
Programmer's Guide

ps6000apg-5

(ps6000a API)

PicoScope® 6000E Series

PicoScope 6000 Series (A API) Programmer's Guide Contents

2Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

Contents
1 Introduction ... 6

1 Software license conditions .. 7

2 Trademarks .. 7

2 Programming overview ... 8

1 System requirements ... 8

2 Driver ... 9

3 Voltage ranges ... 10

4 MSO digital data ... 11

5 Triggering .. 12

6 Sampling modes .. 13

1 Block mode ... 13

2 Rapid block mode ... 16

3 Streaming mode ... 21

4 Retrieving stored data .. 23

7 Timebases .. 23

8 Combining several oscilloscopes ... 24

9 Handling intelligent probe interactions ... 25

3 API functions ... 26

1 ps6000aChannelCombinationsStateless - get possible channel combinations 27

2 ps6000aCheckForUpdate - is firmware update available? ... 28

3 ps6000aCloseUnit - close a scope device .. 29

4 ps6000aEnumerateUnits - get a list of unopened units ... 30

5 ps6000aFlashLed - flash the front-panel LED ... 31

6 ps6000aGetAccessoryInfo - get information about a connected accessory 32

7 ps6000aGetAdcLimits - get min and max sample values .. 33

8 ps6000aGetAnalogueOffsetLimits - get analog offset information .. 34

9 ps6000aGetDeviceResolution – retrieve the device resolution .. 35

10 ps6000aGetMaximumAvailableMemory - depending on hardware resolution 36

11 ps6000aGetMinimumTimebaseStateless - find fastest available timebase 37

12 ps6000aGetNoOfCaptures - query how many captures made ... 38

13 ps6000aGetNoOfProcessedCaptures - query how many captures processed 39

14 ps6000aGetStreamingLatestValues - read streaming data ... 40

1 PICO_STREAMING_DATA_INFO .. 41

2 PICO_STREAMING_DATA_TRIGGER_INFO .. 42

15 ps6000aGetTimebase - get available timebases .. 43

16 ps6000aGetTriggerInfo - get trigger timing information .. 44

1 PICO_TRIGGER_INFO .. 45

17 ps6000aGetTriggerTimeOffset - get timing corrections .. 46

18 ps6000aGetUnitInfo - get information about device .. 47

PicoScope 6000 Series (A API) Programmer's Guide Contents

3Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

19 ps6000aGetValues - get block mode data .. 49

1 Downsampling modes .. 50

20 ps6000aGetValuesAsync - read data without blocking .. 51

21 ps6000aGetValuesBulk - read multiple segments .. 52

22 ps6000aGetValuesBulkAsync - read multiple segments without blocking 53

23 ps6000aGetValuesOverlapped - get rapid block data ... 54

1 Using GetValuesOverlapped() .. 55

24 ps6000aGetValuesTriggerTimeOffsetBulk - get trigger time offsets for multiple segments 56

25 ps6000aIsReady - get status of block capture ... 57

26 ps6000aMemorySegments - set number of memory segments ... 58

27 ps6000aMemorySegmentsBySamples - set size of memory segments 59

28 ps6000aNearestSampleIntervalStateless - get nearest sampling interval 60

29 ps6000aNoOfStreamingValues - get number of captured samples .. 61

30 ps6000aOpenUnit - open a scope device .. 62

31 ps6000aOpenUnitAsync - open unit without blocking .. 63

32 ps6000aOpenUnitProgress - get status of opening a unit ... 64

33 ps6000aPingUnit - check if device is still connected ... 65

34 ps6000aQueryMaxSegmentsBySamples - get number of segments ... 66

35 ps6000aQueryOutputEdgeDetect – check if output edge detection is enabled 67

36 ps6000aResetChannelsAndReportAllChannelsOvervoltageTripStatus 68

37 ps6000aReportAllChannelsOvervoltageTripStatus .. 68

1 PICO_CHANNEL_OVERVOLTAGE_TRIPPED structure ... 69

38 ps6000aRunBlock - start block mode capture .. 70

39 ps6000aRunStreaming - start streaming mode capture ... 72

40 ps6000aSetChannelOff - disable one channel .. 74

41 ps6000aSetChannelOn - enable and set options for one channel ... 75

42 ps6000aSetDataBuffer - provide location of data buffer .. 77

43 ps6000aSetDataBuffers - provide locations of both data buffers ... 79

44 ps6000aSetDeviceResolution – set the hardware resolution ... 80

1 PICO_DEVICE_RESOLUTION enumerated type ... 80

45 ps6000aSetDigitalPortOff – switch off digital inputs .. 81

46 ps6000aSetDigitalPortOn – set up and enable digital inputs .. 82

47 ps6000aSetExternalReferenceInteractionCallback - register callback function for external
reference clock events ... 83

48 ps6000aSetNoOfCaptures - modify rapid block mode ... 84

49 ps6000aSetOutputEdgeDetect – change triggering behavior .. 85

50 ps6000aSetProbeInteractionCallback – register callback function for probe events 86

51 ps6000aSetPulseWidthDigitalPortProperties – set digital port pulse width 87

52 ps6000aSetPulseWidthQualifierConditions - specify how to combine channels 88

53 ps6000aSetPulseWidthQualifierDirections - specify threshold directions 89

54 ps6000aSetPulseWidthQualifierProperties - specify threshold logic .. 90

55 ps6000aSetSimpleTrigger - set up triggering .. 91

56 ps6000aSetTriggerChannelConditions - set triggering logic ... 92

PicoScope 6000 Series (A API) Programmer's Guide Contents

4Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

1 PICO_CONDITION structure ... 93

57 ps6000aSetTriggerChannelDirections - set trigger directions ... 94

1 PICO_DIRECTION structure .. 95

58 ps6000aSetTriggerChannelProperties - set up triggering .. 96

1 TRIGGER_CHANNEL_PROPERTIES structure ... 97

59 ps6000aSetTriggerDelay - set post-trigger delay .. 98

60 ps6000aSetTriggerDigitalPortProperties - set port directions .. 99

1 PICO_DIGITAL_CHANNEL_DIRECTIONS structure ... 100

61 ps6000aSigGenApply - set output parameters ... 101

62 ps6000aSigGenClockManual - control signal generator clock ... 103

63 ps6000aSigGenFilter - switch output filter on or off .. 104

64 ps6000aSigGenFrequency - set output frequency .. 105

65 ps6000aSigGenFrequencyLimits - get limits in sweep mode .. 106

66 ps6000aSigGenFrequencySweep - set signal generator to frequency sweep mode 107

67 ps6000aSigGenLimits - get signal generator parameters .. 108

68 ps6000aSigGenPause - stop the signal generator .. 109

69 ps6000aSigGenPhase - set signal generator using delta-phase .. 110

1 Calculating deltaPhase ... 110

70 ps6000aSigGenPhaseSweep - set signal generator to sweep using delta-phase 112

71 ps6000aSigGenRange - set signal generator output voltages ... 113

72 ps6000aSigGenRestart - continue after pause ... 114

73 ps6000aSigGenSoftwareTriggerControl - set software triggering ... 115

74 ps6000aSigGenTrigger - choose the trigger event ... 116

75 ps6000aSigGenWaveform - choose signal generator waveform ... 117

76 ps6000aSigGenWaveformDutyCycle - set duty cycle ... 118

77 ps6000aStartFirmwareUpdate - update the device firmware ... 119

78 ps6000aStop - stop sampling .. 120

79 ps6000aStopUsingGetValuesOverlapped - complements ps6000aGetValuesOverlapped 121

80 ps6000aTriggerWithinPreTriggerSamples - switch feature on or off .. 122

4 Callbacks ... 123

1 ps6000aBlockReady - indicate when block-mode data ready .. 123

2 ps6000aDataReady - indicate when post-collection data ready .. 124

3 PicoUpdateFirmwareProgress - get status of firmware update .. 125

4 PicoProbeInteractions() – callback for PicoConnect probe events ... 126

1 PICO_USER_PROBE_INTERACTIONS structure .. 127

5 PicoExternalReferenceInteractions () - callback for external reference clock events 129

1 PICO_CLOCK_REFERENCE enumerated type .. 130

5 Reference .. 131

1 Numeric data types .. 131

2 Enumerated types and constants .. 131

3 Driver status codes .. 132

4 Glossary .. 132

PicoScope 6000 Series (A API) Programmer's Guide Contents

5Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

Introduction

6Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

1 Introduction
The PicoScope 6000E Series of oscilloscopes from Pico
Technology is a range of compact high-performance units
designed to replace traditional benchtop oscilloscopes.

This manual explains how to use the ps6000a API (application
programming interface) for the PicoScope 6000E Series scopes.

For more information on the hardware, see the PicoScope 6000E
Series Data Sheet.

ps6000apg-5 (Available online and as a PDF)

https://www.picotech.com/helpfiles/6000a-api/index.html
https://www.picotech.com/download/manuals/picoscope-6000-series-a-api-programmers-guide.pdf

Introduction

7Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

1.1 Software license conditions
The material contained in this release is licensed, not sold. Pico Technology Limited grants a license to
the person who installs this software, subject to the conditions listed below.

Access. The licensee agrees to allow access to this software only to persons who have been informed of
these conditions and agree to abide by them.

Usage. The software in this release is for use only with Pico Technology products or with data collected
using Pico Technology products.

Copyright. Pico Technology Ltd. claims the copyright of, and retains the rights to, all material (software,
documents, etc.) contained in this software development kit (SDK) except the example programs. You
may copy and distribute the SDK without restriction, as long as you do not remove any Pico Technology
copyright statements. The example programs in the SDK may be modified, copied and distributed for the
purpose of developing programs to collect data using Pico products.

Liability. Pico Technology and its agents shall not be liable for any loss, damage or injury, howsoever
caused, related to the use of Pico Technology equipment or software, unless excluded by statute.

Fitness for purpose. As no two applications are the same, Pico Technology cannot guarantee that its
equipment or software is suitable for a given application. It is your responsibility, therefore, to ensure that
the product is suitable for your application.

Mission-critical applications. This software is intended for use on a computer that may be running other
software products. For this reason, one of the conditions of the license is that it excludes use in mission-
critical applications, for example life support systems.

Viruses. This software was continuously monitored for viruses during production, but you are responsible
for virus-checking the software once it is installed.

Support. If you are dissatisfied with the performance of this software, please contact our technical
support staff, who will try to fix the problem within a reasonable time. If you are still dissatisfied, please
return the product and software to your supplier within 14 days of purchase for a full refund.

Upgrades. We provide upgrades, free of charge, from our web site at www.picotech.com. We reserve the
right to charge for updates or replacements sent out on physical media.

1.2 Trademarks
Pico Technology and PicoScope are trademarks of Pico Technology Limited, registered in the United
Kingdom and other countries.

PicoScope and Pico Technology are registered in the U.S. Patent and Trademark Office.

Windows, Excel and Visual Basic for Applications are registered trademarks or trademarks of Microsoft
Corporation in the USA and other countries. LabVIEW is a registered trademark of National Instruments
Corporation. MATLAB is a registered trademark of The MathWorks, Inc.

Programming overview

8Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

2 Programming overview
The ps6000a.dll dynamic link library in the lib subdirectory of your Pico Technology SDK installation
directory allows you to program a PicoScope 6000E Series oscilloscope using standard C function calls.

A typical program for capturing data consists of the following steps:

· Open the scope unit.

· Set up the input channels with the required voltage ranges and coupling type.

· Set up triggering.

· Start capturing data. (See Sampling modes, where programming is discussed in more detail.)

· Wait until the scope unit is ready.

· Stop capturing data.

· Copy data to a buffer.

· Close the scope unit.

Numerous sample programs are available on the picotech channel of GitHub. These demonstrate how to
use the functions of the driver software in each of the modes available.

2.1 System requirements
Using with PicoScope for Windows
To ensure that your PicoScope 6000E Series PC Oscilloscope operates correctly, you must have a
computer with at least the minimum system requirements to run one of the supported operating systems,
as shown in the following table. The performance of the oscilloscope will be better with a more powerful
PC, and will benefit from a multi-core processor.

Item Specification

Operating system All desktop versions of Windows with mainstream support.
32-bit and 64-bit versions.

Processor, memory, free disk space As required by the operating system.

Ports USB 2.0 or 3.0 port

Using with Linux
Drivers are available for various Linux distributions. Instructions are available on our website.

Using with macOS
A software development kit (SDK) for macOS can be downloaded from our website.

Using with custom applications
32-bit and 64-bit drivers are available for Windows. The 32-bit drivers will also run in 32-bit mode on 64-bit
operating systems.

USB
The ps6000a driver offers three different methods of recording data, all of which support USB 2.0 and USB
3.0. A USB 3.0 port will offer the best performance especially in streaming mode or when retrieving large
amounts of data from the oscilloscope.

https://github.com/picotech/
https://www.picotech.com/downloads/linux
https://www.picotech.com/downloads

Programming overview

9Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

2.2 Driver
Your application will communicate with a PicoScope 6000 library called ps6000a.dll, which is supplied
in 32-bit and 64-bit versions. The driver exports the PicoScope 6000 function definitions in standard C
format, but this does not limit you to programming in C. You can use the API with any programming
language that supports standard C calls.

The API depends on another library, picoipp.dll, which is supplied in 32-bit and 64-bit versions, and on

a low-level driver, WinUsb.sys. These drivers are installed by the SDK and configured when you plug the
oscilloscope into each USB port for the first time. Your application does not call these drivers directly.

Programming overview

10Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

2.3 Voltage ranges
You can set a device input channel to any available voltage range with the ps6000aSetChannelOn()
function. Each sample is scaled to 16 bits. The minimum and maximum values returned to your

application depend on the sampling resolution in use and can be queried by ps6000aGetAdcLimits().
This function replies with the following values:

Resolution 8 bits 10 bits 12 bits

Voltage Value returned

maximum +32 512 (0x7F00) +32 704 (0x7FC0) +32 736 (0x7FE0)

zero 0 0 0

minimum –32 512 (0x8100) –32 704 (0x8040) –32 736 (0x8020)

Example at 8-bit resolution
1. Call

ps6000aSetChannelOn() with

range set to PICO_1V.

2. Apply a sine wave input of
500 mV amplitude to the
oscilloscope.

3. Capture some data using the
desired sampling mode.

4. The data will be encoded as
shown opposite.

Digital inputs (with optional MSO pods)

See ps6000aSetDigitalPort().

Programming overview

11Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

2.4 MSO digital data
Applicability

Any device with MSO pods attached. MSO pods are automatically recognized by the driver when
connected.

A PicoScope MSO has two 8-bit digital ports—Digital 1 and Digital 2—making a total of 16 digital
channels.

Use the ps6000aSetDataBuffer() and ps6000aSetDataBuffers() functions to set up buffers into
which the driver will write data from each port individually. For compatibility with the analog channels,
each buffer is an array of 16-bit words. The 8-bit port data occupies the lower 8 bits of the word. The
upper 8 bits of the word are undefined.

Digital 2 buffer Digital 1 buffer

Sample0 [XXXXXXXX,2D7...2D0]0 [XXXXXXXX,1D7...1D0]0
...

Samplen–1 [XXXXXXXX,2D7...2D0]n–1 [XXXXXXXX,1D7...1D0]n–1

Retrieving stored digital data
The following C code snippet shows how to combine data from the two 8-bit ports into a single 16-bit
word, and then how to extract individual bits from the 16-bit word.

// Mask Digital 2 values to get lower 8 bits

portValue = 0x00ff & appDigiBuffers[2][i];

// Shift by 8 bits to place in upper 8 bits of 16-bit word

portValue <<= 8;

// Mask Digital 1 values to get lower 8 bits,

// then OR with shifted Digital 2 bits to get 16-bit word

portValue |= 0x00ff & appDigiBuffers[0][i];

for (bit = 0; bit < 16; bit++)

{

 // Shift value 32768 (binary 1000 0000 0000 0000).

 // AND with value to get 1 or 0 for channel.

 // Order will be 2D7 to 2D0, then 1D7 to 1D0.

 bitValue = (0x8000 >> bit) & portValue? 1 : 0;

}

Programming overview

12Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

2.5 Triggering
PicoScope 6000E Series PC Oscilloscopes can either start collecting data immediately or be
programmed to wait for a trigger event to occur. In both cases you need to use the trigger functions:

· ps6000aSetTriggerChannelConditions()

· ps6000aSetTriggerChannelDirections()

· ps6000aSetTriggerChannelProperties()

· ps6000aSetTriggerDelay() (optional)

These can be run collectively by calling ps6000aSetSimpleTrigger(), or singly.

A trigger event can occur when one of the input channels crosses a threshold voltage on either a rising or
a falling edge. It is also possible to combine up to four inputs using the logic trigger function.

The driver supports these triggering methods:

· Simple edge

· Advanced edge

· Windowing

· Pulse width

· Logic

· Delay

· Drop-out

· Runt

The pulse width, delay and drop-out triggering methods additionally require the use of the pulse width
qualifier functions:

· ps6000aSetPulseWidthQualifierProperties()

· ps6000aSetPulseWidthQualifierConditions()

· ps6000aSetPulseWidthQualifierDirections()

Programming overview

13Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

2.6 Sampling modes
PicoScope 6000E Series oscilloscopes can run in various sampling modes.

· Block mode. In this mode, the scope stores data in its buffer memory and then transfers it to the PC.
When the data has been collected it is possible to examine the data, with an optional downsampling
factor. The data is lost when a new run is started in the same segment, the settings are changed or the
scope is powered down

The driver can return data asynchronously using a callback, which is a call to one of the functions in
your own application. When you request data from the scope, you pass to the driver a pointer to your
callback function. When the driver has written the data to your buffer, it makes a callback (calls your
function) to signal that the data is ready. The callback function then signals to the application that the
data is available.

Because the callback is called asynchronously from the rest of your application, in a separate thread,
you must ensure that it does not corrupt any global variables while it runs.

If you do not wish to use a callback, you can poll the driver instead.

Rapid block mode. This is a variant of block mode that allows you to capture more than one waveform at
a time with a minimum of delay between captures. You can use downsampling in this mode if you
wish.

