAN 15
RS-23215
USB (Keysight mxg only) 15
interleaving, See 1I/Q data 212
internal
web server
FTP procedure 343
internal storage
See storage
internally applied FM signals
generate, using VISA and C 93
|0 Config
computer-to-instrument communication 19
Keysight 10 libraries Suite 16
VISA, manual 20
|0 Configure
Using VISA Assistant 48
|0 interface 17,19
IO libraries
GPIB interface, installing 36
GPIB, installing interface cards 67
GPIB, selecting for 21
GPIB, verifying 38
interactive 10, using 47
program languages, overview 16
signal generator, remote control 14
suite, overview 16
USB, selecting for 59
VISA LAN, troubleshooting 48
IP address
LAN interface 43
LAN, assigning 43
setting 43, 45
setting Keysight mxg 44
iremote 69

J

JAVA 65, 150
Java
example 65, 150

K
Keysight
BASIC, See HP BASIC
esg
memory allocation, volatile memory 323
volatile memory types 321
Waveform Download Assistant 250
IO Libraries

392

Suite 16
Suite, using interactive 10 47
version 15.017
version J 50
version M 19, 50, 59

psg
memory allocation, volatile memory 323
volatile memory types 321
Waveform Download Assistant 250

Signal Studio 250

Signal Studio Toolkit 204

VISA 21, 40, 59, 68

VISA COM Resource Manager 1.0 64

X-Series
global settings, configuration 30
global settings, configuring 318
memory allocation, volatile memory 323
setting GPIB address 38
volatile memory types 321
Waveform Download Assistant 250
web server, on 26

Keysight VISA 22

L

LabView 22
LAN

Auto-IP configuration 45

config 48

configuration
Keysight mxg 44, 45
menu, Keysight mxg 43
summary, Keysight mxg 29
web server 23

DHCP configuration 45

establishing a connection 242, 243

hostname 43

interface 15

IO libraries 21

LXI
interface protocols 42

manual configuration 44

Matlab 161

Matlab, using 156, 161, 163

overview 42

private 45

program examples 65, 115, 150, 153, 156, 161, 163

programming
using JAVA 65, 150
queries using sockets 124
sockets 115
sockets LAN 42
Telnet 52
troubleshooting 46
verifying operation 46
VXI-11
examples, using 115
interface protocols 42
perl, using 153
programming examples, LAN 115
sockets, programming 65, 150
LAN Ping Responses 46
libraries
GPIB functionality, verifying 38

GPIB 1/0 libraries, selecting 21
10, Keysight 14, 16
selecting, for computer 21
USB 59
list format, downloading
SCPI command 351
list, error messages 32
listener 39
little-endian
byte order, interleaving and byte swapping 237
loading waveforms 247
local
echo, telnet b4
function 70
local lockout
function 70
HP Basic, using 76
location user-data file type
binary 325
LSB 207
LSB and MSB 328
LSB/MSB 301
LXI
class B, mxg 15, 23

M

manual 44
manual operation 69
manuals, content of 11
marker file 214, 225
MATLAB 22
download utility 250
downloading data 241
programming examples 284
programming, introduction 22
Matlab
example 156, 161
media
external
flash memory sticks 60
front panel USB 60
non-volatile memory, Keysight X-Series 321
waveform memory 220
internal
non-volatile memory, Keysight X-Series 321
waveform memory 220
usB
non-volatile memory, Keysight X-Series 321
memory
See also media
allocation 222, 323
checking, available 325
defined 220, 321
location user-data file type
available memory, checking 325
bit 325
FIR 325
flatness 325
instrument state 325
PRAM 325
locations 220, 321
non-volatile (NVWFM) 225
signal generator, maximum 325

Index

size 224, 324

volatile and non-volatile 321
memory usage

user file data

custom 333
TDMA 333

Microsoft .NET Framework

overview 367
Mini-B (5-pin)

Rear panel connector 60
MSB 207
MSB and LSB 328
MS-DOS Command Prompt 46
multiple-of-8-bits requirement

user file data 385
multiple-timeslots

integer number of timeslots 385
mxg

See Keysight X-Series
MXG ATE

web-enabled, accessing 24

N
National Instruments
NI-488.2 40, 68
VISA 21, 22, 40, 59, 68
negative transition filter, description 181
NI libraries
SICL
GPIB I/0 libraries, selecting 21
NI-488.2
EnableRemote 69
functions 21
GPIB I/0 libraries, selecting 21
ibler 71
ibloc 70, 71
ibrd 72
ibstop 68
ibwrt 71
LAN I/0 libraries, selecting 21, 22
queries using C++ 82
SetRWLS 70
USB I/0 libraries, selecting 59
VISA 21
non-volatile memory
available
SCPI query 326
external media, Keysight X-Series 321
internal media, Keysight X-Series 321
internal storage, Keysight X-Series 321
USB media 60
USB media, Keysight X-Series 321
waveform 220

