

Vumbula React
Edmond Atto and John Kagga

Vumbula React

by Edmond Atto and John Kagga

Copyright © 2019 Edmond Atto and John Kagga. All rights reserved.

Editors: John Paul Seremba, Cecilia Caroline Nalubega
Production Editor: Bridget Mendoza
Cover Designer: John Paul Seremba

June 2019: First Edition.

Revision History for the First Edition:
2019-06-21 First release

Table of Contents

A Beginner’s Guide to React With ES6 . 1

What is React? . 2

Is React really for me?. 2

Why React? . 2

Setting up your first React Application . 4

Commonly used ES6 Features . 5

Understanding React Components . 15

What are components? . 16

Your first component . 16

A different way to write components . 18

Functional (Stateless) Vs Class (Stateful) components . 18

How do I choose which component type to use? . 20

Props . 20

Composing Components . 23

Project One. 24

Into components. 26

Understanding State in React. 31

What is State? . 32

Adding State to a Class Component . 32

Investigating State using React Developer tools . 33

Project Two . 34

Handling User Input in React . 40

Controlled Components . 41

Working with multiple inputs. 43

Uncontrolled Components . 44

Using Default Values in Controlled Components . 46

Controlled Vs Uncontrolled . 46

Project Two (Continued) . 47

State immutability . 49

Project Three: Building a Shopping List App. 50

Handling Routing in React . 66

Routers . 67

History . 68

Routes . 69

Component Prop. 69

Render Prop. 70

Children Prop . 70

Switch . 71

Link . 72

Nested Routing . 74

Protected Routes. 77

Custom Routes. 78

Index . 83

Preface

Who This Book Is For
This book is for someone that has some coding experience, we do not go into the basics of

programming but jump straight into React. It would do you good to know a bit of Javascript

before jumping into this book.

What’s in This Book?
- In Chapter One, get introduced to React with ES6. If you are new to React, simply need a

refresher, or need a gentle introduction to the ES6 features that are most frequently used

throughout this book.

- In Chapter Two, get introduced to React components. They are the building blocks of any

React Application you will build.

- In Chapter Three, get introduced to State in React. Understanding State and how it works

will unlock your ability to build powerful components.

- In Chapter Four, get introduced to handling User Input in React. Understanding how to

handle user input (primarily via forms) will unlock your ability to build interactive

applications.

- In Chapter Five, get introduced to working with Routing in React. Create protected routes,

nest routes and custom create routes.

We believe that by the time you have gone through this book, you will be well equipped to

create a react project from scratch.

Conventions Used in This Book

This icon signifies a tip

This icon signifies a note, giving some information.

Getting and Using the Code Examples

The code used in this book can all be found here,

https://github.com/vumbula/vumbula-react. It is organised on a chapter basis and should be

easy to follow. There are links to the code in the different chapters.

This book is here to help you get your job done. In general, if the example code is offered

with this book, you may use it in your programs and documentation. You do not need to

contact us for permission unless you’re reproducing a significant portion of the code. For

example, writing a program that uses several chunks of code from this book does not require

permission. Selling or distributing a CD-ROM of examples from this book does require

permission. Answering a question by citing this book and quoting example code does not

https://github.com/vumbula/vumbula-react

require permission. Incorporating a significant amount of example code from this book into
your product’s documentation does require permission.

How to Contact Us

You can contact us
John Kagga: Twitter | LinkedIn | Email
Edmond Atto: Twitter | LinkedIn | Email
Bridget Mendoza: Twitter | LinkedIn | Email

Acknowledgements

The journey that led us to write this book has been a serendipitous one. We were two people
who wanted to share our knowledge of React with the world. Initially, we had set out to
write a series of articles on the subject but as we wrote more and more, we found that we
had a lot more to say than articles would allow and so, the book Vumbula React was born.

This book would not have been possible without the support of Bridget Mendoza and her
tireless efforts to get us across the finish line. When she happened upon us, all we had were
a couple of standalone chapters of what we once dreamed would be a book. She took it upon
herself to take up the production of what we present to you now as Vumbula React. Many
thanks to her for being our Northstar throughout this process.

https://twitter.com/johnkagga
https://www.linkedin.com/in/johnkagga/
mailto:johnkagga@gmail.com
https://www.twitter.com/EdmondAtto
https://www.linkedin.com/in/edmondatto/
mailto:edmond091@gmail.com
https://twitter.com/mendozabree
https://linkedin.com/in/bridget-mendoza-b9749099
mailto:mendozabridget777@gmail.com

Chapter One

A Beginner’s Guide to React With ES6

1

What is React?

React is a JavaScript library for building user interfaces, that is maintained by Facebook
as an Open Source project under the MIT license. Over the past year or so, it has gained
widespread popularity in the developer community as well as a large community of
contributors. At the time of publishing this book, React was the 3rd most starred library
and/or Framework on Github (behind Bootstrap and Vue)with 131.099k stars. It is safe to
say then, that you deciding to learn React is a great decision.

It has to be emphasised that React is NOT a framework; it is a library! This is a common
misconception many developers have as they start out on their React journey. As a library,
React depends on other libraries such as React Router, Redux, Prop-types etc. to extend its
already extensive capabilities.

React deals entirely with the look (user interface) of your web application, that is to say, it
is purely presentational. React Native which is beyond the scope of this book, helps you to
design user interfaces for Android and iOS apps. Refer to the official documentation for
more information on React Native.

Is React really for me?

If you’re interested in building modular interfaces for web applications, then the short
answer is yes, React really is for you.

Because React is a JavaScript library, you will get the most out of this book if you know the
basics of JavaScript, specifically the modern features of ECMAScript 6 (ES6 or JavaScript
2015) that we’ll be using over the course of the book.

Do not worry if you do not know much about JavaScript. Towards the end of this
introductory chapter, there is an overview of the JavaScript concepts that will be used in
this book.