· Streaming mode. This mode enables long periods of data collection. In raw mode (no downsampling)
it provides fast data transfer of unlimited amounts of data at up to 312 MB/s (3.2 ns per sample) in 8-
bit mode with USB 3.0.

If downsampling is enabled, raw data can be sampled at up to 1.25 GS/s for a single channel in 8-bit
mode. Downsampled data is returned while capturing is in progress, at up to 312 MB/s. The raw data
can then be retrieved after the capture is complete. The number of raw samples is limited by the
memory available on the device, the selected resolution and the number of channels enabled.

Triggering is supported in this mode.

Note: The oversampling feature of older PicoScope oscilloscopes has been replaced by
PICO_RATIO_MODE_AVERAGE.

2.6.1 Block mode

In block mode, the computer prompts a PicoScope 6000E series oscilloscope to collect a block of data
into its internal memory. When the oscilloscope has collected the whole block, it signals that it is ready
and then transfers the whole block to the computer's memory through the USB port.

Block size. The maximum number of values depends upon the size of the oscilloscope's memory. The
memory buffer is shared between the enabled channels, so if two channels are enabled, each receives
half the memory. These features are handled transparently by the driver. The block size also depends

on the number of memory segments in use (see ps6000aMemorySegments()) and the sampling
resolution.

Sampling rate. A PicoScope 6000E Series oscilloscope can sample at a number of different rates
according to the selected timebase and the combination of channels that are enabled. See the
PicoScope 6000E Series Data Sheet for the specifications that apply to your scope model.

https://www.picotech.com/download/datasheets/picoscope-6000e-series-data-sheet.pdf

Programming overview

14Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

Setup time. The driver normally performs a number of setup operations, which can take up to
50 milliseconds, before collecting each block of data. If you need to collect data with the minimum
time interval between blocks, use rapid block mode and avoid calling setup functions between calls to

ps6000aRunBlock(), ps6000aStop() and ps6000aGetValues().

Downsampling. When the data has been collected, you can set an optional downsampling factor and
examine the data. Downsampling is a process that reduces the amount of data by combining adjacent
samples. It is useful for zooming in and out of the data without having to repeatedly transfer the entire
contents of the scope's buffer to the PC.

Memory segmentation. The scope's internal memory can be divided into segments so that you can

capture several waveforms in succession. Configure this using ps6000aMemorySegments() or

ps6000aMemorySegmentsBySamples().

Data retention. The data is lost when a new run is started in the same segment, the settings are
changed, or the scope is powered down.

See Using block mode for programming details.

Programming overview

15Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

2.6.1.1 Using block mode

This is the general procedure for reading and displaying data in block mode using a single memory
segment:

1. Open the oscilloscope using ps6000aOpenUnit().

2. Select channel ranges and AC/DC/50 Ω coupling using ps6000aSetChannelOn() and

ps6000aSetChannelOff().

3. Using ps6000aGetTimebase(), select timebases until the required nanoseconds per sample is
located.

4. Use the trigger setup functions ps6000aSetTriggerChannelConditions(),

ps6000aSetTriggerChannelDirections() and

ps6000aSetTriggerChannelProperties() to set up the trigger if required.

5. Start the oscilloscope running using ps6000aRunBlock().

6. Wait until the oscilloscope is ready using the ps6000aBlockReady() callback (or poll using

ps6000aIsReady()).

7. Use ps6000aSetDataBuffer() to tell the driver where your memory buffer is. For greater
efficiency with multiple captures, you can do this outside the loop after step 4.

8. Transfer the block of data from the oscilloscope using ps6000aGetValues().
9. Display the data.
10. Repeat steps 5 to 9.

11. Stop the oscilloscope using ps6000aStop().
12. Request new views of stored data using different downsampling parameters: see Retrieving stored

data.

13. Close the device using ps6000aCloseUnit().

2.6.1.2 Asynchronous calls in block mode

ps6000aGetValues() may take a long time to complete if a large amount of data is being collected.

To avoid hanging the calling thread, it is possible to call ps6000aGetValuesAsync() instead. This
immediately returns control to the calling thread, which then has the option of waiting for the data or

calling ps6000aStop() to abort the operation.

Programming overview

16Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

2.6.2 Rapid block mode

In normal block mode, the PicoScope 6000E Series scopes collect one waveform at a time. You start the
device running, wait until all samples are collected by the device, and then download the data to the PC or
start another run. There is a time overhead of tens of milliseconds associated with starting a run, causing
a gap between waveforms. When you collect data from the device, there is another minimum time
overhead which is most noticeable when using a small number of samples.

Rapid block mode allows you to sample several waveforms at a time with the minimum time between
waveforms. It reduces the gap from milliseconds to less than 1 microsecond.

See Using rapid block mode for details.

2.6.2.1 Using rapid block mode

You can use rapid block mode with or without aggregation. With aggregation, you need to set up two
buffers for each channel, to receive the minimum and maximum values.

Without aggregation

1. Open the oscilloscope using ps6000aOpenUnit().

2. Select channel ranges and AC/DC coupling using ps6000aSetChannelOn() and

ps6000aSetChannelOff().
3. Set the number of memory segments equal to or greater than the number of captures required

using ps6000aMemorySegments(). Use ps6000aSetNoOfCaptures() before each run to
specify the number of waveforms to capture.

4. Using ps6000aGetTimebase(), select timebases until the required nanoseconds per sample is
located.

5. Use the trigger setup functions ps6000aSetTriggerChannelConditions(),

ps6000aSetTriggerChannelDirections() and

ps6000aSetTriggerChannelProperties() to set up the trigger if required.

6. Start the oscilloscope running using ps6000aRunBlock().

7. Wait until the oscilloscope is ready using the ps6000aBlockReady() callback.

8. Use ps6000aSetDataBuffer() to tell the driver where your memory buffers are. Call the
function once for each channel/segment combination for which you require data. For greater
efficiency with multiple captures, you could do this outside the loop after step 5.

9. Transfer the blocks of data from the oscilloscope using ps6000aGetValuesBulk().
10. Retrieve the time offset for each data segment using

ps6000aGetValuesTriggerTimeOffsetBulk().
11. Display the data.
12. Repeat steps 6 to 11 if necessary.

13. Stop the oscilloscope using ps6000aStop().

14. Close the device using ps6000aCloseUnit().

With aggregation
To use rapid block mode with aggregation, follow steps 1 to 7 above and then proceed as follows:

8a. Call ps6000aSetDataBuffers() to set up one pair of buffers for every waveform segment
required.

9a. Call ps6000aGetValuesBulk() for each pair of buffers.
10a. Retrieve the time offset for each data segment using

ps6000aGetValuesTriggerTimeOffsetBulk().

Continue from step 11 above.

Programming overview

17Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

2.6.2.2 Rapid block mode example 1: no aggregation

#define MAX_WAVEFORMS 100

#define MAX_SAMPLES 1000

Set up the device up as usual.

· Open the device

· Channels

· Trigger

· Number of memory segments (this should be equal or more than the no of captures required)

// set the number of waveforms to MAX_WAVEFORMS

ps6000aSetNoOfCaptures(handle, MAX_WAVEFORMS);

pParameter = false;

ps6000aRunBlock

(

handle,

0, // noOfPreTriggerSamples

10000, // noOfPostTriggerSamples

1, // timebase to be used

&timeIndisposedMs,

0, // segment index

lpReady,

&pParameter

);

Comment: these variables have been set as an example and can be any valid value. pParameter will be

set true by your callback function lpReady.

while (!pParameter) Sleep (0);

PICO_ACTION action = PICO_CLEAR_ALL | PICO_ADD;

int32_t first_segment_to_read = 10;

for (int32_t i = 0; i < 10; i++)

{

for (int32_t c = PICO_CHANNEL_A; c <= PICO_CHANNEL_D; c++)

{

ps6000aSetDataBuffer

(

handle,

c,

buffer[c][i],

MAX_SAMPLES,

PICO_INT16_T,

first_segment_to_read + i,

PICO_RATIO_MODE_RAW,

action

);

action = PICO_ADD;

}

Programming overview

18Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

}

Comments: buffer has been created as a two-dimensional array of pointers to int16_t, which will

contain 1000 samples as defined by MAX_SAMPLES. Only 10 buffers are set, but it is possible to set up to
the number of captures you have requested.

ps6000aGetValuesBulk

(

handle,

0, // startIndex

&noOfSamples, // set to MAX_SAMPLES on entering the function

10, // fromSegmentIndex

19, // toSegmentIndex

1, // downsampling ratio

PICO_RATIO_MODE_RAW, // downsampling ratio mode

overflow // indices 0 to 9 will be populated (index always

starts from 0)

)

Comments: the number of samples could be up to noOfPreTriggerSamples +

noOfPostTriggerSamples, the values set in ps6000aRunBlock(). The samples are returned starting
from the sample index. This function does not support aggregation. The above segments start at 10 and

finish at 19 inclusive. It is possible for fromSegmentIndex to wrap around to toSegmentIndex, for

example by setting fromSegmentIndex to 98 and toSegmentIndex to 7.

ps6000aGetValuesTriggerTimeOffsetBulk

(

handle,

times,

timeUnits,

10,

19

)
Comments: the above segments start at 10 and finish at 19 inclusive. It is possible for the

fromSegmentIndex to wrap around to the toSegmentIndex, for example if fromSegmentIndex is

set to 98 and toSegmentIndex to 7.

Programming overview

19Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

2.6.2.3 Rapid block mode example 2: using aggregation

#define MAX_WAVEFORMS 100

#define MAX_SAMPLES 1000

Set up the device up as usual.

· Open the device

· Channels

· Trigger

· Number of memory segments (this should be equal or more than the number of captures required)

// set the number of waveforms to MAX_WAVEFORMS

ps6000aSetNoOfCaptures(handle, MAX_WAVEFORMS);

pParameter = false;

ps6000aRunBlock

(

handle,

0, // noOfPreTriggerSamples,

1000000, // noOfPostTriggerSamples,

1, // timebase to be used,

&timeIndisposedMs,

0, // segmentIndex

lpReady,

&pParameter

);
Comments: the set-up for running the device is exactly the same whether or not aggregation will be used
when you retrieve the samples.

PICO_ACTION action = PICO_CLEAR_ALL | PICO_ADD;

for (int32_t c = PICO_CHANNEL_A; c <= PICO_CHANNEL_D; c++)

{

ps6000aSetDataBuffers

(

handle,

c,

bufferMax[c],

bufferMin[c]

MAX_SAMPLES,

PICO_INT16_T,

0,

PICO_RATIO_MODE_AGGREGATE,

action

);

action = PICO_ADD;

}
Comments: since only one waveform will be retrieved at a time, you only need to set up one pair of
buffers; one for the maximum samples and one for the minimum samples. Again, the buffer sizes are
1000 samples.

for (int32_t segment = 10; segment < 20; segment++)

Programming overview

20Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

{

ps6000aGetValues

(

handle,

0,

&noOfSamples, // set to MAX_SAMPLES on entering

1000,

&downSampleRatioMode, // set to RATIO_MODE_AGGREGATE

index,

overflow

);

ps6000aGetTriggerTimeOffset

(

handle,

&time,

&timeUnits,

index

)

}
Comments: each waveform is retrieved one at a time from the driver with an aggregation of 1000.

Programming overview

21Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

2.6.3 Streaming mode

Streaming mode can capture data without the gaps that occur between blocks when using block mode.
This makes it suitable for high-speed data acquisition, allowing you to capture long data sets limited only
by the computer's memory. (At the highest sampling rates, the size of the device's capture buffer may
limit the capture size.)

The device can return either raw or downsampled data to your application while streaming is in progress.
When downsampled data is returned, the raw samples remain stored on the device.

· Downsampling. The driver can return either raw or downsampled data. You should set up the number
of buffers needed to accept the requested data. Aggregation requires two buffers, one for the
minimum values and one for the maximum values. Other downsampling modes require only a single
buffer.

See Using streaming mode for programming details.

Programming overview

22Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

2.6.3.1 Using streaming mode

This is the general procedure for reading and displaying data in streaming mode using a single memory
segment:

1. Open the oscilloscope using ps6000aOpenUnit().

2. Select channels, ranges and AC/DC/50 Ω coupling using ps6000aSetChannelOn() and

ps6000aSetChannelOff().

3. Use the trigger setup functions ps6000aSetTriggerChannelConditions(),

ps6000aSetTriggerChannelDirections() and

ps6000aSetTriggerChannelProperties() to set up the trigger if required.

4. Call ps6000aSetDataBuffer() to tell the driver where your data buffer is.

5. Set up aggregation and start the oscilloscope running using ps6000aRunStreaming().

6. Call ps6000aGetStreamingLatestValues() to get data. If the function runs out of buffer
space, return to step 4.

7. Process data returned to your application's function. This example is using autoStop, so after the
driver has received all the data points requested by the application, it stops the device streaming.

8. Call ps6000aStop(), even if autoStop is enabled.
9. Request new views of stored data using different downsampling parameters: see Retrieving stored

data.

10. Close the device using ps6000aCloseUnit().

Programming overview

23Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

2.6.4 Retrieving stored data

You can retrieve data from the ps6000a driver with a different downsampling factor when

ps6000aRunBlock() or ps6000aRunStreaming() has already been called and has successfully

captured all the data. Use ps6000aGetValuesAsync().

2.7 Timebases
The API allows you to select any of 232 different timebases based on a maximum sampling rate of 5 GHz.
The timebases allow slow enough sampling in block mode to overlap the streaming sample intervals, so
that you can make a smooth transition between block mode and streaming mode.

For the PicoScope 6000E Series except the PicoScope 6428E-D:

timebase sample interval formula sample interval examples

0 to 4 2timebase / 5 000 000 000 0 => 200 ps
1 => 400 ps
2 => 800 ps
3 => 1.6 ns
4 => 3.2 ns

5 to 232–1 (timebase–4) / 156 250 000 5 => 6.4 ns
...

232–1 => ~ 27.49 s

For the PicoScope 6428E-D:

timebase sample interval formula sample interval examples

0 to 5 2timebase / 10 000 000 000 0 => 100 ps
1 => 200 ps
2 => 400 ps
3 => 800 ps
4 => 1.6 ns
5 => 3.2 ns

6 to 232–1 (timebase–5) / 156 250 000 6 => 6.4 ns
...

232–1 => ~ 27.49 s

Applicability Calls to ps6000aGetTimebase()

Notes
1. The maximum possible sampling rate may depend on the number of enabled channels and on the

sampling mode. Please refer to the data sheet for details.
2. In streaming mode, the speed of the USB port may affect the rate of data transfer.

Programming overview

24Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

2.8 Combining several oscilloscopes
It is possible to collect data using up to 64 PicoScope 6000E Series oscilloscopes at the same time,
depending on the capabilities of the PC. Each oscilloscope must be connected to a separate USB port.

The ps6000aOpenUnit() function returns a handle to an oscilloscope. All the other functions require
this handle for oscilloscope identification. For example, to collect data from two oscilloscopes at the
same time:

CALLBACK ps6000aBlockReady(...)

// define callback function specific to application

handle1 = ps6000aOpenUnit()

handle2 = ps6000aOpenUnit()

ps6000aSetChannelOn(handle1)

// set up unit 1

ps6000aRunBlock(handle1)

ps6000aSetChannelOn(handle2)

// set up unit 2

ps6000aRunBlock(handle2)

// data will be stored in buffers

// and application will be notified using callback

ready = FALSE

while not ready

 ready = handle1_ready

 ready &= handle2_ready

Note: an external clock may be fed into the 10 MHz clock reference input or a trigger into the Aux Trig
input to provide some degree of synchronization between multiple oscilloscopes.

Programming overview

25Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

2.9 Handling intelligent probe interactions
The PicoScope 6000E Series has an intelligent probe interface, which supplies power to the probe as well
as allowing the scope to configure and interrogate the probe. Your application can choose to be alerted
whenever a probe is connected or disconnected, or when its status changes.

Probe interactions use a callback mechanism, available in C and similar languages.

Applicability All models

Note In addition to ps6000aApi.h, you must also include PicoDeviceEnums.h. This file
contains definitions of enumerated types that describe the intelligent probes.

Procedure
1. Define your own function to receive probe interaction callbacks.

2. Call ps6000aOpenUnit() to obtain a device handle.

3. Call ps6000aSetProbeInteractionCallback() to register your probe interaction callback
function.

4. Capture data using the desired sampling mode. See Sampling modes for details.

5. Call ps6000aCloseUnit() to release the device handle. The makes the scope device available to
other applications.

API functions

26Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3 API functions
The PicoScope 6000E Series API exports the following functions for you to use in your own applications
for Microsoft Windows. Similar APIs are available for other platforms: see www.picotech.com >
Downloads for details. All functions are C functions using the standard call naming convention

(__stdcall). They are all exported with both decorated and undecorated names.

https://www.picotech.com/downloads
https://www.picotech.com/downloads

API functions

27Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.1 ps6000aChannelCombinationsStateless - get
possible channel combinations

PICO_STATUS ps6000aChannelCombinationsStateless

(

int16_t handle,

PICO_CHANNEL_FLAGS * channelFlagsCombinations,

uint32_t * nChannelCombinations,

PICO_DEVICE_RESOLUTION resolution,

uint32_t timebase

)

This function returns a list of the possible channel combinations given a proposed configuration
(resolution and timebase) of the oscilloscope. It does not change the configuration of the oscilloscope.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

* channelFlagsCombinations, on exit, a list of possible channel combinations. See

PicoDeviceEnums.h.

* nChannelCombinations, on exit, the length of the channelFlagsCombinations list.

resolution, the proposed vertical resolution of the oscilloscope.

timebase, the proposed timebase number.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

API functions

28Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.2 ps6000aCheckForUpdate - is firmware update
available?

PICO_STATUS ps6000aCheckForUpdate

(

int16_t handle,

PICO_FIRMWARE_INFO * firmwareInfos,

int16_t * nFirmwareInfos,

uint16_t * updatesRequired

)

This function checks whether a firmware update for the device is available.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

firmwareInfos, a pointer to a buffer of PICO_FIRMWARE_INFO structs which, on exit, will be
populated with detailed information about the available updates. Information about firmware which is
already up to date will also be provided. You may pass NULL if you do not require the detailed
information.

nFirmwareInfos, on entry, a pointer to a value which is the length of the firmwareInfos buffer, if

firmwareInfos is not NULL. On exit, the number of populated entries in firmwareInfos (or the

available number of PICO_FIRMWARE_INFOs if firmwareInfos is NULL). May be NULL if the caller

does not need detailed firmware information (in which case firmwareInfos must also be NULL).