0

OPC commands 176
output command 71
output function 71

P

PC 301
PCI-GPIB 40, 68
PERL

393

example 153, 163
phase discontinuity
avoiding 218
samples 218
waveform 217
phase distortion 217
ping
program 46
playing waveforms 247
polling method (status registers) 174
ports 120
positive transition filter, description 181
PRAM
as data sources 354
bit positions 347
byte patterns 347
data extracting SCPI command, syntax 357
downloads, problems 385
e4438c, data downloads 346
e8267d, data downloads 346
file size 349
minimum 349
file size, determining 349
files
command syntax, for restoring 356
command syntax, for storing 356
extracting 356
modifying 358
non-volatile memory, storing 356
understanding 346
volatile memory, restoring 356
volatile memory
unframed data, usage 333
waveform, viewing 348
private LAN, using 45
problems
user
file downloads 384
FIR filter downloads 387
programming
creating waveform data 235
downloading waveform data 241
little endian order, byte swapping 237
user file data
command format 335
programming examples
C# 64, 367
C++ 63, 254
e443xb
files 275
MATLAB 284
using 62
using GPIB 40, 68, 75, 85
using LAN 65, 115, 150, 153, 156, 161, 163
Visual Basic 301, 304
VXI-11115
programming guide content 11

Q

queries
HP Basic, using 80
queue, error 32

394

R

real-time
data files, generating large 385
rear panel connector
Mini-B 60
recall states 365
references, content of 11
register system overview 168
data questionable
See also data questionable registers
registers
See also data questionable registers
See also status registers
condition, description 181
mxg overall system 170, 171
standard event
bits 182
status 182
status enable 183
standard operation
condition 185
event 186
event enable 186
status groups, register type descriptions 181
remote function
HP Basic 69
setting
Keysight X-Series 30
remote interface
programming 14
USB 58
remote programming
hardware layers 14
software layers 14
RS-232
interfaces 15

S

samples
even number 216
waveform 216
save and recall 365
scaling I/Q data 210
SCPI
error queue 32
file transfer methods 226
GPIB, overview 36
programming languages, common 22
reference content 11
register model 168
web server control 23
SCPI command, programming syntax
block data, downloading 353
SCPI command, syntax
PRAM files, extracting 357
SCPI commands
block data, downloading 351
command line structure 227
download e443xb files 252
encrypted files 230
extraction 225, 227, 228, 230, 358
for status registers
IEEE 488.2 common commands 176

GPIB function statements 39
instrument state files, recalling 365
instrument state files, saving 365
list format, downloading 351
no extraction 227
unencrypted files 228, 358
user FIR file downloads
sample command line 361
securewave directory
decryption, file 225
downloading encrypted files 230
downloads, file 225
encryption, file 225
extracting waveform data 229, 230
extraction, file 225
sequences
waveforms, building 248
service
guide content 11
service request
interrupt
reading, using VISA and C 110
method
status registers 174
using 174
SetRWLS 70
setting
help mode
Keysight X-Series 30
SICL 21, 22, 40,59, 68
GPIB examples 40, 68
iabort 68
iclear 71
igpibllo 70
iloc 70
iprintf 71
iremote 69
iscanf 72
NI libraries 21
USB, using 59
VXI-11, programming 116
signal generator
monitoring status 168
volatile memory types 321
Waveform Download Assistant 250
Signal Studio Toolkit 204, 250
simulation software 241
sockets
example 120, 124
Java 65, 150
LAN 51,115,120
Matlab 156
PERL 153, 163
UNIX 121
Windows 122
software
layers, remote programming 14
libraries, 1016
SRE commands 176
SRQ command 174
SRQ method, status registers 174
standard event status
enable register 183
group 182

Index

register 182
standard operation
condition register 185
event enable register 186
event register 186
transition filters 185
state files 365
states
saving and recalling, using VISA and C 101
status byte
group 179
mxg overall register system 170, 171
status groups
data questionable
BERT 199
calibration 196
frequency 193
overview 187
power 190
registers 181
standard
event 182
status byte 179
status registers
See also registers
accessing information 173
bit values 172
hierarchy 168
in status groups 181
monitoring 173
mxg overall system 170, 171
programming 167
SCPI commands 176
SCPI model 168
setting and querying 176
system overview 168
using 172
STB command 176
storage
internal
non-volatile memory, Keysight X-Series 321
system requirements 62