You are also encouraged to brush up on the basics of JavaScript from here and continue
with this book when you’re all caught up.

Why React?

React offers up a variety of benefits that have driven its rise in popularity. Let us review a
couple of them real quick:

⇒ Getting started is easy

React is basically JavaScript, so, as long as you know its basics, you’re good to go! The
React API is quite simple to use and you will be able to create your first component with
very limited markup.

A Beginner’s Guide to React With ES6 | 2

https://facebook.github.io/react-native/

⇒ Easy DOM (Document Object Model) manipulation In the past, using the actual
DOM API was a pain, a fact that made it difficult for developers to manipulate the DOM.
React solves this problem by providing a virtual DOM (in memory) that acts as an agent
between the developer and the real DOM. The virtual DOM is a lot more user-friendly for
developers.

⇒ Speed

Because of React’s virtual DOM, it has a pretty cool way of handling changes to a web
page; React is constantly listening for changes to the virtual DOM. It keeps a record of the
actual DOM tree and when a change is detected on the virtual DOM, React calculates the
differences between the two, it reacts to this change by making the changes and re-
rendering only the elements on the DOM that have changed. This precision is what makes
React lightning quick.

⇒ React is declarative

React allows you to describe what the application interface should look like as opposed to
you describing how it should build the UI. React makes it such that you are not concerned
with the details of how the different UI elements are created and rendered, giving you
more time to think about what look you want to achieve with your interfaces as opposed
to the tiny details of how to make that happen. Declarative programming is becoming
more advanced and bringing more and more exciting features to the space. This post by
Tyler Mcginnis is a good place to start finding more information on declarative
programming vs imperative programming.

⇒ React makes use of reusable components

A component is simply a function/class that returns a section of your interface. Building
an application with React allows you to reuse components in different sections of your
application. It follows the pattern of creating a component once and declaring it in
multiple locations as required. This helps you write a lot more maintainable code as it’s
easy to make cascading changes throughout your application.

⇒ Unidirectional data flow

React applications are built as a combination of parent and child components. As the
names suggest, each child component has a parent and a parent component will typically
have one or more child components. Components receive data via props and in the case of
a parent and child component, props are passed down from the parent to the child. Data
(props) is never passed up from the child to the parent, hence the phrase, unidirectional
data flow. This is a powerful concept because it leads to a more predictable application
and creates a single source of truth so that any changes to the parent’s state propagate to
all its children consistently.

⇒ Powerful type-checking using PropTypes

A Beginner’s Guide to React With ES6 | 3

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://reactjs.org/docs/faq-internals.html
https://tylermcginnis.com/imperative-vs-declarative-programming/

With the power of PropTypes, React allows you to protect your components from abuse
(and catch bugs early) by strictly and efficiently enforcing type-checking on the
props(props are to components what arguments are to functions) passed to them without
the need to add the complexity that comes with using TypeScript or flow for type-checking
in your project.

As of React 15.5.0, PropTypes is no longer part of the React core package
but is used as a separate dependency.

⇒ Large community React’s popularity ensures an ever-growing community around it,
which means, there’s a ton of resources out there to help you as you grow your skills.
More importantly, packages such as React-router and React-redux that extend React’s
capabilities are actively maintained.

As you start out, these concepts may seem numerous and confusing; do not
lose steam if everything doesn’t make sense right now. During the course of
reading the book, things will get a lot clearer. Reviewing earlier sections of
the book as you go along will help you to further internalise the content.

Setting up your first React Application

There are numerous ways and tools out there to help you set up a React app, however,
throughout this book, the official create-react-app CLI tool created by the Facebook team
will be used. According to the official React documentation, create-react-app is the best
way to start building a new React single page application. It sets up your development
environment so that you can use the latest JavaScript features, provides a nice developer
experience, and optimizes your app for production, all without requiring any
configuration on your part.

Before the create-react-app CLI tool was created by the Facebook team, developers had to
deal with setting up the applications with the right set of dependencies such as babel,
react-dom as well as code linters. Additionally, they would have to create a custom
webpack configuration file for every React app they worked on. With the CLI tool,
developers can instantly jump into active development with minimal bootstrapping.

Before you can get started enjoying the create-react-app goodness, you’ll need to make
sure you have Node >= 6 installed on your machine. If you do not have Node installed on
your machine, no worries, this guide will have you set up in no time.

Create-react-app is available for Windows, Linux and MacOS so, you should be covered.
Still not sure if you should use create-react-app? Reading this should help.

Enough talk, let’s get you started and walk you through the simple process of creating a
React app with create-react-app.

A Beginner’s Guide to React With ES6 | 4

https://reacttraining.com/react-router/core
https://redux.js.org/basics/usage-with-react
https://github.com/facebook/create-react-app
https://nodejs.org/en/download/package-manager/
https://github.com/facebookincubator/create-react-app#why-use-this

⇒ Install create-react-app globally

npm install -g create-react-app

⇒ Run create-react-app by passing it the desired name of your app

create-react-app my-new-app

⇒ cd into your new app’s directory and start your brand new app

cd my-new-app
npm start

⇒ Navigate to localhost:3000 in your browser

Congratulations! You just created your first React application. You’re well on your way to
building bigger and better things.

Commonly used ES6 Features

Throughout the rest of this book, a number of ES6 features will be used consistently. If you
do not have prior experience with ES6 features, this brief introduction will come in
handy. If you’re comfortable with ES6 features, skip this section and head to chapter 2 to
get started writing your first component.

A Beginner’s Guide to React With ES6 | 5

let and const

let and const are two new keywords that were introduced in ES6 for declaring variables.
When used to declare variables, they are scoped to the block and not the function; this
means they are only available within that block. Variables declared with let can be re-
assigned but cannot be redeclared within the same scope whereas those declared by const
must be assigned an initial value but cannot be redeclared within the same scope.