* updatesRequired, on entry, a pointer to a flag which will be set by the function to indicate if
updates are required. On exit, 1 if updates are required and 0 otherwise.

Returns

PICO_OK

PICO_HANDLE_INVALID

PICO_USER_CALLBACK

PICO_DRIVER_FUNCTION

API functions

29Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.3 ps6000aCloseUnit - close a scope device
PICO_STATUS ps6000aCloseUnit

(

int16_t handle

)

This function shuts down a PicoScope 6000E Series oscilloscope.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

Returns

PICO_OK

PICO_HANDLE_INVALID

PICO_USER_CALLBACK

PICO_DRIVER_FUNCTION

API functions

30Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.4 ps6000aEnumerateUnits - get a list of unopened
units

PICO_STATUS ps6000aEnumerateUnits

(

int16_t * count,

int8_t * serials,

int16_t * serialLth

)

This function counts the number of PicoScope 6000 (A API) units connected to the computer, and returns
a list of serial numbers and other optional information as a string. Note that this function can only detect
devices that are not yet being controlled by an application. To query opened devices, use

ps6000aGetUnitInfo().

Applicability

All modes

Arguments

* count, on exit, the number of PicoScope 6000 (A API) units found.

* serials, if an empty string on entry, serials is populated on exit with a list of serial numbers
separated by commas and terminated by a final null. Example:

AQ005/139,VDR61/356,ZOR14/107

On entry, serials can optionally contain the following parameter(s) to request information:

-v : model number

-c : calibration date

-h : hardware version

-u : USB version

-f : firmware version
Example (any separator character can be used):

-v:-c:-h:-u:-f
On exit, with all the above parameters specified, each serial number has the requested information
appended in the following format:

AQ005/139[6425E,01Jan21,769,2.0,1.7.16.0]

serials can be NULL if device information or serial numbers are not required.

* serialLth, on entry, the length of the int8_t buffer pointed to by serials; on exit, the length of

the string written to serials

Returns

PICO_OK

PICO_BUSY

PICO_NULL_PARAMETER

PICO_FW_FAIL

PICO_CONFIG_FAIL

PICO_MEMORY_FAIL

PICO_ANALOG_BOARD

PICO_CONFIG_FAIL_AWG

PICO_INITIALISE_FPGA

API functions

31Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.5 ps6000aFlashLed - flash the front-panel LED
PICO_STATUS ps6000aFlashLed

(

int16_t handle,

int16_t start

)

This function flashes the status/trigger LED on the front of the scope without blocking the calling thread.

Calls to ps6000aRunStreaming() and ps6000aRunBlock() cancel any flashing started by this
function. It is not possible to set the LED to be constantly illuminated, as this state is used to indicate
that the scope has not been initialized.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

start, the action required:
< 0 : flash the LED indefinitely.
0 : stop the LED flashing.
> 0 : flash the LED start times. If the LED is already flashing on entry to this function, the flash

count will be reset to start.

Returns

PICO_OK

PICO_HANDLE_INVALID

PICO_BUSY

PICO_DRIVER_FUNCTION

PICO_NOT_RESPONDING

API functions

32Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.6 ps6000aGetAccessoryInfo - get information about
a connected accessory

PICO_STATUS ps6000aGetAccessoryInfo

(

int16_t handle,

PICO_CHANNEL channel,

int8_t * string,

int16_t stringLength,

int16_t * requiredSize,

PICO_INFO info

)

This function gets information about an accessory connected to the specified channel on the
oscilloscope.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

channel, the oscilloscope channel to which the accessory is connected.

string, on exit: a buffer to which the information will be written.

stringLength, the length of the string buffer.

requiredSize, on exit: the length of the information before being stored in the string buffer; if it's

longer than stringLength, it will be truncated to fit the buffer. If truncation occurs and you need the

full information, you can call the function again with the buffer extended to requiredSize.

info, the type of information you require. See ps6000aGetUnitInfo() for a list of info types.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NULL_PARAMETER

PICO_INTERNAL_ERROR

PICO_FIRMWARE_UPDATE_REQUIRED_TO_USE_DEVICE_WITH_THIS_DRIVER

API functions

33Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.7 ps6000aGetAdcLimits - get min and max sample
values

PICO_STATUS ps6000aGetAdcLimits

(

int16_t handle,

PICO_DEVICE_RESOLUTION resolution,

int16_t * minValue,

int16_t * maxValue

)

This function gets the maximum and minimum sample values that the ADC can produce at a given
resolution.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

resolution, the vertical resolution about which you require information.

* minValue, the minimum sample value.

* maxValue, the maximum sample value.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NULL_PARAMETER (if both maxValue and minValue are NULL)

API functions

34Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.8 ps6000aGetAnalogueOffsetLimits - get analog
offset information

PICO_STATUS ps6000aGetAnalogueOffsetLimits

(

int16_t handle,

PICO_CONNECT_PROBE_RANGE range

PICO_COUPLING coupling

double * maximumVoltage,

double * minimumVoltage

)

This function is used to get the maximum and minimum allowable analog offset for a specific voltage
range.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

range, the voltage range for which minimum and maximum voltages are required

coupling, the type of AC/DC/50 Ω coupling used

* maximumVoltage, on output, the maximum analog offset voltage allowed for the range. Set to NULL if
not required.

* minimumVoltage, on output, the minimum analog offset voltage allowed for the range. Set to NULL if
not required.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_INVALID_VOLTAGE_RANGE

PICO_NULL_PARAMETER (if both maximumVoltage and minimumVoltage are NULL)

PICO_INVALID_COUPLING

API functions

35Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.9 ps6000aGetDeviceResolution – retrieve the device
resolution

PICO_STATUS ps6000aGetDeviceResolution

(

int16_t handle,

PICO_DEVICE_RESOLUTION * resolution

)

This function retrieves the vertical resolution of the oscilloscope.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

* resolution, on exit, the resolution of the device.

Returns

PICO_OK or other code from PicoStatus.h

API functions

36Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.10 ps6000aGetMaximumAvailableMemory -
depending on hardware resolution

PICO_STATUS ps6000aGetMaximumAvailableMemory

(

int16_t handle,

uint64_t * nMaxSamples,

PICO_DEVICE_RESOLUTION resolution

)

This function returns the maximum number of samples that can be stored at a given hardware resolution.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

* nMaxSamples, on exit, the number of samples.

resolution, the resolution in bits.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_TOO_MANY_SAMPLES

API functions

37Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.11 ps6000aGetMinimumTimebaseStateless - find
fastest available timebase

PICO_STATUS ps6000aGetMinimumTimebaseStateless

(

int16_t handle,

PICO_CHANNEL_FLAGS enabledChannelFlags,

uint32_t * timebase,

double * timeInterval,

PICO_DEVICE_RESOLUTION resolution

)

This function returns the shortest timebase that could be selected with a proposed configuration of the
oscilloscope. It does not set the oscilloscope to the proposed configuration.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

enabledChannelFlags, a bit field indicating which channels are enabled in the proposed
configuration. Channel A is bit 0 and so on.

* timebase, on exit, the number of the shortest timebase possible with the proposed configuration.

* timeInterval, on exit, the sample period in seconds corresponding to .timebase.

resolution, the vertical resolution in the proposed configuration.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_TOO_MANY_SAMPLES

API functions

38Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.12 ps6000aGetNoOfCaptures - query how many
captures made

PICO_STATUS ps6000aGetNoOfCaptures

(

int16_t handle,

uint64_t * nCaptures

)

This function returns the number of captures collected in one run of rapid block mode. You can call this
function during device capture, after collection has completed or after interrupting waveform collection by

calling ps6000aStop().

The returned value (nCaptures) can then be used to iterate through the number of segments using

ps6000aGetValues(), or in a single call to ps6000aGetValuesBulk() where it is used to calculate

the toSegmentIndex parameter.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

nCaptures, on output, the number of available captures that has been collected from calling

ps6000aRunBlock().

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_TOO_MANY_SAMPLES

API functions

39Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.13 ps6000aGetNoOfProcessedCaptures - query how
many captures processed

PICO_STATUS ps6000aGetNoOfProcessedCaptures

(

int16_t handle,

uint64_t * nProcessedCaptures

)

This function gets the number of captures collected and processed in one run of rapid block mode. It
enables your application to start processing captured data while the driver is still transferring later
captures from the device to the computer.

The function returns the number of captures the driver has processed since you called

ps6000aRunBlock(). It is for use in rapid block mode, alongside the

ps6000aGetValuesOverlapped() function, when the driver is set to transfer data from the device

automatically as soon as the ps6000aRunBlock() function is called. You can call

ps6000aGetNoOfProcessedCaptures() during device capture, after collection has completed or

after interrupting waveform collection by calling ps6000aStop().

The returned value (nProcessedCaptures) can then be used to iterate through the number of segments

using ps6000aGetValues(), or in a single call to ps6000aGetValuesBulk(), where it is used to

calculate the toSegmentIndex parameter.

When capture is stopped

If nProcessedCaptures = 0, you will also need to call ps6000aGetNoOfCaptures(), in order to

determine how many waveform segments were captured, before calling ps6000aGetValues() or

ps6000aGetValuesBulk().

Applicability

Rapid block mode

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

* nProcessedCaptures, on exit, the number of waveforms captured and processed.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

API functions

40Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.14 ps6000aGetStreamingLatestValues - read
streaming data

PICO_STATUS ps6000aGetStreamingLatestValues

(

int16_t handle,

PICO_STREAMING_DATA_INFO * streamingDataInfo,

uint64_t nStreamingDataInfos,

PICO_STREAMING_DATA_TRIGGER_INFO * triggerInfo

)

This function populates the streamingDataInfo structure with a description of the samples available

and the triggerInfo structure to indicate that a trigger has occurred and at what location.

Applicability

Streaming mode only

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

* streamingDataInfo, a list of structures. See PICO_STREAMING_DATA_INFO.

nStreamingDataInfos, the number of structures in the streamingDataInfo list.

* triggerInfo, a list of structures containing trigger information. See

PICO_STREAMING_DATA_TRIGGER_INFO.

Returns PICO_OK

PICO_WAITING_FOR_DATA_BUFFERS - indicates that you need to call

ps6000aSetDataBuffer() again

API functions

41Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.14.1 PICO_STREAMING_DATA_INFO

A list of structures of this type is passed to ps6000aGetStreamingLatestValues() in the

streamingDataInfo argument to specify parameters for streaming mode data capture. It is defined as
follows:

typedef struct tPicoStreamingDataInfo

{

PICO_CHANNEL channel_;

PICO_RATIO_MODE mode_;

PICO_DATA_TYPE type_;

int32_t noOfSamples_;

uint64_t bufferIndex_;

int32_t startIndex_;

int16_t overflow_;

} PICO_STREAMING_DATA_INFO;

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

channel_, the oscilloscope channel that the parameters apply to.

mode_, the downsampling mode to use.

type_, the data type to use for the sample data.

noOfSamples_, the number of samples made available by the driver.

bufferIndex_, an index to the starting sample within the specified waveform buffer.

startIndex_, an index to the waveform buffer within the capture buffer.

overflow_, a flag indicating whether a sample value overflowed (1) or not (0).

API functions

42Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.14.2 PICO_STREAMING_DATA_TRIGGER_INFO

A structure of this type is returned by ps6000aGetStreamingLatestValues() in the triggerInfo
argument to return information about trigger events.

typedef struct tPicoStreamingDataTriggerInfo

{

uint64_t triggerAt_;

int16_t triggered_;

int16_t autoStop_;

} PICO_STREAMING_DATA_TRIGGER_INFO;

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

triggerAt_, an index to the sample on which the trigger occurred.

triggered_, a flag indicating whether a trigger occurred (1) or did not occur (0).

autoStop_, a flag indicating whether the oscilloscope was in autoStop mode (1) or not (0).

API functions

43Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.15 ps6000aGetTimebase - get available timebases
PICO_STATUS ps6000aGetTimebase

(

int16_t handle,

uint32_t timebase,

uint64_t noSamples,

double * timeIntervalNanoseconds,

uint64_t * maxSamples

uint64_t segmentIndex

)

This function calculates the sampling rate and maximum number of samples for a given timebase under
the specified conditions. The result will depend on the number of channels enabled by the last call to

ps6000aSetChannelOn() or ps6000aSetChannelOff().

The easiest way to find a suitable timebase is to call

ps6000aNearestSampleIntervalStateless(). Alternatively, you can estimate the timebase
number that you require using the information in the timebase guide, then pass this timebase to

ps6000aGetTimebase() and check the returned timeIntervalNanoseconds argument. Repeat until
you obtain the time interval that you need.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

timebase, see timebase guide.

noSamples, the number of samples required. This value is used to calculate the most suitable time
interval.

timeIntervalNanoseconds, on exit, the time interval between readings at the selected timebase. Use

NULL if not required.

maxSamples, on exit, the maximum number of samples available. The scope allocates a certain
amount of memory for internal overheads and this may vary depending on the number of segments,

number of channels enabled, and the timebase chosen. Use NULL if not required.

segmentIndex, the index of the memory segment to use.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_TOO_MANY_SAMPLES

PICO_INVALID_CHANNEL

PICO_INVALID_TIMEBASE

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_DRIVER_FUNCTION

API functions

44Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.16 ps6000aGetTriggerInfo - get trigger timing
information

PICO_STATUS ps6000aGetTriggerInfo

(

int16_t handle

PICO_TRIGGER_INFO * triggerInfo,

uint64_t firstSegmentIndex,

uint64_t segmentCount

)

This function gets trigger timing information from one or more buffer segments.

Call this function after data has been captured or when data has been retrieved from a previous capture.

Applicability

Block mode, rapid block mode

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

* triggerInfo, a list of structures, one for each buffer segment, containing trigger information.

firstSegmentIndex, the index of the first segment of interest.

segmentCount, the number of segments of interest.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_DEVICE_SAMPLING

PICO_SEGMENT_OUT_OF_RANGE

PICO_NULL_PARAMETER

PICO_NO_SAMPLES_AVAILABLE

PICO_DRIVER_FUNCTION

API functions

45Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.16.1 PICO_TRIGGER_INFO

A list of structures of this type containing trigger information is written by ps6000aGetTriggerInfo()

to the triggerInfo location. The structure is defined as follows:

typedef struct tPicoTriggerInfo

{

PICO_STATUS status;

uint64_t segmentIndex;

uint64_t triggerIndex;

double triggerTime;

PICO_TIME_UNITS timeUnits;

uint64_t missedTriggers;

uint64_t timeStampCounter;

} PICO_TRIGGER_INFO;

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

status, indicates success or failure.

segmentIndex, the number of the segment.

triggerIndex, the index of the sample at which the trigger ocurred.

triggerTime, the time at which the trigger occurred.

timeUnits, the unit multiplier to use with triggerTime.

missedTriggers, the number of trigger events, if any, detected since the start of previous segment.

timeStampCounter, the time in samples from the first capture to the current capture. The status

PICO_DEVICE_TIME_STAMP_RESET indicates that the trigger time has started over.

API functions

46Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.17 ps6000aGetTriggerTimeOffset - get timing
corrections

PICO_STATUS ps6000aGetTriggerTimeOffset

(

int16_t handle

int64_t * time,

PICO_TIME_UNITS * timeUnits,

uint64_t segmentIndex

)

This function gets the trigger time offset for waveforms obtained in block mode or rapid block mode. The
trigger time offset is an adjustment value used for correcting jitter in the waveform, and is intended
mainly for applications that wish to display the waveform with reduced jitter. The offset is zero if the
waveform crosses the threshold at the trigger sampling instant, or a positive or negative value if jitter
correction is required. The value should be added to the nominal trigger time to get the corrected trigger
time.

Call this function after data has been captured or when data has been retrieved from a previous capture.

Applicability

Block mode, rapid block mode

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

time, on exit, the time at which the trigger point occurred

timeUnits, on exit, the time units in which time is measured. The possible values are:

PICO_FS

PICO_PS

PICO_NS

PICO_US

PICO_MS

PICO_S

segmentIndex, the number of the memory segment for which the information is required.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_DEVICE_SAMPLING

PICO_SEGMENT_OUT_OF_RANGE

PICO_NULL_PARAMETER

PICO_NO_SAMPLES_AVAILABLE

PICO_DRIVER_FUNCTION

API functions

47Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.18 ps6000aGetUnitInfo - get information about device
PICO_STATUS ps6000aGetUnitInfo

(

int16_t handle,

int8_t * string,

int16_t stringLength,

int16_t * requiredSize

PICO_INFO info

)

This function retrieves information about the specified oscilloscope. If the device fails to open, only the
driver version and error code are available to explain why the last open unit call failed. To find out about

unopened devices, call ps6000aEnumerateUnits().

Applicability

All modes

Arguments

handle, identifies the device from which information is required. If an invalid handle is passed, the error
code from the last unit that failed to open is returned.

string, on exit, the unit information string selected specified by the info argument. If string is

NULL, only requiredSize is returned.

stringLength, the maximum number of int8_t values that may be written to string.

requiredSize, on exit, the required length of the string array.

info, a number specifying what information is required. The possible values are listed in the table
below.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_NULL_PARAMETER

PICO_INVALID_INFO

PICO_INFO_UNAVAILABLE

PICO_DRIVER_FUNCTION

API functions

48Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

info Example

0x00 PICO_DRIVER_VERSION

- Version number of ps6000a DLL

1,0,0,1

0x01 PICO_USB_VERSION

- Type of USB connection to device: 1.1, 2.0 or 3.0

3.0

0x02 PICO_HARDWARE_VERSION

- Hardware version of device

1

0x03 PICO_VARIANT_INFO

- Model number of device

6403

0x04 PICO_BATCH_AND_SERIAL

- Batch and serial number of device

KJL87/6

0x05 PICO_CAL_DATE

- Calibration date of device

30Sep09

0x06 PICO_KERNEL_VERSION

- Version of kernel driver

1,1,2,4

0x07 PICO_DIGITAL_HARDWARE_VERSION

- Hardware version of the digital section

1

0x08 PICO_ANALOGUE_HARDWARE_VERSION

- Hardware version of the analog section

1

0x09 PICO_FIRMWARE_VERSION_1

- Version information of Firmware 1

1,0,0,1

0x0A PICO_FIRMWARE_VERSION_2

- Version information of Firmware 2

1,0,0,1

0x0F PICO_FIRMWARE_VERSION_3

- Version information of Firmware 3

1,0,0,1

0x10 PICO_FRONT_PANEL_FIRMWARE_VERSION

- Version of front-panel microcontroller firmware

1,0,0,1

API functions

49Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.19 ps6000aGetValues - get block mode data
PICO_STATUS ps6000aGetValues

(

int16_t handle,

uint64_t startIndex,

uint64_t * noOfSamples,

uint64_t downSampleRatio,

PICO_RATIO_MODE downSampleRatioMode,

uint64_t segmentIndex,

int16_t * overflow

)

This function retrieves block-mode data, either with or without downsampling, starting at the specified
sample number. It is used to get the stored data from the scope after data collection has stopped, and

store it in a user buffer previously passed to ps6000aSetDataBuffer() or

ps6000aSetDataBuffers(). It blocks the calling function while retrieving data.