T
tatker 39
TCP/IP 23
TCPIP17,19,115
TDMA

user file data, memory usage 333
Telnet

example 56

PC 53

UNIX 54, 56

using 52

Windows 2000 53

Windows XP 53
timeslots, integer number of

multiple-timeslots requirement 385
Toolkit, Signal Studio 204, 250
transition filters

data questionable

BERT 200
negative and positive 189

395

power 191
data questionable calibration 197
data questionable frequency 194
description 181
negative transition, description 181
positive transition, description 181
standard operation 185
troubleshooting
GPIB 38
LAN 46
ping
response errors 47
PRAM downloads 385
USB 60
user file downloads 384
user FIR filter downloads 387
VISA assistant 48
Type-A front panel USB connector 60

u

unencrypted files
downloading for extraction 228, 358
downloading for no extraction 228, 358
extracting I/Q data 357
unframed data, usage
volatile memory, PRAM 333
USB
cable 60
functionality, verification 60
interface 15
IO libraries 59
setting up 59
using, Keysight mxg 58
verifying operation 60
usb media
file extensions 223
user
documentation content 11
user data
file, modifying 341
files, creating 319
files, downloading 319
memory 321
root directory 322
user file data, continuous transmission
requirements 385
user files
bit order 328
bit order, LSB and MSB 328
data
binary, downloads 327
bit, downloads 327
multiple-of-8-bits requirement 385
downloading
as the data source 354
carrier, activating 356
carrier, modulating 356
command format 334
modulating and activating the carrier 341
selecting the user file as the data source 341
size 332
user FIR file downloads
non-volatile memory 361

396

selecting a downloaded user FIR file 362
user flatness 365
user-data file type
binary, memory location 325
bit, memory location 325
FIR, memory location 325
flatness, memory location 325
instrument state, memory location 325
memory location 325
PRAM, memory location 325
user-data files
See user data
Using Connection Expert
configuring and running 18

v

verifying waveforms 247
Version M
|0 Libraries, Keysight 19
version M
|0 Libraries, Keysight 16
ViPrintf 71
VISA18,22,59
C++, generating a step-swept signal 96
COM 10 Library 64
computer-to-instrument communication 19
configuration
automatic 17, 20
manual 18, 20
CW signals, generating 88
data questionable status register, reading 104
FM signals, generating internally applied 93
generating externally applied AC-coupled FM signals 91
170 libraries 21
LAN client 47
LAN, using 21
library 40, 68, 301
NI-488.2 21
scanf 72
service request interrupt, reading 110
states, saving and recalling 101
USB, using 59
ViPrintf 71
Visual C++, generating a swept signal 98
viTerminate 68
VXI-11115
CW signals
See VISAand C
VISA and C
CW signals, generating 88
GPIB
interface check for 75
queries 85
VISA Assistant
GPIB functionality, verifying 38
10 Config 17,19
10, Using interactive 47
troubleshooting 48
verifying instrument communication 47
Visual Basic
IDE 64
programming examples 301
programming language 22

references 64
Visual C++
NI-488.2, queries using 82
VISA, generating a swept signal 98
Visual C++ and VISA
generating a swept signal 98
viTerminate 68
volatile memory
file, decryption 225
file, encryption 225
memory allocation 222
Keysight esg 323
Keysight psg 323
securewave directory 225
memory, volatile (WFM1) 225
signal generator 321
types, signal generators 321
waveform 220
volatile memory available, SCPI query 326
VXI-11115
configuration 50
programming 115
programming interface examples 115
SICL, using 116
using 50
VISA, using 118

w

waveform data
2’s complement data format 211
bits and bytes 206
byte order 208
byte swapping 208
commands for downloading and extracting 225-233, 334-344
creating 235
DAC input values 209
data requirements 205
encrypted data 223
encryption 225-230
explained 206
extracting 225, 228-229
I and Q interleaving 212
LSB and MSB 207
saving to a text file for review 237
waveform download
utilities
differences 250
waveform downloads
advanced programming languages, using 243
download utilities, using 250
HP BASIC, using 308-314
memory 220
allocation 222, 323
size 224,324
volatile and non-volatile 220
samples 216
simulation software, using 241
structure 216
using advanced programming languages 243
with Visual Basic 6.0 304
waveform files
creating 203
downloading 203

Index

waveform generation

C++ 254

MATLAB, using 284

Visual Basic 6.0, using 301
waveforms

loading 247

playing 247

sequences, building 248

verifying 247

viewing, PRAM 348
web server

communicating with 23

internal 343

Keysight

X-Series 26

Windows

200053

2000 Professional 17

9816

ME 16

NT 16,19

Vista Business 17

XP 17,53
WritelEEEBlock 304

397

KEYSIGHT

TECHNOLOGIES

This information is subject to change
without notice.

© Keysight Technologies 2012-2019
Edition 1, July 2019
N5180-90074

www.keysight.com