In summary, use let when you plan on re-assigning new values to the variable and const
if you’re not planning to re-assign a variable. See an example of using let

let name = 'Edmond';
name = 'Atto';
console.log(name);

Output

Atto

The spread operator

The spread operator denoted by … is used to expand iterable objects into multiple
elements as shown in the example below.

const cities = ["Kampala", "Nairobi", "Lagos"];
console.log(...cities);

Output

Kampala Nairobi Lagos

The spread operator can also be used to combine multiple arrays into one array
containing all array elements as shown below.

const east = ["Uganda", "Kenya", "Tanzania"];
const west = ["Nigeria", "Cameroon", "Ghana"];

const countries = [...east, ...west];
console.log(countries);

A Beginner’s Guide to React With ES6 | 6

Output

['Uganda', 'Kenya', 'Tanzania', 'Nigeria', 'Cameroon', 'Ghana']

Template literals

Before ES6, strings were concatenated using the + operator as shown in the example
below.

const student = {
 name: 'John Kagga',
 city: 'Kampala'
};

let message = 'Hello ' + student.name + ' from ' + student.city;
console.log(message);

Output

Hello John Kagga from Kampala

ES6 introduced template literals which are essentially string literals that include
embedded expressions. They are denoted by backticks instead of single or double quotes.
The template literals can contain placeholders which are represented by ${expression}.
The quotes and + operator are dropped when using template literals as shown in the
rewrite of the above example below.

let message = `Hello ${student.name} from ${student.city}`;

Output

Hello John Kagga from Kampala

Default function parameters

ES6 introduced a way of adding default values to the function’s parameter list as shown
below.

A Beginner’s Guide to React With ES6 | 7

function greet(name = 'Fellow', greeting = 'Welcome') {
 return `${greeting} ${name}`;
}

console.log(greet());
console.log(greet('Kagga'));
console.log(greet('Mike', 'Hi'));

Output

Welcome Fellow
Welcome Kagga
Hi Mike

A default parameter is created when an equal (=) is added and whatever the parameter
should default to if an argument is not provided (this parameter) can be any JavaScript
data type.

Destructuring

In ES6, data can be extracted from arrays and objects into distinct variables using
destructuring. Here are a couple of examples

1. Extracting data from an array

⇒ Before ES6

const points = [20, 30, 40];

const x = points[0];
const y = points[1];
const z = points[2];

console.log(x, y, z);

A Beginner’s Guide to React With ES6 | 8

Output

20 30 40

⇒ With ES6

The above example can be changed to use destructuring in ES6 as shown below.

const points = [20, 30, 40];

const [x, y, z] = points;

console.log(x, y, z);

Output

20 30 40

The [] represent the array being destructured and x, y, z represent the variables where
the values from the array are to be stored. You do not have to specify the array indexes
because they are automatically implied. During destructing, some values can be ignored
for example the y value can be ignored as shown below.

const [x, , z] = points

2. Extracting data from an object

⇒ Before ES6

const car = {
 type: 'Toyota',
 color: 'Silver',
 model: 2007
};

const type = car.type;
const color = car.color;
const model = car.model;

console.log(type, color, model);

A Beginner’s Guide to React With ES6 | 9

Output

Toyota Silver 2007

⇒ With ES6

const car = {
 type: 'Toyota',
 color: 'Silver',
 model: 2007
};

const {type, color, model} = car;

console.log(type, color, model);

Output

Toyota Silver 2007

The { } represent the object to be destructed and type, color, model represent the
variables where to store the properties from the object. There is no need of specifying the
property from where to extract the value from because car already contains a property
called type and the value is automatically stored in the type variable.

As with array destructuring, object destructing enables extraction of only the values
needed at a given time. The example below shows the extraction of only the color
property from the car object.

const {color} = car;
console.log(color);

Output

Silver

Object literal Shorthand

ES6 provides a new way of initialising objects without code repetition, making them
concise and easy to read. Prior to ES6, objects were initialised using the same property

A Beginner’s Guide to React With ES6 | 10

names as the variable names assigned to them as shown below:

let type = 'Toyota';
let color = 'Silver';
let model = 2007;

const car = {
 type: type,
 color: color,
 model: model
};

console.log(car);

Output

{ type: 'Toyota', color: 'Silver', model: 2007 }

Looking closely at the above example, it is clear that type:type, color:color and
model:model seem redundant. The good news is that you can remove those duplicate
variable names from object properties if the properties have the same name as the
variables being assigned to them as shown below.

let type = 'Toyota';
let color = 'Silver';
let model = 2007;

const car = {
 type,
 color,
 model
};
console.log(car);

Output

{ type: 'Toyota', color: 'Silver', model: 2007 }

Arrow functions

ES6 introduced a new kind of functions called arrow functions which are very similar to
regular functions in behaviour but different syntactically.

A Beginner’s Guide to React With ES6 | 11

As an example, follow the steps below to convert the given regular function into an arrow
function.

function (name) {
 return name.toUpperCase();
}

• remove the function keyword

• remove the parentheses

• remove the opening and closing curly braces

• remove the return keyword

• remove the semicolon

• add an arrow (⇒) between the parameter list and the function body

The result

name => name.toUpperCase();

Using arrow functions

As opposed to regular expressions which can either be function declarations or function
expressions, arrow functions are always expressions which can only be used where
expressions are valid. Arrow functions can be stored in a variable, passed as an argument
to a function or stored in an object’s property.

Parentheses and arrow function parameters

If an arrow function parameter list has one element, there is no need for wrapping that
element in parentheses.

name => `Hello ${name}!`

But, if there are two or more items in the parameter list or zero items, the list has to be
wrapped in parentheses as shown below.