Applicability

All modes.

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

startIndex, a zero-based index that indicates the start point for data collection. It is measured in
sample intervals from the start of the buffer.

noOfSamples, on entry, the number of raw samples to be processed. On exit, the actual number
retrieved. The number of samples retrieved will not be more than the number requested, and the data
retrieved always starts with the first sample captured.

downSampleRatio, the downsampling factor that will be applied to the raw data. Must be greater than
zero.

downSampleRatioMode, which downsampling mode to use. The available values are:

PICO_RATIO_MODE_AGGREGATE

PICO_RATIO_MODE_DECIMATE

PICO_RATIO_MODE_AVERAGE

PICO_RATIO_MODE_TRIGGER - cannot be combined with any other ratio mode

PICO_RATIO_MODE_RAW

segmentIndex, the zero-based number of the memory segment where the data is stored.

overflow, on exit, a set of flags that indicate whether an overvoltage has occurred on any of the
channels. It is a bit field with bit 0 denoting Channel A.

Returns

API functions

50Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_DEVICE_SAMPLING

PICO_NULL_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_INVALID_PARAMETER

PICO_TOO_MANY_SAMPLES

PICO_DATA_NOT_AVAILABLE

PICO_STARTINDEX_INVALID

PICO_INVALID_SAMPLERATIO

PICO_INVALID_CALL

PICO_NOT_RESPONDING

PICO_MEMORY

PICO_RATIO_MODE_NOT_SUPPORTED

PICO_DRIVER_FUNCTION

3.19.1 Downsampling modes

Various methods of data reduction, or downsampling, are possible with the PicoScope 6000E Series
oscilloscopes. The downsampling is done at high speed by dedicated hardware inside the scope, making
your application faster and more responsive than if you had to do all the data processing in software.

You specify the downsampling mode when you call one of the data collection functions, such as

ps6000aGetValues(). The following modes are available:

PICO_RATIO_MODE_AGGREGATE Reduces every block of n values to just two values: a
minimum and a maximum. The minimum and
maximum values are returned in two separate
buffers.

PICO_RATIO_MODE_AVERAGE Reduces every block of n values to a single value
representing the average (arithmetic mean) of all the
values.

PICO_RATIO_MODE_DECIMATE Reduces every block of n values to just the first
value in the block, discarding all the other values.

PICO_RATIO_MODE_DISTRIBUTION
Not implemented.

PICO_RATIO_MODE_TRIGGER
Gets 20 samples either side of the trigger point.

PICO_RATIO_MODE_RAW No downsampling. Returns raw data values.

API functions

51Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.20 ps6000aGetValuesAsync - read data without
blocking

PICO_STATUS ps6000aGetValuesAsync

(

int16_t handle,

uint64_t startIndex,

uint64_t noOfSamples,

uint64_t downSampleRatio,

PICO_RATIO_MODE downSampleRatioMode,

uint64_t segmentIndex,

PICO_POINTER lpDataReady,

PICO_POINTER pParameter

)

This function obtains data from the oscilloscope, with downsampling if requested, starting at the
specified sample number. It delivers the data using a callback.

Applicability

Streaming mode and block mode

Arguments

handle,

startIndex,

noOfSamples,

downSampleRatio,

downSampleRatioMode,

segmentIndex: see ps6000aGetValues()

lpDataReady, a pointer to the user-supplied function that will be called when the data is ready. For

compatibility with older applications the driver also supports a ps6000aDataReady() function.

pParameter, a void pointer that will be passed to the callback function. The data type is determined by
the application.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_DEVICE_SAMPLING

PICO_NULL_PARAMETER

PICO_STARTINDEX_INVALID

PICO_SEGMENT_OUT_OF_RANGE

PICO_INVALID_PARAMETER

PICO_DATA_NOT_AVAILABLE

PICO_INVALID_SAMPLERATIO

PICO_INVALID_CALL

PICO_DRIVER_FUNCTION

API functions

52Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.21 ps6000aGetValuesBulk - read multiple segments
PICO_STATUS ps6000aGetValuesBulk

(

int16_t handle,

uint64_t startIndex,

uint64_t * noOfSamples,

uint64_t fromSegmentIndex,

uint64_t toSegmentIndex,

uint64_t downSampleRatio,

PICO_RATIO_MODE downSampleRatioMode,

int16_t * overflow

)

This function retrieves waveforms captured using rapid block mode. The waveforms must have been
collected sequentially and in the same run.

Applicability

Rapid block mode

Arguments

handle, startIndex, noOfSamples, downSampleRatio, downSampleRatioMode,

overflow: see ps6000aGetValues()

fromSegmentIndex, toSegmentIndex: zero-based numbers of the first and last memory segments
where the data is stored.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_NO_SAMPLES_AVAILABLE

PICO_STARTINDEX_INVALID

PICO_NOT_RESPONDING

PICO_DRIVER_FUNCTION

PICO_INVALID_SAMPLERATIO

API functions

53Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.22 ps6000aGetValuesBulkAsync - read multiple
segments without blocking

PICO_STATUS ps6000aGetValuesBulkAsync

(

int16_t handle,

uint64_t startIndex,

uint64_t noOfSamples,

uint64_t fromSegmentIndex,

uint64_t toSegmentIndex,

uint64_t downSampleRatio,

PICO_RATIO_MODE downSampleRatioMode,

PICO_POINTER lpDataReady,

PICO_POINTER pParameter

)

This function retrieves more than one waveform at a time from the driver in rapid block mode after data
collection has stopped. The waveforms must have been collected sequentially and in the same run. The
data is returned using a callback.

Applicability

Rapid block mode

Arguments

handle,

startIndex,

noOfSamples,

downSampleRatio,

downSampleRatioMode: see ps6000aGetValues()

fromSegmentIndex,

toSegmentIndex: see ps6000aGetValuesBulk()

lpDataReady,

pParameter

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_NO_SAMPLES_AVAILABLE

PICO_STARTINDEX_INVALID

PICO_NOT_RESPONDING

PICO_DRIVER_FUNCTION

API functions

54Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.23 ps6000aGetValuesOverlapped - get rapid block
data

PICO_STATUS ps6000aGetValuesOverlapped

(

int16_t handle,

uint64_t startIndex,

uint64_t * noOfSamples,

uint64_t downSampleRatio,

PICO_RATIO_MODE downSampleRatioMode,

uint64_t fromSegmentIndex,

uint64_t toSegmentIndex,

int16_t * overflow

)

This function allows you to make a deferred data-collection request in rapid block mode. The request will

be executed, and the arguments validated, when you call ps6000aRunBlock(). The advantage of this

method is that the driver makes contact with the scope only once, when you call ps6000aRunBlock(),

compared with the two contacts that occur when you use the conventional ps6000aRunBlock(),

ps6000aGetValues() calling sequence. This slightly reduces the dead time between successive
captures in rapid block mode.

After calling ps6000aRunBlock(), you can optionally use ps6000aGetValues() to request further
copies of the data. This might be required if you wish to display the data with different data reduction
settings.

To stop collecting data, call ps6000aStopUsingGetValuesOverlapped().

Applicability

Rapid block mode

Arguments

handle,

startIndex,

* noOfSamples,

downSampleRatio,

downSampleRatioMode: see ps6000aGetValues()

fromSegmentIndex,

toSegmentIndex,

* overflow, see ps6000aGetValuesBulk().

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

PICO_DRIVER_FUNCTION

API functions

55Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.23.1 Using GetValuesOverlapped()

1. Open the oscilloscope using ps6000aOpenUnit().

2. Select channel ranges and AC/DC coupling using ps6000aSetChannelOn().

3. Using ps6000aGetTimebase(), select timebases until the required nanoseconds per sample is
located.

4. Use the trigger setup functions ps6000aSetTriggerChannelConditions(),

ps6000aSetTriggerChannelDirections() and

ps6000aSetTriggerChannelProperties() to set up the trigger if required.

5. Use ps6000aSetDataBuffer() to tell the driver where your memory buffer is.
6. Set up the transfer of the block of data from the oscilloscope using

ps6000aGetValuesOverlapped().

7. Start the oscilloscope running using ps6000aRunBlock().

8. Wait until the oscilloscope is ready using the ps6000aBlockReady() callback (or poll using

ps6000aIsReady()).
9. Display the data.
10. Repeat steps 7 to 9 if needed.

11. Stop the oscilloscope by calling ps6000aStop().

A similar procedure can be used with rapid block mode.

API functions

56Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.24 ps6000aGetValuesTriggerTimeOffsetBulk - get
trigger time offsets for multiple segments

PICO_STATUS ps6000aGetValuesTriggerTimeOffsetBulk

(

int16_t handle,

int64_t * times,

PICO_TIME_UNITS * timeUnits,

uint64_t fromSegmentIndex,

uint64_t toSegmentIndex

)

This function retrieves the trigger time offset for multiple waveforms obtained in block mode or rapid

block mode. It is a more efficient alternative to calling ps6000aGetTriggerTimeOffset() once for

each waveform required. See ps6000aGetTriggerTimeOffset() for an explanation of trigger time
offsets.

Applicability

Rapid block mode

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

* times, an array of integers. On exit, the time offset for each requested segment index. times[0]

will hold the fromSegmentIndex time offset and the last times[] index will hold the

toSegmentIndex time offset. The array must be long enough to hold the number of requested times.

* timeUnits, an array of integers. The array must be long enough to hold the number of requested

times. On exit, timeUnits[0] will contain the time unit for fromSegmentIndex and the last element

will contain the time unit for toSegmentIndex. PICO_TIME_UNITS values are listed under

ps6000aGetTriggerTimeOffset().

fromSegmentIndex, the first segment for which the time offset is required

toSegmentIndex, the last segment for which the time offset is required. If toSegmentIndex is less

than fromSegmentIndex then the driver will wrap around from the last segment to the first.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_NULL_PARAMETER

PICO_DEVICE_SAMPLING

PICO_SEGMENT_OUT_OF_RANGE

PICO_NO_SAMPLES_AVAILABLE

PICO_DRIVER_FUNCTION

API functions

57Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.25 ps6000aIsReady - get status of block capture
PICO_STATUS ps6000aIsReady

(

int16_t handle,

int16_t * ready

)

This function may be used instead of a callback function to receive data from ps6000aRunBlock(). To

use this method, pass a NULL pointer as the lpReady argument to ps6000aRunBlock(). You must
then poll the driver to see if it has finished collecting the requested samples.

Applicability

Block mode

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

ready, output: indicates the state of the collection. If zero, the device is still collecting. If non-zero, the

device has finished collecting and ps6000aGetValues() can be used to retrieve the data.

Returns

API functions

58Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.26 ps6000aMemorySegments - set number of
memory segments

PICO_STATUS ps6000aMemorySegments

(

int16_t handle

uint64_t nSegments,

uint64_t * nMaxSamples

)

This function sets the number of memory segments that the scope will use.

When the scope is opened, the number of segments defaults to 1, meaning that each capture fills the
scope's available memory. This function allows you to divide the memory into a number of segments so
that the scope can store several waveforms sequentially.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

nSegments, the number of segments required. See data sheet for capacity of each model.

* nMaxSamples, on exit, the number of samples available in each segment. This is the total number
over all channels, so if more than one channel is in use then the number of samples available to each

channel is nMaxSamples divided by the number of channels.

Returns

PICO_OK

PICO_USER_CALLBACK

PICO_INVALID_HANDLE

PICO_TOO_MANY_SEGMENTS

PICO_MEMORY

PICO_DRIVER_FUNCTION

API functions

59Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.27 ps6000aMemorySegmentsBySamples - set size of
memory segments

PICO_STATUS ps6000aMemorySegmentsBySamples

(

int16_t handle

uint64_t nSamples,

uint64_t * nMaxSegments

)

This function sets the number of samples per memory segment. Like ps6000aMemorySegments() it
controls the segmentation of the capture memory, but in this case you specify the number of samples
rather than the number of segments.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

nSamples, the number of samples required in each segment. See data sheet for capacity of each
model. This is the total number over n channels, where n is the number of enabled channels or MSO ports
rounded up to the next power of 2. For example, with 5 channels or ports enabled, n is 8. If n > 1, the
number of segments available will be reduced accordingly.

* nMaxSegments, on exit, the number of segments into which the capture memory has been divided.

Returns

PICO_OK

PICO_USER_CALLBACK

PICO_INVALID_HANDLE

PICO_TOO_MANY_SEGMENTS

PICO_MEMORY

PICO_DRIVER_FUNCTION

API functions

60Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.28 ps6000aNearestSampleIntervalStateless - get
nearest sampling interval

PICO_STATUS ps6000aNearestSampleIntervalStateless

(

int16_t handle,

PICO_CHANNEL_FLAGS enabledChannelFlags,

double timeIntervalRequested,

PICO_DEVICE_RESOLUTION resolution,

uint32_t * timebase,

double * timeIntervalAvailable

)

This function returns the nearest possible sample interval to the requested sample interval. It does not
change the configuration of the oscilloscope.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

enabledChannelFlags, see ps6000aGetMinimumTimebaseStateless().

timeIntervalRequested, the time interval, in seconds, that you would like to obtain.

resolution, the vertical resolution (number of bits) for which the oscilloscope will be configured.

* timebase, on exit, the number of the nearest available timebase.

* timeIntervalAvailable, on exit, the nearest available time interval, in seconds.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_TOO_MANY_SAMPLES

API functions

61Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.29 ps6000aNoOfStreamingValues - get number of
captured samples

PICO_STATUS ps6000aNoOfStreamingValues

(

int16_t handle,

uint64_t * noOfValues

)

This function returns the number of samples available after data collection in streaming mode. Call it

after calling ps6000aStop().

Applicability

Streaming mode

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

* noOfValues, on exit, the number of samples.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_NULL_PARAMETER

PICO_NO_SAMPLES_AVAILABLE

PICO_NOT_USED

PICO_BUSY

PICO_DRIVER_FUNCTION

API functions

62Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.30 ps6000aOpenUnit - open a scope device
PICO_STATUS ps6000aOpenUnit

(

int16_t * handle,

int8_t * serial,

PICO_DEVICE_RESOLUTION resolution

)

This function opens a PicoScope 6000E Series scope attached to the computer. The maximum number of
units that can be opened depends on the operating system, the kernel driver and the computer.

If the function returns PICO_FIRMWARE_UPDATE_REQUIRED_TO_USE_DEVICE_WITH_THIS_DRIVER,
all other API calls that perform operations with the same device will fail with the same return value until

ps6000aStartFirmwareUpdate() is called. Users should avoid unplugging the device during this
operation, otherwise there is a small chance that the firmware could be corrupted.

Applicability

All modes

Arguments

* handle, on exit, the result of the attempt to open a scope:
–1 : if the scope fails to open
0 : if no scope is found
> 0 : a number that uniquely identifies the scope

If a valid handle is returned, it must be used in all subsequent calls to API functions to identify this scope.

serial, on entry, a null-terminated string containing the serial number of the scope to be opened. If

serial is NULL then the function opens the first scope found; otherwise, it tries to open the scope that
matches the string.

resolution, the required vertical resolution (in bits).

Returns

PICO_OK

PICO_OS_NOT_SUPPORTED

PICO_OPEN_OPERATION_IN_PROGRESS

PICO_EEPROM_CORRUPT

PICO_KERNEL_DRIVER_TOO_OLD

PICO_FW_FAIL

PICO_MAX_UNITS_OPENED

PICO_NOT_FOUND (if the specified unit was not found)

PICO_NOT_RESPONDING

PICO_MEMORY_FAIL

PICO_ANALOG_BOARD

PICO_CONFIG_FAIL_AWG

PICO_INITIALISE_FPGA

PICO_FIRMWARE_UPDATE_REQUIRED_TO_USE_DEVICE_WITH_THIS_DRIVER - call

ps6000aCheckForUpdate() and then ps6000aStartFirmwareUpdate()

API functions

63Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.31 ps6000aOpenUnitAsync - open unit without
blocking

PICO_STATUS ps6000aOpenUnitAsync

(

int16_t * status,

int8_t * serial,

PICO_DEVICE_RESOLUTION resolution

)

This function opens a scope without blocking the calling thread. You can find out when it has finished by

periodically calling ps6000aOpenUnitProgress() until that function sets the complete flag to a non-
zero value.

Applicability

All modes

Arguments

* status, a status code:

0 if the open operation was disallowed because another open operation is in progress

1 if the open operation was successfully started

* serial, see ps6000aOpenUnit().

resolution, the vertical resolution required.

Returns

PICO_OK

PICO_OPEN_OPERATION_IN_PROGRESS

PICO_OPERATION_FAILED

API functions

64Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.32 ps6000aOpenUnitProgress - get status of opening
a unit

PICO_STATUS ps6000aOpenUnitProgress

(

int16_t * handle,

int16_t * progressPercent,

int16_t * complete

)

This function checks on the progress of a request made to ps6000aOpenUnitAsync() to open a
scope.

Applicability

Use after ps6000aOpenUnitAsync()

Arguments

* handle, see ps6000aOpenUnit(). This handle is valid only if the function returns PICO_OK.

* progressPercent, on exit, 0 while the operation is in progress, 100 when the operation is
complete.

* complete, set to 1 when the open operation has finished.

Returns

PICO_OK

PICO_NULL_PARAMETER

PICO_OPERATION_FAILED

API functions

65Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.33 ps6000aPingUnit - check if device is still connected
PICO_STATUS ps6000aPingUnit

(

int16_t handle

)

This function can be used to check that the already opened device is still connected to the USB port and
communication is successful.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_BUSY

PICO_NOT_RESPONDING

API functions

66Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.34 ps6000aQueryMaxSegmentsBySamples - get
number of segments

PICO_STATUS ps6000aQueryMaxSegmentsBySamples

(

int16_t handle,

uint64_t nSamples,

uint32_t nChannelEnabled,

uint64_t * nMaxSegments,

PICO_DEVICE_RESOLUTION resolution

)

This function returns the maximum number of memory segments available given the number of samples
per segment.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

nSamples, the number of samples per segment.

nChannelEnabled, the number of channels enabled.

* nMaxSegments, on exit, the maximum number of segments that can be requested.

resolution, an enumerated type representing the hardware resolution.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_TOO_MANY_SAMPLES

API functions

67Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.35 ps6000aQueryOutputEdgeDetect – check if output
edge detection is enabled

PICO_STATUS ps6000aQueryOutputEdgeDetect

(

int16_t handle,

int16_t * state

)

This function reports whether output edge detection mode is currently enabled. The default state is
enabled.

To switch output edge detection mode on or off, use ps6000aSetOutputEdgeDetect. See that
function description for more details.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

* state, on exit, the state of output edge detection:

0 = off

1 = on

Returns

PICO_OK or other code from PicoStatus.h

API functions

68Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.36 ps6000aResetChannelsAndReportAllChannelsOver
voltageTripStatus

PICO_STATUS ps6000aResetChannelsAndReportAllChannelsOvervoltageTripStatus

(

int16_t handle,

PICO_CHANNEL_OVERVOLTAGE_TRIPPED * allChannelsTrippedStatus,

uint8_t nChannelTrippedStatus

)

This function resets all oscilloscope channels and then reports the overvoltage trip status for all
channels. Use this to find out which channels caused an overvoltage trip event.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

allChannelsTrippedStatus, a pointer to an array of PICO_CHANNEL_OVERVOLTAGE_TRIPPED
structs. On exit, the overvoltage trip status of each channel will be written to this array.

nChannelTrippedStatus, the number of PICO_CHANNEL_OVERVOLTAGE_TRIPPED structs in
the above array..

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_HARDWARE_CAPTURING_CALL_STOP

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_NOT_SUPPORTED_BY_THIS_DEVICE

3.37 ps6000aReportAllChannelsOvervoltageTripStatus
PICO_STATUS ps6000aReportAllChannelsOvervoltageTripStatus

(

int16_t handle,

PICO_CHANNEL_OVERVOLTAGE_TRIPPED * allChannelsTrippedStatus,

uint8_t nChannelTrippedStatus

)

This function reports the overvoltage trip status for all channels without resetting their status. Use it to
find out which channels caused an overvoltage trip event.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

API functions

69Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

allChannelsTrippedStatus, a pointer to an array of PICO_CHANNEL_OVERVOLTAGE_TRIPPED
channel status flags. On exit, the overvoltage trip status of each channel will be written to this array.

nChannelTrippedStatus, the number of PICO_CHANNEL_OVERVOLTAGE_TRIPPED structs
in the above array..

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_NOT_SUPPORTED_BY_THIS_DEVICE

3.37.1 PICO_CHANNEL_OVERVOLTAGE_TRIPPED structure

typedef struct tPicoChannelOvervoltageTripped

{

PICO_CHANNEL channel_;

uint8_t tripped_;

} PICO_CHANNEL_OVERVOLTAGE_TRIPPED;

This structure contains information about the overvoltage trip on a given channel. An overvoltage trip
occurs when an oscilloscope channel in 50 Ω coupling mode detects an excessive voltage on its input.

Applicability

Analog input channels

Elements

channel_, the oscilloscope channel to which the information applies.

tripped_, a flag indicating whether the overvoltage trip occurred (non-zero) or did not occur (zero).

API functions

70Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.38 ps6000aRunBlock - start block mode capture
PICO_STATUS ps6000aRunBlock

(

int16_t handle,

uint64_t noOfPreTriggerSamples,

uint64_t noOfPostTriggerSamples,

uint32_t timebase,

double * timeIndisposedMs,

uint64_t segmentIndex,

ps6000aBlockReady lpReady,

PICO_POINTER pParameter

)

This function starts collecting data in block mode. For a step-by-step guide to this process, see Using
block mode.

The number of samples is determined by noOfPreTriggerSamples and noOfPostTriggerSamples
(see below for details). The total number of samples must not be more than the size of the segment

referred to by segmentIndex.

Applicability

Block mode, rapid block mode

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

noOfPreTriggerSamples, the number of samples to return before the trigger event. If no trigger has

been set, then this argument is added to noOfPostTriggerSamples to give the maximum number of
data points (samples) to collect.

noOfPostTriggerSamples, the number of samples to return after the trigger event. If no trigger event

has been set, then this argument is added to noOfPreTriggerSamples to give the maximum number of
data points to collect. If a trigger condition has been set, this specifies the number of data points to
collect after a trigger has fired, and the number of samples to be collected is:

noOfPreTriggerSamples + noOfPostTriggerSamples

timebase, a number in the range 0 to 232–1. See the guide to calculating timebase values.

* timeIndisposedMs, on exit, the time in milliseconds that the scope will spend collecting samples.
This does not include any auto trigger timeout. If this pointer is null, nothing will be written here.

segmentIndex, zero-based, specifies which memory segment to use.

lpReady, a pointer to the ps6000aBlockReady() callback function that the driver will call when the

data has been collected. To use the ps6000aIsReady() polling method instead of a callback function,

set this pointer to NULL.

pParameter, a void pointer that is passed to the ps6000aBlockReady() callback function. The
callback can use this pointer to return arbitrary data to the application.

Returns

PICO_OK

API functions

71Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_SEGMENT_OUT_OF_RANGE

PICO_INVALID_CHANNEL

PICO_INVALID_TRIGGER_CHANNEL

PICO_INVALID_CONDITION_CHANNEL

PICO_TOO_MANY_SAMPLES

PICO_INVALID_TIMEBASE

PICO_NOT_RESPONDING

PICO_CONFIG_FAIL

PICO_INVALID_PARAMETER

PICO_NOT_RESPONDING

PICO_TRIGGER_ERROR

PICO_DRIVER_FUNCTION

PICO_EXTERNAL_FREQUENCY_INVALID

PICO_FW_FAIL

PICO_NOT_ENOUGH_SEGMENTS (in Bulk mode)

PICO_TRIGGER_AND_EXTERNAL_CLOCK_CLASH

PICO_PWQ_AND_EXTERNAL_CLOCK_CLASH

PICO_PULSE_WIDTH_QUALIFIER

PICO_SEGMENT_OUT_OF_RANGE (in Overlapped mode)

PICO_STARTINDEX_INVALID (in Overlapped mode)

PICO_INVALID_SAMPLERATIO (in Overlapped mode)

PICO_CONFIG_FAIL

PICO_SIGGEN_GATING_AUXIO_ENABLED (signal generator is set to trigger on AUX input with
incompatible trigger type)

API functions

72Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.39 ps6000aRunStreaming - start streaming mode
capture

PICO_STATUS ps6000aRunStreaming

(

int16_t handle,

double * sampleInterval,

PICO_TIME_UNITS sampleIntervalTimeUnits

uint64_t maxPreTriggerSamples,

uint64_t maxPostTriggerSamples,

int16_t autoStop,

uint64_t downSampleRatio,

PICO_RATIO_MODE downSampleRatioMode

)

This function tells the oscilloscope to start collecting data in streaming mode. The device can return
either raw or downsampled data to your application while streaming is in progress. Call

ps6000aGetStreamingLatestValues() to retrieve the data. See Using streaming mode for a step-by-
step guide to this process.

When a trigger is set, the total number of samples is the sum of maxPreTriggerSamples and

maxPostTriggerSamples. If autoStop is false then this will become the maximum number of
samples without downsampling.

When downsampled data is returned, the raw samples remain stored on the device. The maximum number
of raw samples that can be retrieved after streaming has stopped is (scope's memory size) / (resolution
data size * channels), where channels is the number of active channels rounded up to a power of 2.

Applicability

Streaming mode

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

* sampleInterval, on entry, the requested time interval between samples; on exit, the actual time
interval used

sampleIntervalTimeUnits, the unit of time used for sampleInterval. Use one of these values:

PICO_FS

PICO_PS

PICO_NS

PICO_US

PICO_MS

PICO_S

maxPreTriggerSamples, the maximum number of raw samples before a trigger event for each
enabled channel. If no trigger condition is set this argument is ignored.

maxPostTriggerSamples, the maximum number of raw samples after a trigger event for each
enabled channel. If no trigger condition is set, this argument states the maximum number of samples to
be stored.

API functions

73Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

autoStop, a flag that specifies if the streaming should stop when all of maxSamples have been
captured.

downSampleRatio, downSampleRatioMode: see ps6000aGetValues().

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_STREAMING_FAILED

PICO_NOT_RESPONDING

PICO_TRIGGER_ERROR

PICO_INVALID_SAMPLE_INTERVAL

PICO_INVALID_BUFFER

PICO_DRIVER_FUNCTION

PICO_EXTERNAL_FREQUENCY_INVALID

PICO_FW_FAIL

PICO_TRIGGER_AND_EXTERNAL_CLOCK_CLASH

PICO_PWQ_AND_EXTERNAL_CLOCK_CLASH

PICO_MEMORY

PICO_SIGGEN_GATING_AUXIO_ENABLED (signal generator is set to trigger on AUX input with
incompatible trigger type)

API functions

74Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.40 ps6000aSetChannelOff - disable one channel
PICO_STATUS ps6000aSetChannelOff

(

int16_t handle,

PICO_CHANNEL channel

)

This function switches an analog input channel off. It has the opposite function to

ps6000aSetChannelOn().

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

channel, see ps6000aSetChannelOn().

Returns

PICO_OK

PICO_USER_CALLBACK

PICO_INVALID_HANDLE

PICO_INVALID_CHANNEL

PICO_DRIVER_FUNCTION

API functions

75Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.41 ps6000aSetChannelOn - enable and set options for
one channel

PICO_STATUS ps6000aSetChannelOn

(

int16_t handle,

PICO_CHANNEL channel,

PICO_COUPLING coupling,

PICO_CONNECT_PROBE_RANGE range,

double analogueOffset,

PICO_BANDWIDTH_LIMITER bandwidth

)

This function switches an analog input channel on and specifies its input coupling type, voltage range,
analog offset and bandwidth limit. Some of the arguments within this function have model-specific
values. Consult the relevant section below according to the model you have.

To switch off, use ps6000aSetChannelOff().

For digital ports, see ps6000aSetDigitalPortOn().

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

channel, the channel to be configured. The values (subject to the number of channels on your
oscilloscope model) are:

PICO_CHANNEL_A, PICO_CHANNEL_B, PICO_CHANNEL_C, PICO_CHANNEL_D,

PICO_CHANNEL_E, PICO_CHANNEL_F, PICO_CHANNEL_G, PICO_CHANNEL_H

coupling, the impedance and coupling type. The values supported are:

PICO_AC, 1 MΩ impedance, AC coupling. The channel accepts input frequencies from about 1 hertz
up to its maximum -3 dB analog bandwidth.*

PICO_DC, 1 MΩ impedance, DC coupling. The scope accepts all input frequencies from zero (DC) up
to its maximum -3 dB analog bandwidth.*

PICO_DC_50OHM, 50 Ω impedance, DC coupling. The higher-voltage input ranges may not be available
in this mode - consult data sheet.

range, the input voltage range (not applicable to intelligent probes – see below):

PICO_10MV: ±10 mV*

PICO_20MV: ±20 mV*

PICO_50MV: ±50 mV

PICO_100MV: ±100 mV

PICO_200MV: ±200 mV

PICO_500MV: ±500 mV

PICO_1V: ±1 V*

PICO_2V: ±2 V*

PICO_5V: ±5 V*

PICO_10V: ±10 V**

API functions

76Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

PICO_20V: ±20 V**
* not available for the PicoScope 6428E-D

** not available when coupling = PICO_DC_50R

For an intelligent probe (one with internal electronics to identify the probe and set ranges
automatically), you cannot set the oscilloscope range directly. If you try to, the function will return

PICO_WARNING_PROBE_CHANNEL_OUT_OF_SYNC. Instead, use the PICO_CONNECT_PROBE_RANGE
values which are applicable to the connected probe. The available range values for the currently-

connected probe are passed to your PicoProbeInteractions() callback when a probe is detected
by the oscilloscope.

analogueOffset, a voltage to add to the input channel before digitization.

bandwidth, the bandwidth limiter setting:

PICO_BW_FULL: the scope's full specified bandwidth

PICO_BW_20MHZ: –3 dB bandwidth limited to 20 MHz

PICO_BW_200MHZ: –3 dB bandwidth limited to 200 MHz (for scopes with 750 MHz bandwidth and
above)

Returns

PICO_OK

PICO_USER_CALLBACK

PICO_INVALID_HANDLE

PICO_INVALID_CHANNEL

PICO_INVALID_VOLTAGE_RANGE

PICO_INVALID_COUPLING

PICO_COUPLING_NOT_SUPPORTED

PICO_INVALID_ANALOGUE_OFFSET

PICO_INVALID_BANDWIDTH

PICO_BANDWIDTH_NOT_SUPPORTED

PICO_DRIVER_FUNCTION

PICO_WARNING_PROBE_CHANNEL_OUT_OF_SYNC

API functions

77Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.42 ps6000aSetDataBuffer - provide location of data
buffer

PICO_STATUS ps6000aSetDataBuffer

(

int16_t handle,

PICO_CHANNEL channel,

PICO_POINTER buffer,

int32_t nSamples,

PICO_DATA_TYPE dataType,

uint64_t waveform,

PICO_RATIO_MODE downSampleRatioMode,

PICO_ACTION action

)

This function tells the driver where to store the data, either unprocessed or downsampled, that will be

returned after the next call to one of the GetValues functions. The function allows you to specify only a
single buffer, so for aggregation mode, which requires two buffers, you must call

ps6000aSetDataBuffers() instead.

The buffer persists between captures until it is replaced with another buffer or buffer is set to NULL.

The buffer can be replaced at any time between calls to ps6000aGetValues().

You must allocate memory for the buffer before calling this function.

Applicability

Block, rapid block and streaming modes. All downsampling modes except aggregation.

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

channel, the channel you want to use with the buffer.

buffer, the location of the buffer.

nSamples, the length of the buffer array.

dataType, the data type that you wish to use for the sample values:

PICO_INT8_T, 8-bit signed integer

PICO_INT16_T, 16-bit signed integer

PICO_INT32_T, 32-bit signed integer

PICO_UINT32_T, 32-bit unsigned integer

PICO_INT64_T, 64-bit signed integer

waveform, the segment index.

downSampleRatioMode, the downsampling mode. See ps6000aGetValues() for the available

modes, but note that a single call to ps6000aSetDataBuffer() can only associate one buffer with one

downsampling mode. If you intend to call ps6000aGetValues() with more than one downsampling

mode activated, then you must call ps6000aSetDataBuffer() several times to associate a separate
buffer with each downsampling mode.

API functions

78Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

action, the method to use when creating the buffer. The buffers are added to a unique list for the

channel, data type and segment. Therefore you must use PICO_CLEAR_ALL to remove all buffers already

written. PICO_ACTION values can be ORed together to allow clearing and adding in one call.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_CHANNEL

PICO_RATIO_MODE_NOT_SUPPORTED

PICO_DRIVER_FUNCTION

PICO_INVALID_PARAMETER

API functions

79Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.43 ps6000aSetDataBuffers - provide locations of both
data buffers

PICO_STATUS ps6000aSetDataBuffers

(

int16_t handle,

PICO_CHANNEL channel,

PICO_POINTER bufferMax,

PICO_POINTER bufferMin,

int32_t nSamples,

PICO_DATA_TYPE dataType,

uint64_t waveform,

PICO_RATIO_MODE downSampleRatioMode,

PICO_ACTION action

)
This function tells the driver the location of one or two buffers for receiving data. You need to allocate
memory for the buffers before calling this function. If you do not need two buffers, because you are not

using aggregate mode, then you can optionally use ps6000aSetDataBuffer() instead.

Applicability

Block and streaming modes with aggregation.

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

channel, the channel for which you want to set the buffers.

* bufferMax, a buffer to receive the maximum data values in aggregation mode, or the non-
aggregated values otherwise.

* bufferMin, a buffer to receive the minimum aggregated data values. Not used in other
downsampling modes.

nSamples,

dataType,

waveform, see ps6000aSetDataBuffer().

downSampleRatioMode, the downsampling mode. See ps6000aGetValues() for the available

modes, but note that a single call to ps6000aSetDataBuffer() can only associate one buffer with one

downsampling mode. If you intend to call ps6000aGetValues() with more than one downsampling

mode activated, then you must call ps6000aSetDataBuffer() several times to associate a separate
buffer with each downsampling mode.

action, see ps6000aSetDataBuffer()

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_CHANNEL

PICO_RATIO_MODE_NOT_SUPPORTED

PICO_DRIVER_FUNCTION

PICO_INVALID_PARAMETER

API functions

80Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.44 ps6000aSetDeviceResolution – set the hardware
resolution

PICO_STATUS ps6000aSetDeviceResolution

(

int16_t handle,

PICO_DEVICE_RESOLUTION resolution

)

This function sets the sampling resolution of the device. At 10-bit and higher resolutions, the maximum
capture buffer length is half that of 8-bit mode. When using 12-bit resolution only 2 channels can be
enabled to capture data.

When you change the device resolution, the driver discards all previously captured data.

After changing the resolution and before calling ps6000aRunBlock() or ps6000aRunStreaming(),

call ps6000aSetChannelOn() to set up the input channels.

Applicability

All modes.