A Beginner’s Guide to React With ES6 | 12

const hello = () => console.log('Hello React!'); //zero parameters
hello();

const location = (name, city) => console.log(`${name} is from ${city}.`);//two
parameters
location('John', 'kampala');

Block body syntax

When there is need to have more than one line of code in the arrow function body, the
block body syntax has to be used. With the block body syntax, curly braces have to be used
to wrap the function body and a return statement has to be used to actually return
something from the function as shown below.

name => {
 name = name.toUpperCase();
 return `${name.length} characters make up ${name}'s name`;
};

Benefits of using arrow functions

Arrow functions may be preferred because of the following:-

• short syntax

• they are easy to write and read

• they automatically return when their body is a single line of code.

Classes

ES6 introduced classes that are simply a mirage that hides the fact that prototypal
inheritance goes on under the hood. These classes are unlike those in class-based
languages like Java. Below is an example of an ES6 class.

A Beginner’s Guide to React With ES6 | 13

class Animal {
 constructor(numLegs) {
 this.numLegs = numLegs;
 this.mammal = false;
 }

 isMammal() {
 this.mammal = true;
 }
}

When a new object is constructed from the Animal class the constructor will run and the
variables inside it will be initialised.

Benefits of using classes

With the new class syntax, less code is required to create a function. The function contains
a clearly specified constructor function and all the code needed for the class is contained
in its declaration.

ES6 also introduced two new keywords, super and extends which are used to extend
classes.

Classes in javascript are still functions and their behavior is not the same
as those in object-oriented programming languages such as Java.

This was a brief, high-level introduction to the ES6 features that will be used throughout
the book. It is not meant as a replacement for any fully-fledged ES6 resources out there.
Refer to this resource to learn more about ES6 features.

A Beginner’s Guide to React With ES6 | 14

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
http://es6-features.org/

Chapter Two
Understanding React Components

15

What are components?

Components are the building blocks of any React app and a typical React app will have
many of these. Simply put, a component is a JavaScript class or function that optionally
accepts inputs i.e. properties(props) and returns a React element that describes how a
section of the UI (User Interface) should appear.

Your first component

const Greeting = () => <h1>Hello World today!</h1>;

This is a functional component (called Greeting) written using ES6’s arrow function
syntax that takes no props and returns an h1 tag with the text “Hello World today!”

In Chapter 1, you learnt how to set up a React App using the create-react-app tool. We’ll
take a step back momentarily and use a basic setup to learn the basics of components. You
can find the starter app here and clone it to your computer.

In order to run the code examples in this chapter on your machine, you first have to
install a server globally using nodeJs. Below is the command to install the http-server on
your machine. Open your terminal and run:-

npm install http-server -g

Open the index.html file within the Chapter 2/starter-code folder in your text editor and
add the Greeting component where you see the instructions to do so. Below is a code
snippet of how your index.html file should look like after this change.

Understanding React Components | 16

https://github.com/facebook/create-react-app
https://github.com/vumbula/vumbula-react-code/tree/master/chapter%202/starter-code

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>Get Started with Vumbula React</title>
</head>

<body>
<div id="root">
 Loading...
</div>
<script src="https://unpkg.com/@babel/standalone/babel.js"></script>
<script src="https://unpkg.com/react/umd/react.development.js"></script>
<script src="https://unpkg.com/react-dom/umd/react-
dom.development.js"></script>
<script type="text/babel">
 // Add your brand new component here
 const Greeting = () => <h1>Hello World today!</h1>
 ReactDOM.render(
 <Greeting />,
 document.getElementById('root')
);
</script>
</body>
</html>

Within the starter-code folder run the command below to start the server:-

http-server .

Open the URL within the terminal in your browser and you should see the text “Hello

World Today!”.

In case you make changes to the code and they are not shown in the
browser even after refresh. Try hard refreshing that tab or page.

You did it! You created and rendered your first component. Let’s take a closer look to help
us understand what just happened.

⇒ The React script allows us to write React components

⇒ The ReactDOM script allows us to place our components and work with them in the
context of the DOM

Understanding React Components | 17

https://www.getfilecloud.com/blog/2015/03/tech-tip-how-to-do-hard-refresh-in-browsers/#.WxzTnDMzbRY

⇒ The Babel script allows us to transpile ES6 to ES5. Some browsers have limited support
for ES6 features; transpiling our ES6 to ES5 allows us to use the modern features of ES6 in
our design without having to worry about compatibility. Notice that the React code is
wrapped in a script tag with a type of text/babel.

ReactDOM.render(<Greeting />, document.getElementById('root'));

Translating the line of code above to English would sound something like this;

Use ReactDOM’s render method to render the Greeting element into the DOM in a container
with the id of root.

When naming a React component, it is convention to capitalize the first
letter. This is important because it enables React to differentiate between
the native HTML tags such as div, h1, span etc and custom components like
Greeting.

A different way to write components

So far, you’ve written a functional component, a fitting name since it really was just a
function. Components can also be written using ES6 classes instead of functions. Such
components are called class components. Go ahead and convert the functional Greeting
component to a class component like so:

class Greeting extends React.Component {
 render(){
 return <h1>Hello World Today!</h1>;
 }

Replacing the functional component in index.html with your new class component and
refreshing your browser should also render “Hello World Today!” which means
everything is working well.

Functional (Stateless) Vs Class (Stateful)
components

By now, you’ve created both a functional and class component. In this section, we’ll take a
closer look at the differences as well as situations in which you might prefer to use one
type over another.

Understanding React Components | 18

Functional components

These components are purely presentational and are simply represented by a function
that optionally takes props and returns a React element to be rendered to the page.

Generally, it is preferred to use functional components whenever possible because of their
predictability and conciseness. Since they are purely presentational, their output is always
the same given the same props. You may find functional components referred to as
stateless, dumb or presentational in other literature. All these names are derived from the
simple nature that functional components take on.