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

resolution, determines the resolution of the device when opened, the available values are one of the

PICO_DEVICE_RESOLUTION.

Returns

PICO_INVALID_DEVICE_RESOLUTION if resolution is out of range.

3.44.1 PICO_DEVICE_RESOLUTION enumerated type

typedef enum enPicoDeviceResolution

{

PICO_DR_8BIT = 0,

PICO_DR_12BIT = 1,

PICO_DR_10BIT = 10,

} PICO_DEVICE_RESOLUTION;

These values specify the resolution of the sampling hardware in the oscilloscope. Each mode divides the
input voltage range into a number of levels as listed below.

Applicability

Calls to ps6000aSetDeviceResolution() etc.

Values

PICO_DR_8BIT – 8-bit resolution (256 levels)

PICO_DR_10BIT – 10-bit resolution (1024 levels)

PICO_DR_12BIT – 12-bit resolution (4096 levels)

API functions

81Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.45 ps6000aSetDigitalPortOff – switch off digital
inputs

PICO_STATUS ps6000aSetDigitalPortOff

(

int16_t handle,

PICO_CHANNEL port

)

This function switches off one or more digital ports.

Applicability

Block and streaming modes with aggregation.

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

port, see ps6000aSetDigitalPortOn().

Returns

API functions

82Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.46 ps6000aSetDigitalPortOn – set up and enable
digital inputs

PICO_STATUS ps6000aSetDigitalPortOn

(

int16_t handle,

PICO_CHANNEL port,

int16_t * logicThresholdLevel,

int16_t logicThresholdLevelLength,

PICO_DIGITAL_PORT_HYSTERESIS hysteresis

)

This function switches on one or more digital ports and sets the logic thresholds.

Refer to the data sheet for the fastest sampling rates available with different combinations of analog and
digital inputs. In most cases the fastest rates will be obtained by disabling all analog channels. When all
analog channels are disabled you must also select 8-bit resolution to allow the digital inputs to operate
alone.

Applicability

Block and streaming modes with aggregation.

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

port, identifies the MSO port:

PICO_DIGITAL_PORT0 = 128 (Digital 1 port: digital channels 1D0–1D7)

PICO_DIGITAL_PORT1 = 129 (Digital 2 port: digital channels 2D0–2D7)

* logicThresholdLevel, on entry, a list of threshold voltages, one for each port pin, used to
distinguish the 0 and 1 states. Range: –32 767 (–5 V) to 32 767 (+5 V).

logicThresholdLevelLength, the number of items in the logicThresholdLevel list.

hysteresis, the hysteresis to apply to all channels in the port:

PICO_VERY_HIGH_400MV

PICO_HIGH_200MV

PICO_NORMAL_100MV

PICO_LOW_50MV

Returns

API functions

83Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.47 ps6000aSetExternalReferenceInteractionCallback -
register callback function for external reference
clock events

PICO_STATUS ps6000aSetExternalReferenceInteractionCallback

(

int16_t handle,

PicoExternalReferenceInteractions callback

)

This function registers your PicoExternalReferenceInteractions() callback function with the

ps6000a driver. Passing a null pointer clears any previous callback.

The PicoScope 6000 (A API) device automatically selects the external reference clock when a signal is
applied to the external reference input, and reverts to the internal clock if the signal is removed. The driver
will call your callback function whenever the external reference clock status changes.

Applicability

All models

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

callback, a pointer to your callback function.

Returns

PICO_OK or a code from PicoStatus.h

API functions

84Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.48 ps6000aSetNoOfCaptures - modify rapid block
mode

PICO_STATUS ps6000aSetNoOfCaptures

(

int16_t handle,

uint64_t nCaptures

)

This function sets the number of captures to be collected in one run of rapid block mode. If you do not
call this function before a run, the driver will capture only one waveform.

Applicability

Rapid block mode

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

nCaptures, the number of waveforms to capture in one run.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

PICO_DRIVER_FUNCTION

API functions

85Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.49 ps6000aSetOutputEdgeDetect – change triggering
behavior

PICO_STATUS ps6000aSetOutputEdgeDetect

(

int16_t handle,

int16_t state

)

This function enables or disables output edge detection mode for the logic trigger. Output edge detection
is enabled by default and should be left enabled for normal operation.

The oscilloscope normally triggers only when the output of the trigger logic function changes state. For
example, if the function is "A high AND B high", the oscilloscope triggers when A is high and B changes
from low to high, but does not repeatedly trigger when A and B remain high. Calling

ps6000aSetOutputEdgeDetect() with state = 0 changes this behavior so that the oscilloscope
triggers continually while the logic trigger function evaluates to TRUE.

To find out whether output edge detection is enabled, use ps6000aQueryOutputEdgeDetect().

Applicability

Rapid block mode

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

state, the desired state of output edge detection:

0 = off

1 = on

Returns

PICO_OK or other code from PicoStatus.h

API functions

86Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.50 ps6000aSetProbeInteractionCallback – register
callback function for probe events

PICO_STATUS ps6000aSetProbeInteractionCallback

(

int16_t handle,

PicoProbeInteractions callback

)

This function registers your PicoProbeInteractions() callback function with the ps6000a driver.
The driver will then call your function whenever a Pico intelligent probe is plugged into, or unplugged from,
a PicoScope 6000 (A API) device, or if the power consumption of the connected probes exceeds the
power available. See Handling PicoConnect probe interactions for more information on this process.

You should call this function as soon as the device has been successfully opened and before any call to

ps6000aSetChannelOn().

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

callback, a pointer to your callback function.

Returns

PICO_OK

API functions

87Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.51 ps6000aSetPulseWidthDigitalPortProperties – set
digital port pulse width

PICO_STATUS ps6000aSetPulseWidthDigitalPortProperties

(

int16_t handle,

PICO_CHANNEL port,

PICO_DIGITAL_DIRECTION * directions,

int16_t nDirections

)

This function sets the individual digital channels' pulse-width trigger directions. Each trigger direction
consists of a channel name and a direction. If the channel is not included in the array of

PICO_DIGITAL_DIRECTION, the driver assumes the digital channel's pulse-width trigger direction is

PICO_DIGITAL_DONT_CARE.

Applicability

All modes.
Any model with MSO pod(s) fitted.

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

* directions, a pointer to an array of PICO_DIGITAL_DIRECTION structures describing the
requested properties. The array can contain a single element describing the properties of one channel, or

a number of elements describing several digital channels. If directions is NULL, digital pulse-width
triggering is switched off. A digital channel that is not included in the array is set to

PICO_DIGITAL_DONT_CARE.

nDirections, the number of digital channel directions being passed to the driver.

Returns

PICO_OK or other code from PicoStatus.h

API functions

88Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.52 ps6000aSetPulseWidthQualifierConditions -
specify how to combine channels

PICO_STATUS ps6000aSetPulseWidthQualifierConditions

(

int16_t handle,

PICO_CONDITION * conditions,

int16_t nConditions,

PICO_ACTION action

)

This function is used to set conditions for the pulse width qualifier, which is an optional input to the
triggering condition.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

* conditions, on entry, an array of structures specifiying the pulse width qualifier conditions. See

PICO_CONDITION.

nConditions, the number of structures in the conditions array.

action, how to combine the array of conditions with existing pulse width qualifier conditions. See

ps6000aSetTriggerChannelConditions() for the list of actions.

Returns

PICO_OK

API functions

89Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.53 ps6000aSetPulseWidthQualifierDirections - specify
threshold directions

PICO_STATUS ps6000aSetPulseWidthQualifierDirections

(

int16_t handle,

PICO_DIRECTION * directions,

int16_t nDirections

)

This function is used to set directions for the pulse width qualifier, which is an optional input to the
triggering condition.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

* directions, an array of structures specifying the pulse width qualifier directions. See

PICO_DIRECTION.

nDirections, the number of structures in the directions array.

Returns

PICO_OK

API functions

90Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.54 ps6000aSetPulseWidthQualifierProperties - specify
threshold logic

PICO_STATUS ps6000aSetPulseWidthQualifierProperties

(

int16_t handle,

uint32_t lower,

uint32_t upper,

PICO_PULSE_WIDTH_TYPE type

)

This function is used to set parameters for the pulse width qualifier, which is an optional input to the
triggering condition.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

lower, the lower pulse width threshold.

upper, the upper pulse width threshold.

type, the pulse width qualifier type:

PICO_PW_TYPE_NONE = 0, no pulse width qualifier required

PICO_PW_TYPE_LESS_THAN = 1, pulse width must be less than threshold

PICO_PW_TYPE_GREATER_THAN = 2, pulse width must be greater than threshold

PICO_PW_TYPE_IN_RANGE = 3, pulse width must be between two thresholds

PICO_PW_TYPE_OUT_OF_RANGE = 4, pulse width must not be between two thresholds

Returns

PICO_OK

API functions

91Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.55 ps6000aSetSimpleTrigger - set up triggering
PICO_STATUS ps6000aSetSimpleTrigger

(

int16_t handle,

int16_t enable,

PICO_CHANNEL source,

int16_t threshold,

PICO_THRESHOLD_DIRECTION direction,

uint64_t delay,

uint32_t autoTriggerMicroSeconds

)

This function simplifies arming the trigger. It supports only the LEVEL trigger types and does not allow
more than one channel to have a trigger applied to it. Any previous pulse width qualifier is canceled.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

enable:disable (0) or enable (1) the trigger.

source: the channel on which to trigger. This can be any of the input channels listed under

ps6000aSetChannelOn().

threshold: the ADC count at which the trigger will fire.

direction: the direction in which the signal must move to cause a trigger. The following directions are

supported: ABOVE, BELOW, RISING, FALLING and RISING_OR_FALLING.

delay: the time between the trigger occurring and the first sample being taken.

autoTriggerMicroSeconds: the number of microseconds the device will wait if no trigger occurs.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_DRIVER_FUNCTION

API functions

92Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.56 ps6000aSetTriggerChannelConditions - set
triggering logic

PICO_STATUS ps6000aSetTriggerChannelConditions

(

int16_t handle,

PICO_CONDITION * conditions,

int16_t nConditions,

PICO_ACTION action

)

This function sets up trigger conditions on the scope's inputs. The trigger is defined by one or more

PICO_CONDITION structures that are then ORed together. Each structure is itself the AND of the states
of one or more of the inputs. This AND-OR logic allows you to create any possible Boolean function of
the scope's inputs.

If complex triggering is not required, use ps6000aSetSimpleTrigger().

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

conditions, an array of PICO_CONDITION structures specifying the conditions that should be applied
to each channel. In the simplest case, the array consists of a single element. When there is more than
one element, the overall trigger condition is the logical OR of all the elements.

nConditions, the number of elements in the conditions array. If nConditions is zero then
triggering is switched off.

action, specifies how to apply the PICO_CONDITION array to any existing trigger conditions:

PICO_CLEAR_ALL = 0x00000001

PICO_ADD = 0x00000002

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_CONDITIONS

PICO_MEMORY_FAIL

PICO_DRIVER_FUNCTION

API functions

93Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.56.1 PICO_CONDITION structure

A structure of this type is passed to ps6000aSetTriggerChannelConditions() in the conditions
argument to specify the trigger conditions, and is defined as follows:

typedef struct tPicoCondition

{

PICO_CHANNEL source;

PICO_TRIGGER_STATE condition;

} PICO_CONDITION

Each structure is the logical AND of the states of the scope's inputs. The

ps6000aSetTriggerChannelConditions() function can OR together a number of these structures
to produce the final trigger condition, which can be any possible Boolean function of the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

source, the signal that forms an input to the trigger condition:

PICO_CHANNEL_A, PICO_CHANNEL_B, PICO_CHANNEL_C, PICO_CHANNEL_D,

PICO_CHANNEL_E, PICO_CHANNEL_F, PICO_CHANNEL_G, PICO_CHANNEL_H, one of the
analog input channels

PICO_PORT0, MSO port Digital 1 (channels 1D0–1D7)

PICO_PORT1, MSO port Digital 2 (channels 2D0–2D7)

PICO_TRIGGER_AUX, the AUX input

PICO_PULSE_WIDTH_SOURCE, the output of the pulse width qualifier

condition, the type of condition that should be applied to each channel. Use these constants:

PICO_CONDITION_DONT_CARE

PICO_CONDITION_TRUE

PICO_CONDITION_FALSE

The channels that are set to PICO_CONDITION_TRUE or PICO_CONDITION_FALSE must all meet their

conditions simultaneously to produce a trigger. Channels set to PICO_CONDITION_DONT_CARE are
ignored.

API functions

94Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.57 ps6000aSetTriggerChannelDirections - set trigger
directions

PICO_STATUS ps6000aSetTriggerChannelDirections

(

int16_t handle,

PICO_DIRECTION * directions,

int16_t nDirections

)

This function sets the direction of the trigger for one or more channels.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

* directions, an array of structures specifying the trigger direction for each channel. See

PICO_DIRECTION.

nDirections, the number of structures in the directions array.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_INVALID_PARAMETER

API functions

95Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.57.1 PICO_DIRECTION structure

A structure of this type is passed to ps6000aSetTriggerChannelDirections() in the directions
argument to specify the trigger directions, and is defined as follows:

typedef struct tPicoDirection

{

PICO_CHANNEL channel;

PICO_THRESHOLD_DIRECTION direction;

PICO_THRESHOLD_MODE thresholdMode;

} PICO_DIRECTION

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

channel, the channel whose direction you want to set.

direction, the direction required for the channel.

thresholdMode, the type of threshold to use.

PICO_THRESHOLD_DIRECTION values:

Constant Trigger type Threshold Polarity

PICO_ABOVE = 0 Gated Upper Above

PICO_ABOVE_LOWER = 5 Gated Lower Above

PICO_BELOW = 1 Gated Upper Below

PICO_BELOW_LOWER = 6 Gated Lower Below

PICO_RISING = 2 Threshold Upper Rising

PICO_RISING_LOWER = 7 Threshold Lower Rising

PICO_FALLING = 3 Threshold Upper Falling

PICO_FALLING_LOWER = 8 Threshold Lower Falling

PICO_RISING_OR_FALLING = 4 Threshold Lower (for rising edge)
Upper (for falling edge)

PICO_INSIDE = 0 Window-qualified Both Inside

PICO_OUTSIDE = 1 Window-qualified Both Outside

PICO_ENTER = 2 Window Both Entering

PICO_EXIT = 3 Window Both Leaving

PICO_ENTER_OR_EXIT = 4 Window Both Either entering or leaving

PICO_POSITIVE_RUNT = 9 Window-qualified Both Entering from below

PICO_NEGATIVE_RUNT Window-qualified Both Entering from above

PICO_LOGIC_LOWER = 1000 Logic Lower

PICO_LOGIC_UPPER = 1001 Logic Upper

PICO_NONE = 2 None None None

PICO_THRESHOLD_MODE values:

Constant Mode

PICO_LEVEL = 0 Active when input is above or below a single threshold

PICO_WINDOW = 1 Active when input is between two thresholds

API functions

96Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.58 ps6000aSetTriggerChannelProperties - set up
triggering

PICO_STATUS ps6000aSetTriggerChannelProperties

(

int16_t handle,

PICO_TRIGGER_CHANNEL_PROPERTIES * channelProperties

int16_t nChannelProperties

int16_t auxOutputEnable,

uint32_t autoTriggerMicroSeconds

)

This function is used to enable or disable triggering and set its parameters.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

channelProperties, a pointer to an array of TRIGGER_CHANNEL_PROPERTIES structures describing
the requested properties. The array can contain a single element describing the properties of one channel,

or a number of elements describing several channels. If NULL is passed, triggering is switched off.

nChannelProperties, the size of the channelProperties array. If zero, triggering is switched off.

auxOutputEnable: not used

autoTriggerMicroSeconds, the time in microseconds for which the scope device will wait before
collecting data if no trigger event occurs. If this is set to zero, the scope device will wait indefinitely for a
trigger.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_TRIGGER_ERROR

PICO_MEMORY_FAIL

PICO_INVALID_TRIGGER_PROPERTY

PICO_DRIVER_FUNCTION

PICO_INVALID_PARAMETER

API functions

97Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.58.1 TRIGGER_CHANNEL_PROPERTIES structure

A structure of this type is passed to ps6000aSetTriggerChannelProperties() in the

channelProperties argument to specify the trigger mechanism, and is defined as follows:

typedef struct tTriggerChannelProperties

{

int16_t thresholdUpper;

uint16_t thresholdUpperHysteresis;

int16_t thresholdLower;

uint16_t thresholdLowerHysteresis;

PICO_CHANNEL channel;

} PICO_TRIGGER_CHANNEL_PROPERTIES

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

There are two trigger thresholds called Upper and Lower. Each trigger type uses one or other of these

thresholds, or both, as specified in ps6000aSetTriggerChannelDirections(). Each trigger
threshold has its own hysteresis setting.

Elements

thresholdUpper, the upper threshold at which the trigger fires. It is scaled in 16-bit ADC counts at the
currently selected range for that channel. Use when "Upper" or "Both" is specified in

ps6000aSetTriggerChannelDirections().

hysteresisUpper, the distance by which the signal must fall below the upper threshold (for rising edge
triggers) or rise above the upper threshold (for falling edge triggers) in order to rearm the trigger for the
next event. It is scaled in 16-bit counts.

thresholdLower, lower threshold (see thresholdUpper). Use when "Lower" or "Both" is specified in

ps6000aSetTriggerChannelDirections().

hysteresisLower, lower threshold hysteresis (see hysteresisUpper).

channel, the channel to which the properties apply. This can be one of the input channels listed under

ps6000aSetChannelOn().

API functions

98Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.59 ps6000aSetTriggerDelay - set post-trigger delay
PICO_STATUS ps6000aSetTriggerDelay

(

int16_t handle,

uint64_t delay

)

This function sets the post-trigger delay, which causes capture to start a defined time after the trigger
event.

Applicability

Block and rapid block modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

delay, the time between the trigger occurring and the first sample. For example, if delay=100, the
scope would wait 100 sample periods before sampling. At a timebase of 5 GS/s, or 200 ps per sample

(timebase=0), the total delay would then be 100 x 200 ps = 20 ns.

Range: 0 to MAX_DELAY_COUNT.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_DRIVER_FUNCTION

API functions

99Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.60 ps6000aSetTriggerDigitalPortProperties - set port
directions

PICO_STATUS ps6000aSetTriggerDigitalPortProperties

(

int16_t handle,

PICO_CHANNEL port,

PICO_DIGITAL_CHANNEL_DIRECTIONS * directions,

int16_t nDirections

)

This function is used to enable or disable triggering and set its parameters.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

port, identifies the digital port on the oscilloscope:

PICO_PORT0: Digital 1 port (channels 1D0–1D7)

PICO_PORT1: Digital 2 port (channels 2D0–2D7)

* directions, an array of structures specifying the channel directions.

nDirections, the number of items in the directions array.

Returns

PICO_OK

API functions

100Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.60.1 PICO_DIGITAL_CHANNEL_DIRECTIONS structure

A list of structures of this type is passed to ps6000aSetTriggerDigitalPortProperties() in the

directions argument to specify the digital channel trigger directions, and is defined as follows:

typedef struct tDigitalChannelDirections

{

PICO_PORT_DIGITAL_CHANNEL channel;

PICO_DIGITAL_DIRECTION direction;

} PICO_DIGITAL_CHANNEL_DIRECTIONS

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

channel, identifies the digital channel from PICO_PORT_DIGITAL_CHANNEL0 up to

PICO_PORT_DIGITAL_CHANNEL7.

direction, the trigger direction from the following list:

PICO_DIGITAL_DONT_CARE: channel has no effect on trigger

PICO_DIGITAL_DIRECTION_LOW: channel must be low to trigger

PICO_DIGITAL_DIRECTION_HIGH: channel must be high to trigger

PICO_DIGITAL_DIRECTION_RISING: channel must transition from low to high to
trigger

PICO_DIGITAL_DIRECTION_FALLING: channel must transition from high to low to
trigger

PICO_DIGITAL_DIRECTION_RISING_OR_FALLING: any transition on channel causes a trigger

API functions

101Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.61 ps6000aSigGenApply - set output parameters
PICO_STATUS ps6000aSigGenApply

(

int16_t handle,

int16_t sigGenEnabled,

int16_t sweepEnabled,

int16_t triggerEnabled,

int16_t automaticClockOptimisationEnabled,

int16_t overrideAutomaticClockAndPrescale,

double * frequency,

double * stopFrequency,

double * frequencyIncrement,

double * dwellTime

)

This function sets the signal generator running using parameters previously configured by the other
ps6000aSigGen... functions.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

sigGenEnabled, switches the signal generator on (1) or off (0).

sweepEnabled, switches sweep mode on (1) or off (0).

triggerEnabled, switches triggering on (1) or off (0).

automaticClockOptimisationEnabled, switches clock optimization on (1) or off (0).

In automatic clock optimization mode, the DAC clock and prescaler are automatically adjusted by the
driver to generate the user-requested output frequency as precisely as possible. This is
recommended for most applications. When automatic clock optimization is turned off, the DAC
clock remains fixed at its maximum frequency (or a user-specified frequency if using
overrideAutomaticClockAndPrescale).

overrideAutomaticClockAndPrescale, switches automatic clock and prescale override on or off:

0 = override off: ignore parameters set by ps6000aSigGenClockManual() and allow the driver to
choose the DAC clock and prescaler. This mode is recommended for most applications.

1 = override on: use parameters set by ps6000aSigGenClockManual() to manually specify a user-
defined DAC clock frequency and prescaler.

* frequency, on exit, the actual achieved signal generator frequency (or start frequency in sweep
mode).

* stopFrequency, on exit, the actual achieved signal generator frequency at the end of the sweep.

* frequencyIncrement, on exit, the actual achieved frequency step size in sweep mode.

* dwellTime, on exit, the actual achieved time in seconds between frequency steps in sweep mode.

API functions

102Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NOT_RESPONDING

API functions

103Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.62 ps6000aSigGenClockManual - control signal
generator clock

PICO_STATUS ps6000aSigGenClockManual

(

int16_t handle,

double dacClockFrequency,

uint64_t prescaleRatio

)

This function allows direct control of the signal generator clock.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

dacClockFrequency, the clock frequency of the DAC (digital-to-analog converter) in hertz.
Range: 100e6 to 200e6

prescaleRatio, the ratio to program into the prescaler. The prescaler allows the precise generation of
low frequencies:

Sample frequency = dacClockFrequency / prescaleRatio

Range: 1 to 16384

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NOT_RESPONDING

PICO_SIGGEN_FREQUENCY_OUT_OF_RANGE

PICO_SIGGEN_PRESCALE_OUT_OF_RANGE

API functions

104Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.63 ps6000aSigGenFilter - switch output filter on or off
PICO_STATUS ps6000aSigGenFilter

(

int16_t handle,

PICO_SIGGEN_FILTER_STATE filterState

)

This function controls the filter on the output of the signal generator. The filter can be used to remove
unwanted high-frequency synthesizer noise.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

filterState, can be set on or off, or put in automatic mode.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NOT_RESPONDING

API functions

105Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.64 ps6000aSigGenFrequency - set output frequency
PICO_STATUS ps6000aSigGenFrequency

(

int16_t handle,

double frequencyHz

)

This function sets the frequency of the signal generator.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

frequencyHz, the desired frequency in hertz.

Returns

PICO_OK or a code from PicoStatus.h

API functions

106Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.65 ps6000aSigGenFrequencyLimits - get limits in
sweep mode

PICO_STATUS ps6000aSigGenFrequencyLimits

(

int16_t handle,

PICO_WAVE_TYPE waveType,

uint64_t * numSamples,

double * startFrequency,

int16_t sweepEnabled,

double * manualDacClockFrequency,

uint64_t * manualPrescaleRatio,

double * maxStopFrequencyOut,

double * minFrequencyStepOut,

double * maxFrequencyStepOut,

double * minDwellTimeOut,

double * maxDwellTimeOut

)

This function queries the maximum and minimum values for the signal generator in frequency sweep
mode.

Applicability

All models

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

waveType, the waveform that you intend to use.

* numSamples, for arbitrary waveforms only, the number of samples in the AWG buffer.

* startFrequency, for fixed-frequency mode, the desired frequency; for frequency sweep mode, the
desired start frequency.

sweepEnabled, whether sweep mode is required (1) or not required (0).

* manualDacClockFrequency and * manualPrescaleRatio, if using manual signal generator
clock parameters, provide the clock frequency and prescaler you intend to set using

ps6000aSigGenClockManual(). If not using manual clock parameters, set both to null.

* maxStopFrequencyOut, on exit, the highest possible stop frequency for frequency sweep mode.

* minFrequencyStepOut, on exit, the smallest possible frequency step for frequency sweep mode.

* maxFrequencyStepOut, on exit, the largest possible frequency step for frequency sweep mode.

* minDwellTimeOut, on exit, the smallest possible dwell time for frequency sweep mode.

* maxDwellTimeOut, on exit, the largest possible dwell time for frequency sweep mode.

Returns

PICO_OK

API functions

107Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.66 ps6000aSigGenFrequencySweep - set signal
generator to frequency sweep mode

PICO_STATUS ps6000aSigGenFrequencySweep

(

int16_t handle,

double stopFrequencyHz,

double frequencyIncrement,

double dwellTimeSeconds,

PICO_SWEEP_TYPE sweepType

)

This function sets frequency sweep parameters for the signal generator. It assumes that you have

previously called ps6000aSigGenFrequency() to set the start frequency.

Applicability

Signal generator.

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

stopFrequencyHz, the frequency in hertz at which the sweep should stop.

frequencyIncrement, the amount by which the frequency should change, in hertz, at each step of the
sweep.

dwellTimeSeconds, the time for which the generator should wait between frequency steps.

sweepType, the direction of the sweep, from the following list:

PICO_UP = 0, to sweep from startFrequency up to stopFrequency and then repeat.

PICO_DOWN = 1, to sweep from startFrequency down to stopFrequency and then repeat.

PICO_UPDOWN = 2, to sweep from startFrequency up to stopFrequency , then down to

startFrequency, and then repeat.

PICO_DOWNUP = 3, to sweep from startFrequency down to stopFrequency , then up to

startFrequency, and then repeat.

Returns

PICO_OK or a code from PicoStatus.h

API functions

108Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.67 ps6000aSigGenLimits - get signal generator
parameters

PICO_STATUS ps6000aSigGenLimits

(

int16_t handle,

PICO_SIGGEN_PARAMETER parameter,

double * minimumPermissibleValue,

double * maximumPermissibleValue,

double * step

)

This function queries the maximum and minimum allowable values for a given signal generator
parameter.

Applicability

All models

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

parameter, one of the following enumerated values:

PICO_SIGGEN_PARAM_OUTPUT_VOLTS = 0, the signal generator output voltage

PICO_SIGGEN_PARAM_SAMPLE = 1, the value of a sample in the arbitrary waveform
buffer

PICO_SIGGEN_PARAM_BUFFER_LENGTH = 2, the length of the arbitrary waveform buffer ,in
samples

* minimumPermissibleValue, on exit, the minimum value

* maximumPermissibleValue, on exit, the maximum value

* step, on exit, the smallest increment in the parameter that will cause a change in the signal generator
output.

Returns

PICO_OK

API functions

109Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.68 ps6000aSigGenPause - stop the signal generator
PICO_STATUS ps6000aSigGenPause

(

int16_t handle

)

This function stops the signal generator. The output will remain at a constant voltage until the generator

is restarted with ps6000aSigGenRestart().

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

Returns

PICO_OK or a code from PicoStatus.h

API functions

110Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.69 ps6000aSigGenPhase - set signal generator using
delta-phase

PICO_STATUS ps6000aSigGenPhase

(

int16_t handle,

uint64_t deltaPhase

)

This function sets the signal generator output frequency (or the starting frequency, in the case of a
frequency sweep) using a delta-phase value instead of a frequency. See Calculating deltaPhase for more
information on how to calculate this value.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

deltaPhase, the desired delta phase.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_SIGGEN_FREQUENCY_OUT_OF_RANGE

3.69.1 Calculating deltaPhase

The signal generator uses direct digital synthesis (DDS) with a 32-bit phase accumulator that indicates
the present location in the waveform. The top bits of the phase accumulator are used as an index into a
buffer containing the arbitrary waveform. The remaining bits act as the fractional part of the index,
enabling high-resolution control of output frequency and allowing the generation of lower frequencies.

The signal generator steps through the waveform by adding a deltaPhase value between 1 and
phaseAccumulatorSize-1 to the phase accumulator every dacPeriod (= 1/dacFrequency). The generator
produces a waveform at a frequency that can be calculated as follows:

where:

outputFrequency = repetition rate of the complete arbitrary waveform
dacFrequency = update rate of AWG DAC (see table below)
deltaPhase = delta-phase value supplied to this function
phaseAccumulatorSize = width in bits of phase accumulator (see table below)
bufferAddressWidth = width in bits of AWG buffer address (see table below)
arbitraryWaveformSize = length in samples of the user-defined waveform

API functions

111Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

Parameter Value

dacFrequency Default: 200 MHz. Can be changed by ps6000aSigGenClockManual()

dacPeriod 1/dacFrequency. Default: 5 ns.

phaseAccumulatorSize 32

bufferAddressWidth 16

API functions

112Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.70 ps6000aSigGenPhaseSweep - set signal generator
to sweep using delta-phase

PICO_STATUS ps6000aSigGenPhaseSweep

(

int16_t handle,

uint64_t stopDeltaPhase,

uint64_t deltaPhaseIncrement,

uint64_t dwellCount,

PICO_SWEEP_TYPE sweepType

)

This function sets frequency sweep parameters for the signal generator using delta-phase values instead

of frequency values. It assumes that you have previously called ps6000aSigGenPhase() to set the
starting delta-phase.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

stopDeltaPhase, the delta-phase at which the sweep should stop. You must set the starting delta-

phase, deltaPhase, beforehand by calling ps6000aSigGenPhase().

deltaPhaseIncrement, the amount by which the delta-phase should change at each step of the
sweep.

dwellCount, the number of samples for which the generator should wait between sweep steps.

sweepType, the direction of the sweep, from the following list:

PICO_UP = 0, to sweep from deltaPhase up to stopDeltaPhase and then repeat.

PICO_DOWN = 1, to sweep from deltaPhase down to stopDeltaPhase and then repeat.

PICO_UPDOWN = 2, to sweep from deltaPhase up to stopDeltaPhase , then down to

deltaPhase, and then repeat.

PICO_DOWNUP = 3, to sweep from deltaPhase down to stopDeltaPhase , then up to

deltaPhase, and then repeat.

Returns

PICO_OK or a code from PicoStatus.h

API functions

113Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.71 ps6000aSigGenRange - set signal generator output
voltages

PICO_STATUS ps6000aSigGenRange

(

int16_t handle,

double peakToPeakVolts,

double offsetVolts

)

This function sets the amplitude (peak to peak measurement) and offset (voltage corresponding to data
value of zero) of the signal generator.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

peakToPeakVolts, the signal generator's peak-to-peak output range in volts.

offsetVolts, the signal generator's output offset in volts.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NOT_RESPONDING

PICO_SIGGEN_PK_TO_PK

PICO_SIGGEN_OFFSET_VOLTAGE

PICO_SIGGEN_OUTPUT_OVER_VOLTAGE (if peakToPeak and offset are within their individual ranges
but the combination is out of range)

API functions

114Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.72 ps6000aSigGenRestart - continue after pause
PICO_STATUS ps6000aSigGenRestart

(

int16_t handle

)

This function restarts the signal generator after it was paused with ps6000aSigGenPause().

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

Returns

PICO_OK or a code from PicoStatus.h

API functions

115Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.73 ps6000aSigGenSoftwareTriggerControl - set
software triggering

PICO_STATUS ps6000aSigGenSoftwareTriggerControl

(

int16_t handle,

PICO_SIGGEN_TRIG_TYPE triggerState

)

This function sets the trigger type (edge or level) and polarity for software triggering of the signal
generator.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

triggerState,

PICO_SIGGEN_RISING = 0, rising edge trigger

PICO_SIGGEN_FALLING = 1, falling edge trigger

PICO_SIGGEN_GATE_HIGH = 2, trigger when high

PICO_SIGGEN_GATE_LOW = 3, trigger when low

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_SIGGEN_TRIGGER_SOURCE

PICO_DRIVER_FUNCTION

PICO_NOT_RESPONDING

API functions

116Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.74 ps6000aSigGenTrigger - choose the trigger event
PICO_STATUS ps6000aSigGenTrigger

(

int16_t handle,

PICO_SIGGEN_TRIG_TYPE triggerType,

PICO_SIGGEN_TRIG_SOURCE triggerSource,

uint64_t cycles,

uint64_t autoTriggerPicoSeconds

)

This function sets up triggering for the signal generator. This feature causes the signal generator to start
and stop under the control of a signal or event.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

triggerType, whether an edge trigger (starts on a specified edge) or a gated trigger (runs while trigger
is in the specified state).

triggerSource, the signal used as a trigger.

cycles, the number of waveform cycles to generate after the trigger edge or after entering the active
trigger state. Set to zero to make the signal generator run indefinitely.

autoTriggerPicoSeconds, the length of time in picoseconds (ps) to wait for a trigger before starting
the signal generator. Set to zero to make the signal generator wait indefinitely for a trigger.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_SIGGEN_TRIGGER_SOURCE

PICO_DRIVER_FUNCTION

PICO_NOT_RESPONDING

API functions

117Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.75 ps6000aSigGenWaveform - choose signal
generator waveform

PICO_STATUS ps6000aSigGenWaveform

(

int16_t handle,

PICO_WAVE_TYPE waveType,

int16_t * buffer,

uint64_t bufferLength

)

This function specifies which waveform the signal generator will produce.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

waveType, specifies the type of waveform to generate.

* buffer, an array of sample values to be used by the arbitrary waveform generator (AWG). Used only

when waveType = PICO_ARBITRARY.

bufferLength, the number of samples in the buffer array. Used only when waveType =

PICO_ARBITRARY.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_SIGGEN_TRIGGER_SOURCE

PICO_DRIVER_FUNCTION

PICO_NOT_RESPONDING

API functions

118Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.76 ps6000aSigGenWaveformDutyCycle - set duty
cycle

PICO_STATUS ps6000aSigGenWaveformDutyCycle

(

int16_t handle,

double dutyCyclePercent

)

This function sets the duty cycle of the signal generator waveform in square wave and triangle wave
modes.

The duty cycle of a pulse waveform is defined as the time spent in the high state divided by the period.
Set to 50% to obtain a square wave.

Applicability

Square wave and triangle wave outputs only.

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

dutyCyclePercent, the percentage duty cycle of the waveform from 0.0 to 100.0.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_SIGGEN_TRIGGER_SOURCE

PICO_DRIVER_FUNCTION

PICO_NOT_RESPONDING

API functions

119Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.77 ps6000aStartFirmwareUpdate - update the device
firmware

PICO_STATUS ps6000aStartFirmwareUpdate

(

int16_t handle,

PicoUpdateFirmwareProgress progress

)

This function updates the device's firmware (the embedded instructions stored in nonvolatile memory in
the device). Updates may fix bugs or add new features.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

progress, a user-supplied function that receives callbacks when the status of the update changes. See

PicoUpdateFirmwareProgress(). May be NULL if not required.

Returns

PICO_FIRMWARE_UP_TO_DATE - the firmware update was performed successfully or firmware was
already up to date

PICO_INVALID_HANDLE - invalid handle parameter

PICO_DRIVER_FUNCTION - another driver call is in progress

API functions

120Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.78 ps6000aStop - stop sampling
PICO_STATUS ps6000aStop

(

int16_t handle

)

This function stops the scope device from sampling data.

When running the device in streaming mode, always call this function after the end of a capture to ensure
that the scope is ready for the next capture.

When running the device in block mode or rapid block mode, you can call this function to interrupt data
capture.

If this function is called before a trigger event occurs, the oscilloscope may not contain valid data.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_DRIVER_FUNCTION

API functions

121Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.79 ps6000aStopUsingGetValuesOverlapped -
complements ps6000aGetValuesOverlapped

PICO_STATUS ps6000aStopUsingGetValuesOverlapped

(

int16_t handle

)

This function stops deferred data-collection that was started by calling

ps6000aGetValuesOverlapped().