⇒ Functional because they are basically functions

⇒ Stateless because they do not hold and/or manage state

⇒ Presentational because all they do is output UI elements

A functional component in it’s simplest form looks something like this:

const Greeting = () => <h1>Hi, I’m a dumb component!</h1>;

Class Components

These components are created using ES6’s class syntax. They have some additional
features such as the ability to contain logic (for example methods that handle onClick
events), local state (more on this in the next chapter) and other capabilities to be explored
in later sections of the book. As you explore other resources, you might find class
components referred to as smart, container or stateful components.

⇒ Class because they are basically classes

⇒ Smart because they can contain logic

⇒ Stateful because they can hold and/or manage local state

⇒ Container because they usually hold/contain numerous other (mostly functional)
components

Class components have a considerably larger amount of markup. Using
them excessively and unnecessarily can negatively affect performance as
well as code readability, maintainability and testability.

A class component in its simplest form:

Understanding React Components | 19

class Greeting extends React.Component {
 render(){
 return <h1>Hi, I’m a smart component!</h1>;
 }
}

How do I choose which component type to use?

Use a class component if you:

⇒ need to manage local state

⇒ need to add lifecycle methods to your component

⇒ need to add logic for event handlers

Otherwise, always use a functional component.

As you start out, you will not always know whether to use class or
functional components. Many times, you will realise after a while that you
chose the wrong type. Do not be discouraged, making this choice gets
easier as you create more components. Until then, one helpful tip is, class
components that only have markup within the render body can safely be
converted to functional components.

Props

In the previous chapter, having reusable components was listed as a benefit of using
React, this is true because components can accept props and return a customised React
element based on the props received.

Looking at the Greeting component you created earlier, it is clear that it’s not a very useful
component to have. In real-world situations, you will often need to render components
dynamically depending on the situation. You, for example, might want the Greeting
component to append your application’s current user’s name to the end of the greeting to
have an output like “Hello Steve” as opposed to having it render “Hello World Today!”
every time. Perhaps, you’re always saying hello world, and the world never says hello
back.

Props are React’s way of making components easily and dynamically customisable. They
provide a way of passing properties/data down from one component to another, typically
from a parent to a child component (unidirectional dataflow).

It’s important to note that props are read-only and that a component must never modify

Understanding React Components | 20

the props passed to it. As such, when a component is passed props as input, it should
always return the same result for the same input.

All React components should act like pure functions with respect to their
props.

Now that you know about props, make use of them in the Greeting component to render a
greeting with a custom name appended to it.

Make changes to the code between the script tags in your index.html document to make it
look like this:

const Greeting = props => <h1>Hello {props.name}</h1>;
 ReactDOM.render(
 <Greeting name={'Edmond'}/>,
 document.getElementById('root')
);

This renders the text “Hello Edmond” to the screen. Go ahead and play around with this
by switching out the name for yours.

Using props added some new syntax to your app. Let’s take a closer look and understand
what is going on here.

⇒ An argument (props) is passed to the functional component. Recall that since a single
argument is being passed to the arrow function, the parentheses are unnecessary. Passing
this argument lets the component know to expect some data to be passed to it (in this case,
the name of our app’s user)

⇒ Within ReactDOM.render, the name you want to be rendered to the screen is passed
in by specifying propName={propValue} within the component’s tag.

⇒ In the h1 tag, {} are used to print the name that is added to the props object when it’s
passed in via the component’s tag. Notice that the name attribute is accessed using the dot
syntax.

There is no limit to how many props can be supplied to a component.

Using Props with Class Components

Adding props to class components is a very similar process to the one used in the
functional component above. There are two notable changes:

⇒ Props is not passed as an argument to the class

Understanding React Components | 21

⇒ The name attribute is accessed using this.props.name instead of props.name

class Greeting extends React.Component {
 render(){
 return <h1>Hello {this.props.name}</h1>;
 }
 }
ReactDOM.render(
 <Greeting name={‘Edmond’}/>,
 document.getElementById('root')
);

Challenge

Make changes that make it possible for the Greeting component to take
name, age and gender props and render this information to the page.

HINT: Pass 3 attributes (name, gender and age) to your component within
ReactDOM.render() and alter your h1 text to accommodate your new data.
Remember to access the attributes using the right syntax e.g. props.gender
for functional components and this.props.gender for class components

Default props

These offer another way to pass props to your component and as the name suggests,
default props are used by a component as default attributes in case no props are explicitly
passed to the component.

As a fallback, default props are helpful in enabling you offer a better user experience
through your app, for example, considering the Greeting component from previous
examples, using default props ensures that a complete greeting is always rendered even if
the name attribute has not been explicitly passed to the component.

Understanding React Components | 22

// Greetings Component
const Greeting = props => <h1>Hello {props.name}</h1>;

// Default Props
Greeting.defaultProps = {
 name: "User"
};

ReactDOM.render(
 <Greeting/>,
 document.getElementById('root')
);

By altering the Greeting component, as shown above, you now have “Hello User” being
rendered in your browser if you do not pass the name attribute to the component.

Passing a name attribute as a prop to the Greeting component overwrites
the default props.

Composing Components

Up until now, you’ve only created a single component, however, when building real
products, you will often have to build multiple components.

React allows you to reference components within other components, allowing you to add
a level(s) of abstraction to your application.

Take for example a user profile component on a social network. We could write this
component’s structure like so:

UserProfile
 |-> Avatar
 |-> UserName
 |-> Bio

In this case, UserProfile, Avatar, UserName and Bio are all components. The UserProfile
component is composed of the Avatar, UserName and Bio components. This concept of
component composition is quite powerful as it enables you to write highly modular and
reusable components. For example, the UserName component can be used in many parts
of the web application and in case it ever needed to be updated, changes would only be
made to the UserName component and the changes would reflect everywhere with the
application where it is used.

Understanding React Components | 23

//Avatar component
const Avatar = () => ;

//Username component
const UserName = () => <h4>janedoe</h4>;

//Bio component
const Bio = () =>
 <p>
 Bio:
 Lorem ipsum dolor sit amet, justo a bibendum phasellus proodio
 ligula, sit
 </p>;

// UserProfile component
const UserProfile = () =>
 <div>
 <Avatar/>
 <UserName/>
 <Bio/>
 </div>;

ReactDOM.render(
 <UserProfile/>,
 document.getElementById('root')
);

In the code snippet above, the Avatar, UserName and Bio components are defined within
the UserProfile component. Try and do this on your own using the index.html file from
previous examples.

Functional components can be referenced within class components and
vice versa. However, it is not often that you will reference a class
component within a functional component; class components typically
serve as container components.

Project One

At this point, you have learned enough of the basics. Get your hands dirty by following up
with this first project and in case you get blocked, get out the Github repository for this
chapter for the solution.

Understanding React Components | 24

Let’s get started

Clone the repository and cd into the chapter 2 folder that contains the code for this
chapter. Then fire up a text editor or IDE of your choice, though VSCode or Webstorm are
recommended and follow the steps below.

• Create a project folder to hold the project files.

• Create an index.html page

• Create a src folder to hold the JavaScript files.

• Create an index.js file within the src folder

• Add a div with an id of root to the body of the index.html.

• Add the react, react-dom and babel scripts

• Link to the index.js script below the babel script at the bottom of the html page.

• Within index.js create a presentational component called Application.

• Copy all the html within the body of the html template in the starter-code folder within
the chapter 2 folder apart from the script tags.

• Paste this html within the <> </> tags (fragments). We use tags because a React
component only accepts one element and all the rest/siblings must be nested within
the one parent element.

• We need to clean up the html code and turn it into JSX that React can understand.

• Let us start by removing all the html comments like this one <!-— Navbar -→

• Rename all class instances to className, then close all img tags like so and also close the horizontal rule <hr/>

class is a reserved name in React, hence, the requirement to change all
class instances to className.

• Copy the img folder and paste it at the root of the project folder.

• Head back to the index.html file and add the Bootstrap 4 CSS link tag in the head
section.

• Whoop…Whoop…You can now open the html page in the browser and see your new
React application.

 Here is the code up to this point.

Great work so far, you are moving on well but you are not yet done. You need to break the
main component down further into smaller components so that your code is clean and
easy to maintain. Let us get back to work.

Understanding React Components | 25

https://github.com/vumbula/vumbula-react-code
https://reactjs.org/docs/cdn-links.html
https://reactjs.org/docs/cdn-links.html
https://cdnjs.com/libraries/babel-core
https://github.com/vumbula/vumbula-react-code/tree/master/chapter%202/project-one/starter-code
https://reactjs.org/docs/introducing-jsx.html
https://github.com/vumbula/vumbula-react-code/tree/master/chapter%202/project-one/mid-final-code

Into components

Start by creating the Nav component. You can try it on your own and then cross-check
your work by reading through the steps below.

• Below the Application component, create a new functional component with a name
Nav.

• Copy the <nav> </nav> JSX into the Nav component as shown below.

const Nav = () =>
 <nav className="navbar fixed-top navbar-expand-lg navbar-dark bg-primary">
 <div className="container">
 <button className="navbar-toggler"
 type="button"
 data-toggle="collapse"
 data-target="#navbarNavAltMarkup"
 aria-controls="navbarNavAltMarkup"
 aria-expanded="false"
 aria-label="Toggle navigation">

 </button>
 <div className="collapse navbar-collapse"
 id="navbarNavAltMarkup">
 <div className="navbar-nav">
 <a className="nav-item nav-link"
 href="#home">Home
 (current)

 </div>
 </div>
 </div>
 </nav>;

• Delete the nav code from the Application component JSX and replace it with <Nav/>
element as shown here.

• Open up the application again in the browser and everything should still be the same.

• Let’s move on to the second presentational component, the Jumbotron.

• Create an arrow function with a name Jumbotron.

• Copy the jumbotron code and paste it into the Jumbotron function.

• Delete the jumbotron code from the Application component’s JSX and replace it with
the <Jumbotron/> element.

Understanding React Components | 26

https://gist.github.com/jokamjohn/6590e97c2f670d1e4084b53c042d6a8d#file-vumbula-3-index-js

It is now your turn, go on and create the Toys and Footer functional components and
then reference them within the Application component. Be sure to follow similar steps as
before.

Nothing about the page in the browser should change after you are done. When you are
done cross-check your solution with this.

We have done a good job up to this point, you may have realized that our JSX is not DRY.
Meaning there is a lot of repetition specifically in the <Toys/> component, the toy cards are
repeated for every toy. We can leverage the power of reusability that React components
possess to clean this up.

• First, create an array called toys to hold objects containing the toy name, description
and image number as shown below.

const toys = [
 {
 name: 'Toy One',
 description: `Lorem Ipsum is simply dummy text of the printing
 and typesetting industry. Lorem Ipsum has been
 the industry's standard dummy text ever since the 1500s.`,
 image: '1'
 },
 {
 name: 'Toy Two',
 description: `Lorem Ipsum is simply dummy text of the printing
 and typesetting industry. Lorem Ipsum has been
 the industry's standard dummy text ever since the 1500s.`,
 image: '2'
 },
 {
 name: 'Toy Three',
 description: `Lorem Ipsum is simply dummy text of the printing
 and typesetting industry. Lorem Ipsum has been
 the industry's standard dummy text ever since the 1500s.`,
 image: '3'
 },
 {
 name: 'Toy Four',
 description: `Lorem Ipsum is simply dummy text of the printing
 and typesetting industry. Lorem Ipsum has been
 the industry's standard dummy text ever since the 1500s.`,
 image: '4'
 },
 {
 name: 'Toy Five',