Applicability

Rapid block mode

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_FIRMWARE_UPDATE_REQUIRED_TO_USE_DEVICE_WITH_THIS_DRIVER

API functions

122Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

3.80 ps6000aTriggerWithinPreTriggerSamples - switch
feature on or off

PICO_STATUS ps6000aTriggerWithinPreTriggerSamples

(

int16_t handle,

PICO_TRIGGER_WITHIN_PRE_TRIGGER state

)

This function controls a special triggering feature.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

state, 0 to enable, 1 to disable.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_DRIVER_FUNCTION

Callbacks

123Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

4 Callbacks

4.1 ps6000aBlockReady - indicate when block-mode
data ready

typedef void (CALLBACK *ps6000aBlockReady)

(

int16_t handle,

PICO_STATUS status,

PICO_POINTER pParameter

)

This callback function is part of your application. You register it with the PicoScope 6000E Series driver

using ps6000aRunBlock() and the driver calls it back when block-mode data is ready. You can then

download the data using the ps6000aGetValues() function.

Applicability

Block mode only

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

status, indicates whether an error occurred during collection of the data.

pParameter, a pointer passed from ps6000aRunBlock(). Your callback function can write to this
location to send any data, such as a status flag, back to your application.

Returns

nothing

Callbacks

124Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

4.2 ps6000aDataReady - indicate when post-collection
data ready

typedef void *ps6000aDataReady

(

int16_t handle,

PICO_STATUS status,

uint64_t noOfSamples,

int16_t overflow,

PICO_POINTER pParameter

)

This is a callback function that you write to collect data from the driver. You supply a pointer to the

function when you call ps6000aGetValuesAsync() and the driver calls your function back when the
data is ready.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

status, a PICO_STATUS code returned by the driver.

noOfSamples, the number of samples collected.

overflow, a set of flags that indicates whether an overvoltage has occurred and on which channels. It
is a bit field with bit 0 representing Channel A.

pParameter, a void pointer passed from ps6000aGetValuesAsync(). The callback function can
write to this location to send any data, such as a status flag, back to the application. The data type is
defined by the application programmer.

Returns

nothing

Callbacks

125Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

4.3 PicoUpdateFirmwareProgress - get status of
firmware update

typedef void (CALLBACK * PicoUpdateFirmwareProgress)

(

int16_t handle,

uint16_t progress

)

You should write this callback function and register it with the driver using

ps6000aStartFirmwareUpdate(). The driver calls it back when the firmware update status changes.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

progress, a progress indicator.

Returns

nothing

Callbacks

126Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

4.4 PicoProbeInteractions() – callback for PicoConnect
probe events

typedef void (PREF4 *PicoProbeInteractions)

(

int16_t handle,

PICO_STATUS status,

PICO_USER_PROBE_INTERACTIONS * probes,

uint32_t nProbes

)

This callback function handles notifications of probe changes on scope devices that support Pico
intelligent probes.

If you wish to use this feature, you must create this function as part of your application. You register it

with the ps6000a driver using ps6000aSetProbeInteractionCallback() and the driver calls it
back whenever a probe generates an error. See Handling PicoConnect probe interactions for more
information on this process.

Applicability

All modes

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

status, indicates success or failure. If multiple errors have occurred, the most general error is returned

here. Probe-specific errors are returned in the status field of the relevant elements of the probes array.

probes, on entry, pointer to an array of PICO_USER_PROBE_INTERACTIONS structures.

nProbes, the number of elements in the probes array.

Returns

nothing

Callbacks

127Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

4.4.1 PICO_USER_PROBE_INTERACTIONS structure

A structure of this type is passed to the PicoProbeInteractions() callback function. It is defined as
follows:

typedef struct tPicoUserProbeInteractions

{

uint16_t connected_;

PICO_CHANNEL channel_;

uint16_t enabled_;

PicoConnectProbe probeName_;

uint8_t requiresPower_;

uint8_t isPowered_;

PICO_STATUS status_;

PICO_CONNECT_PROBE_RANGE probeOff_;

PICO_CONNECT_PROBE_RANGE rangeFirst_;

PICO_CONNECT_PROBE_RANGE rangeLast_;

PICO_CONNECT_PROBE_RANGE rangeCurrent_;

PICO_COUPLING couplingFirst_;

PICO_COUPLING couplingLast_;

PICO_COUPLING couplingCurrent_;

PICO_BANDWIDTH_LIMITER_FLAGS filterFlags_;

PICO_BANDWIDTH_LIMITER_FLAGS filterCurrent_;

PICO_BANDWIDTH_LIMITER defaultFilter_;

} PICO_USER_PROBE_INTERACTIONS;

Elements

connected_, indicates whether the probe is connected or not. The driver saves information on
disconnected probes in case they are reconnected, in which case it reapplies the previous settings.

channel_, the scope channel to which the probe is connected.

enabled_, indicates whether the probe is switched on or off.

probeName_, identifies the type of probe from the PICO_CONNECT_PROBE enumerated list defined in

PicoConnectProbes.h.

For intelligent probes (those with circuitry enabling them to identify themselves to the driver and to
apply signal scaling under the control of the driver) the following special values are defined:

PICO_CONNECT_PROBE_NONE = 0, if no probe is connected to the channel

PICO_CONNECT_PROBE_INTELLIGENT = -3, if a correctly functioning intelligent probe is
connected to the channel

PICO_CONNECT_PROBE_UNKNOWN_PROBE = -2, if an intelligent probe is connected but cannot be
identified

Callbacks

128Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

PICO_CONNECT_PROBE_FAULT_PROBE = -1, if an intelligent probe is connected but has suffered
an internal error

requiresPower_, indicates whether the probe draws power from the scope.

isPowered_, indicates whether the probe is receiving power.

status_, a status code indicating success or failure. See PicoStatus.h for definitions.

probeOff_, the range in use when the probe was last switched off.

rangeFirst_, the first applicable range in the PICO_CONNECT_PROBE_RANGE enumerated list.

rangeLast_, the last applicable range in the PICO_CONNECT_PROBE_RANGE enumerated list.

rangeCurrent_, the range currently in use.

couplingFirst_, the first applicable coupling type in the PS4000A_COUPLING list.

couplingLast_, the last applicable coupling type in the PS4000A_COUPLING list.

couplingCurrent_, the coupling type currently in use.

filterFlags_, a bit field indicating which bandwidth limiter options are available.

filterCurrent_, the bandwidth limiter option currently selected.

defaultFilter_, the default bandwidth limiter option for this type of probe.

Callbacks

129Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

4.5 PicoExternalReferenceInteractions () - callback for
external reference clock events

typedef void (CALLBACK * PicoExternalReferenceInterations)

(

int16_t handle,

PICO_STATUS status,

PICO_CLOCK_REFERENCE reference

)

This callback function handles notifications when the status of the external 10 MHz reference clock
changes. The PicoScope 6000 (A API) device automatically selects the external reference clock when a
signal is applied to the external reference input, and uses this callback function to inform your application
of the change (and whether the external reference signal is valid).

Register your callback function with the driver using

ps6000aSetExternalReferenceInterationCallback ()

Applicability

All models

Arguments

handle, the device identifier returned by ps6000aOpenUnit().

status, indicates success or failure. Status codes can be:

PICO_OK: the device is synchronized to the clock source indicated by the reference
parameter

PICO_NOT_LOCKED_TO_REFERENCE_FREQUENCY: the device is unable to synchronize to the
clock source, for example because its frequency is out of range. The timebase accuracy is
out of specification in this situation.

Another status from PicoStatus.h may be returned, for example if the device has been
disconnected.

reference, indicates whether the internal or external clock source is in use. The available values are one

of the PICO_CLOCK_REFERENCE enumerated type.

Returns

Nothing

Callbacks

130Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

4.5.1 PICO_CLOCK_REFERENCE enumerated type

An enum of this type is passed to the PicoExternalReferenceInteractions() callback function. It is defined as
follows:

typedef enum enPicoClockReference

{

PICO_INTERNAL_REF,

PICO_EXTERNAL_REF

} PICO_CLOCK_REFERENCE;

Applicability

Calls to PicoExternalReferenceInteractions () - callback for external reference clock events

Values

PICO_INTERNAL_REF, indicates that the internal clock is being used by the device.

PICO_EXTERNAL_REF, indicates that the external clock is being used by the device.

Reference

131Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

5 Reference

5.1 Numeric data types
Here is a list of the numeric data types used in the ps6000a API:

Type Bits Signed or unsigned?

int16_t 16 signed

uint16_t 16 unsigned

enum 32 enumerated

int32_t 32 signed

uint32_t 32 unsigned

float 32 signed (IEEE 754)

double 64 signed (IEEE 754)

int64_t 64 signed

uint64_t 64 unsigned

5.2 Enumerated types and constants
The enumerated types and constants used in the PicoScope 6000E Series API driver are defined in the file

ps6000aApi.h, which is included in the SDK. We recommend that you refer to these constants by name
unless your programming language allows only numerical values.

Reference

132Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.ps6000apg-5

PicoScope 6000 Series (A API) Programmer's Guide

5.3 Driver status codes
Every function in the ps6000a driver returns a driver status code from the list of PICO_STATUS values in

the file PicoStatus.h, which is included in the Pico Technology SDK. Not all codes in PicoStatus.h
apply to the PicoScope 6000E Series.

5.4 Glossary
Callback. A mechanism that the PicoScope 6000 driver uses to communicate asynchronously with your
application. At design time, you add a function (a callback function) to your application to deal with
captured data. At run time, when you request captured data from the driver, you also pass it a pointer to
your function. The driver then returns control to your application, allowing it to perform other tasks until
the data is ready. When this happens, the driver calls your function in a new thread to signal that the data
is ready. It is then up to your function to communicate this fact to the rest of your application.

Driver. A program that controls a piece of hardware. The driver for the PicoScope 6000E Series

oscilloscopes is supplied in the form of 32-bit and 64-bit Windows DLLs called ps6000a.dll. These
are used by your application to control the oscilloscope.

PicoScope 6000E Series. A range of PC Oscilloscopes from Pico Technology, with a maximum sampling
rate of up to 10 GS/s. Sampling resolutions range from 8 to 12 bits and capture memory sizes from 1 to
4 GS.

PRBS (pseudo-random binary sequence). A fixed, repeating sequence of binary digits that appears
random when analyzed over a time shorter than the repeat period. The waveform swings between two
values: logic high (binary 1) and logic low (binary 0).

USB 2.0. The second generation of USB (universal serial bus) interface. The port supports a data transfer
rate of up to 480 megabits per second.

USB 3.0. A USB 3.0 port uses signaling speeds of up to 5 gigabits per second and is backwards-
compatible with USB 2.0.

UK headquarters: US regional office:

Pico Technology
320 N Glenwood Blvd
Tyler
TX 75702
USA

Pico Technology
James House
Colmworth Business Park
St. Neots
Cambridgeshire
PE19 8YP
United Kingdom

Tel: +44 (0) 1480 396 395

sales@picotech.com
support@picotech.com

Tel: +1 800 591 2796

sales@picotech.com
support@picotech.com

Asia-Pacific regional office:

Pico Technology
Room 2252, 22/F, Centro
568 Hengfeng Road
Zhabei District
Shanghai 200070
PR China

Germany regional office and EU Authorized Representative:

Pico Technology GmbH
Im Rehwinkel 6
30827 Garbsen
Germany

Tel: +49 (0) 5131 907 62 90

info.de@picotech.com

Tel: +86 21 2226-5152

pico.asia-pacific@picotech.com

www.picotech.com

ps6000apg-5

Copyright © 2021–2024 Pico Technology Ltd. All rights reserved.

	Introduction
	Software license conditions
	Trademarks

	Programming overview
	System requirements
	Driver
	Voltage ranges
	MSO digital data
	Triggering
	Sampling modes
	Block mode
	Using block mode
	Asynchronous calls in block mode

	Rapid block mode
	Using rapid block mode
	Rapid block mode example 1: no aggregation
	Rapid block mode example 2: using aggregation

	Streaming mode
	Using streaming mode

	Retrieving stored data

	Timebases
	Combining several oscilloscopes
	Handling intelligent probe interactions

	API functions
	ps6000aChannelCombinationsStateless - get possible channel combinations
	ps6000aCheckForUpdate - is firmware update available?
	ps6000aCloseUnit - close a scope device
	ps6000aEnumerateUnits - get a list of unopened units
	ps6000aFlashLed - flash the front-panel LED
	ps6000aGetAccessoryInfo - get information about a connected accessory
	ps6000aGetAdcLimits - get min and max sample values
	ps6000aGetAnalogueOffsetLimits - get analog offset information
	ps6000aGetDeviceResolution – retrieve the device resolution
	ps6000aGetMaximumAvailableMemory - depending on hardware resolution
	ps6000aGetMinimumTimebaseStateless - find fastest available timebase
	ps6000aGetNoOfCaptures - query how many captures made
	ps6000aGetNoOfProcessedCaptures - query how many captures processed
	ps6000aGetStreamingLatestValues - read streaming data
	PICO_STREAMING_DATA_INFO
	PICO_STREAMING_DATA_TRIGGER_INFO

	ps6000aGetTimebase - get available timebases
	ps6000aGetTriggerInfo - get trigger timing information
	PICO_TRIGGER_INFO

	ps6000aGetTriggerTimeOffset - get timing corrections
	ps6000aGetUnitInfo - get information about device
	ps6000aGetValues - get block mode data
	Downsampling modes

	ps6000aGetValuesAsync - read data without blocking
	ps6000aGetValuesBulk - read multiple segments
	ps6000aGetValuesBulkAsync - read multiple segments without blocking
	ps6000aGetValuesOverlapped - get rapid block data
	Using GetValuesOverlapped()

	ps6000aGetValuesTriggerTimeOffsetBulk - get trigger time offsets for multiple segments
	ps6000aIsReady - get status of block capture
	ps6000aMemorySegments - set number of memory segments
	ps6000aMemorySegmentsBySamples - set size of memory segments
	ps6000aNearestSampleIntervalStateless - get nearest sampling interval
	ps6000aNoOfStreamingValues - get number of captured samples
	ps6000aOpenUnit - open a scope device
	ps6000aOpenUnitAsync - open unit without blocking
	ps6000aOpenUnitProgress - get status of opening a unit
	ps6000aPingUnit - check if device is still connected
	ps6000aQueryMaxSegmentsBySamples - get number of segments
	ps6000aQueryOutputEdgeDetect – check if output edge detection is enabled
	ps6000aResetChannelsAndReportAllChannelsOvervoltageTripStatus
	ps6000aReportAllChannelsOvervoltageTripStatus
	PICO_CHANNEL_OVERVOLTAGE_TRIPPED structure

	ps6000aRunBlock - start block mode capture
	ps6000aRunStreaming - start streaming mode capture
	ps6000aSetChannelOff - disable one channel
	ps6000aSetChannelOn - enable and set options for one channel
	ps6000aSetDataBuffer - provide location of data buffer
	ps6000aSetDataBuffers - provide locations of both data buffers
	ps6000aSetDeviceResolution – set the hardware resolution
	PICO_DEVICE_RESOLUTION enumerated type

	ps6000aSetDigitalPortOff – switch off digital inputs
	ps6000aSetDigitalPortOn – set up and enable digital inputs
	ps6000aSetExternalReferenceInteractionCallback - register callback function for external reference clock events
	ps6000aSetNoOfCaptures - modify rapid block mode
	ps6000aSetOutputEdgeDetect – change triggering behavior
	ps6000aSetProbeInteractionCallback – register callback function for probe events
	ps6000aSetPulseWidthDigitalPortProperties – set digital port pulse width
	ps6000aSetPulseWidthQualifierConditions - specify how to combine channels
	ps6000aSetPulseWidthQualifierDirections - specify threshold directions
	ps6000aSetPulseWidthQualifierProperties - specify threshold logic
	ps6000aSetSimpleTrigger - set up triggering
	ps6000aSetTriggerChannelConditions - set triggering logic
	PICO_CONDITION structure

	ps6000aSetTriggerChannelDirections - set trigger directions
	PICO_DIRECTION structure

	ps6000aSetTriggerChannelProperties - set up triggering
	TRIGGER_CHANNEL_PROPERTIES structure

	ps6000aSetTriggerDelay - set post-trigger delay
	ps6000aSetTriggerDigitalPortProperties - set port directions
	PICO_DIGITAL_CHANNEL_DIRECTIONS structure

	ps6000aSigGenApply - set output parameters
	ps6000aSigGenClockManual - control signal generator clock
	ps6000aSigGenFilter - switch output filter on or off
	ps6000aSigGenFrequency - set output frequency
	ps6000aSigGenFrequencyLimits - get limits in sweep mode
	ps6000aSigGenFrequencySweep - set signal generator to frequency sweep mode
	ps6000aSigGenLimits - get signal generator parameters
	ps6000aSigGenPause - stop the signal generator
	ps6000aSigGenPhase - set signal generator using delta-phase
	Calculating deltaPhase

	ps6000aSigGenPhaseSweep - set signal generator to sweep using delta-phase
	ps6000aSigGenRange - set signal generator output voltages
	ps6000aSigGenRestart - continue after pause
	ps6000aSigGenSoftwareTriggerControl - set software triggering
	ps6000aSigGenTrigger - choose the trigger event
	ps6000aSigGenWaveform - choose signal generator waveform
	ps6000aSigGenWaveformDutyCycle - set duty cycle
	ps6000aStartFirmwareUpdate - update the device firmware
	ps6000aStop - stop sampling
	ps6000aStopUsingGetValuesOverlapped - complements ps6000aGetValuesOverlapped
	ps6000aTriggerWithinPreTriggerSamples - switch feature on or off

	Callbacks
	ps6000aBlockReady - indicate when block-mode data ready
	ps6000aDataReady - indicate when post-collection data ready
	PicoUpdateFirmwareProgress - get status of firmware update
	PicoProbeInteractions() – callback for PicoConnect probe events
	PICO_USER_PROBE_INTERACTIONS structure

	PicoExternalReferenceInteractions () - callback for external reference clock events
	PICO_CLOCK_REFERENCE enumerated type

	Reference
	Numeric data types
	Enumerated types and constants
	Driver status codes
	Glossary