Understanding React Components | 27

https://gist.github.com/jokamjohn/03de67b7690d4a61cfec7711166d2bf5#file-vumbula-4-index-js

 description: `Lorem Ipsum is simply dummy text of the printing
 and typesetting industry. Lorem Ipsum has been
 the industry's standard dummy text ever since the 1500s.`,
 image: '5'
 },
 {
 name: 'Toy Six',
 description: `Lorem Ipsum is simply dummy text of the printing
 and typesetting industry. Lorem Ipsum has been
 the industry's standard dummy text ever since the 1500s.`,
 image: '6'
 },
 {
 name: 'Toy Seven',
 description: `Lorem Ipsum is simply dummy text of the printing
 and typesetting industry. Lorem Ipsum has been
 the industry's standard dummy text ever since the 1500s.`,
 image: '7'
 },
 {
 name: 'Toy Eight',
 description: `Lorem Ipsum is simply dummy text of the printing
 and typesetting industry. Lorem Ipsum has been
 the industry's standard dummy text ever since the 1500s.`,
 image: '8'
 },
];

• Create a functional component that accepts props as an argument and name it Card.
Copy and paste one card’s JSX code into it from the Toys component as shown below.

const Card = props =>
 <div className="col-md-6 col-lg-3">
 <div className="card mb-3">

 <div className="card-body">
 <h4 className="card-title text-center">{props.toy.name}</h4>
 <p className="card-text">
 {props.toy.description}
 </p>
 </div>
 </div>
 </div>;

• We need to make a few changes to the card so that it is reusable by adding

Understanding React Components | 28

placeholders which will be replaced by the actual data to be rendered. *The toy name
is replaced by {props.toy.name} where toy is a prop object passed into the component
from the toys array.

• The description is replaced by {props.toy.description}.

• The image src is replaced by a string template literal which accepts {props.toy.image}
to make up the image path.

• Let us make use of our new Card component by refactoring our Toys component. First,
delete all the cards within a div with a class of row in the Toys component. Then
change the function signature to accept props as its only argument.

• In order to display all the cards again in the Toys component, we make use of the map
function to loop through the toys array passed into it as props. This map function
accepts a callback function that accepts two arguments, the item in the array and its
index. This callback returns a Card component which accepts a toy has its props.
React also requires us to add a key to elements that are being looped over so that it can
easily keep track of them and the changes applied to them making it easy for it to
know what elements to re-render when the underlying data changes. Therefore the
index of the toy object within the array acts as the key in this case as shown below.

const Toys = props =>
 <>
 <h1 id="toys"
 className="display-4 my-4 text-center text-muted">Toys
 </h1>
 <div className="row">
 {props.toys.map((toy, index) => <Card key={index} toy={toy}/>)}
 </div>
 </>;

• Before you can test out the changes there is one more thing to do, otherwise, the toys
won’t show on the page.

We need to pass in the toys array as props to the Application component so that the Toys
component can get access to them. This is shown in the snippet below.

ReactDOM.render(
<Application toys={toys}/>,
document.getElementById('root')
);

Finally, within the Application component, we also need to pass the toys array as props
down to the Toys component as shown below. Recall from chapter one that data flow in
React is unidirectional.

Understanding React Components | 29

<Toys toys={this.props.toys}/>

Now open the page again in the browser to view the changes we have made. You will
realize that nothing changes in the browser, we still get to see our page design as it was,
but now it is fully optimized with React.

At this point, you know how components work and how you can make use of them to
develop modular React code that represents different sections of your user interface. Here
is the final code for this project. The next chapter explains the aspect of state in a React
application, do not miss it.

Understanding React Components | 30

https://github.com/vumbula/vumbula-react-code/tree/master/chapter%202/project-one/final-code

Chapter Three
Understanding State in React

31

In earlier chapters, we’ve dealt mostly with functional React components that do not
require state management. This chapter’s main focus is on state, its management and
components that utilise it in React.

What is State?

State is a JavaScript object that stores a component’s dynamic data and determines the
component’s behaviour. Because state is dynamic, it enables a component to keep track of
changing information in between renders and for it to be dynamic and interactive.

State can only be used within a class component. If you anticipate that a component will
need to manage state, it should be created as a class component and not a functional one.

State is similar to props but unlike props, it is private to a component and is controlled
solely by the said component. In the examples from previous chapters, the behaviour of
components has primarily depended on the props that are passed down to them. In those
cases, the components that receive the props have no control over them because props
are read-only.

In Project One from Chapter 2, toys were passed as props to the Application component,
and then down to the Toys component. For the Toys component to gain control over the
toys data, it should first be converted into a class component and the toys data should be
added into state.

It is worth mentioning that state in React is immutable, that is to say, state should never
be altered/changed directly but rather, changes should be made to a copy of the current
version of the state. This has benefits such as providing the ability to review the state at
different points in time and for apps to hot reload (automatic reloading of the page in the
browser when you make changes in the code).

Adding State to a Class Component

class Greeting extends React.Component {
 render(){
 return <h1>I’m a component in need of some state!</h1>;
 }
}

Adding state to the Greeting component above involves defining within the class
component, a constructor function that assigns the initial state using this.state.

Understanding State in React | 32

class Greeting extends React.Component {
 constructor(props) {
 super(props);
 // Define your state object here
 this.state = {
 name: ‘Jane Doe’
 }
 }
 render(){
 return <h1>Hello { this.state.name }</h1>;
 }
}

Notice that the constructor accepts props as an argument, which are then passed to
super(). Adding super() is a must when using the constructor.

Passing props is not necessary unless you are making use of them in the component. From
the Greeting component above, it’s not necessary to pass props to either the constructor or
super(), that is to say, the component can be written like so:

class Greeting extends React.Component {
 constructor() {
 super();
 // Define your state object here
 }
 // Define your render method here
}

However, the React docs recommend that you always pass props in order to guarantee
compatibility with potential future features

State is accessed using this.state as seen in the Greeting component’s h1 tag.

State is initiated using this.state, however, all subsequent changes to
state are made using this.setState. Using this.setState ensures that the
components affected by the change in state are re-rendered in the browser.

Investigating State using React Developer tools

One way to accelerate your understanding of React is to make use of the React devtools
created by the team at Facebook. The power of React devtools is most apparent when you
need to debug your React app by doing a deep dive into the code. The tools enable you to
investigate how React is working below the surface when the app is rendered in the

Understanding State in React | 33

browser.

Installing the React Developer tools

The devtools are available for download on both Mozilla Firefox Add-ons and the Chrome
Web Store. Follow the appropriate link to install the devtools depending on which
browser you have installed on your computer.

Throughout the rest of this book, Chrome will be used as the browser of choice. In order
to confirm successful installation of the devtools on Chrome, open the developer tools
window using Cmd+Opt+I on a Mac or Ctrl+Alt+I on a windows PC. You should now see a
React tab.

Using the React Devtools

With the Greeting component from earlier in this chapter rendered in your browser, open
the developer tools and navigate to the React tab. You should see something similar to this

Figure 3-1: ReactDev Tools

Mastery of the React DevTools will enable you to gain a better understanding of React’s
inner workings and to quickly debug React applications.

Project Two

To better understand the basic use cases of state in React, we shall build a simple
application that allows us to create and render records.

What we’ll build

A React app that enables us to keep track of our friends’ names and ages. The app provides

Understanding State in React | 34

https://addons.mozilla.org/en-US/firefox/addon/react-devtools/
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi
https://chrome.google.com/webstore/detail/react-developer-tools/fmkadmapgofadopljbjfkapdkoienihi

a form that we shall use to enter their details. It then renders our friends’ details in
beautiful Bootstrap 4 cards.

The finished application looks like this:

Figure 3-2: Finished Application

Getting started

Download or clone the projects’ starter files from the repository to your computer so that
you can follow along.

In order to run the code examples in this chapter on your machine, you have to first
install a server globally using NodeJS. Below is the command to install the http-server on
your machine. Open your terminal and run:-

npm install http-server -g

After the installation is done, cd into the Chapter 3 folder then the starter-code folder.
Within there run the command below to start the server:-

http-server .

In case you make changes to the code and they are not shown in the
browser even after a refresh, try hard refreshing that tab or page.

Below is what will be shown in the browser when you open the localhost url displayed in
your terminal.

Understanding State in React | 35

https://github.com/vumbula/vumbula-react
https://www.getfilecloud.com/blog/2015/03/tech-tip-how-to-do-hard-refresh-in-browsers/#.WxzTnDMzbRY

Figure 3-3: Current Application state

Inside src/index.js, there’s a simple class component that renders JSX for a form with
name and age fields, and a save button.

Adding state to the component

In order to display the names and ages added to the application, we need to add state to our
Application component. We’ll start by adding default state which contains a dummy name
and age which will display whenever the page is rendered in the browser.

We do this by initiating state with this.state inside the component’s constructor method
like so:

constructor(props) {
 super(props);
 this.state = {
 data: [
 {
 name: ‘John’,
 age: 20
 }
]
 }
}

If you are following along, copy and paste the snippet into the Application component just
before the render function.

Understanding State in React | 36

Rendering data from state

To render the state data, a Card presentation component is defined with the functionality
to display the name and age from the props passed to it as shown below.

const Card = props =>
 <div className="col-md-6 col-lg-3">
 <div className="card mb-3">
 <div className="card-body">
 <p className="card-title">
 Name: {props.info.name}
 </p>
 <p className="card-text">
 Age: {props.info.age}
 </p>
 </div>
 </div>
 </div>;

Add this Card component to the index.js file below the Application component but before
the ReactDOM code.

To display the data in state, we need to access the data array using this.state.data and
then use JavaScript’s map function to loop through the array so that each of its elements is
rendered on the page.

<div className="row">
 {
 this.state.data.map(info => <Card info={info}/>)
 }
</div>

The statement containing the Card component is wrapped within a Bootstrap row so that
it is displayed within the Bootstrap grid and placed just after the second <hr/> within the
class component’s render function.

A card is then displayed in the browser as shown below.

Understanding State in React | 37

Figure 3-4: Card displayed in browser

Checking the console within the developer tools window reveals errors as shown in the
screenshot below.

Figure 3-5: Errors in console

This means that we need to give each Card element a key so that React can identify each
Card and know what to do when changes occur to any one of them. This can easily be
fixed using the map function.

The map function accepts a function that accepts two arguments, the array element (info)
and its index; this means that we can use the index as a key to the Card component.

Alter the code to match the code within the snippet below.

<div className="row">
 {
 this.state.data.map(
 (info, index) => <Card key={index} info={info}/>
)
 }
</div>

This should clear the error in the console.

Understanding State in React | 38

Using index as a key in a map function typically works well for small
applications whose data is not that dynamic. However, as applications and
data sources get larger, using the index as a key becomes unreliable. In
these cases, it’s recommended to use a truly unique key, for example, an id.
In the project above, every object in state can be assigned an id field and
this id can then be used as the key like so; key={info.id}.

Adding form data to state

The application is incomplete without the functionality to add new names and ages via the
form. This requires knowledge of handling user input, a topic that is covered in the next
chapter.

Understanding State in React | 39

Chapter Four

Handling User Input in React

40

Majority of the applications you will build will have the bulk of their functionality
centered around detecting and responding to user input. This could be via a click or more
likely, a form. This chapter will focus on forms and making sure you have a good
understanding of how forms are used in React.

Forms are the most common way to receive input from a user, for example, forms are
used to collect users’ login details. When the user clicks the login button, these details are
submitted and they may then be handed over to the application’s backend
(authentication) service for processing. Depending on whether the login was successful or
not, the frontend is updated accordingly. Consequently, forms also make it possible for
users to update already existing information such as their username on a social media site
when they believe they’ve found a cooler one.

When working with forms in React, two types of components are typically used:

⇒ Controlled components

⇒ Uncontrolled components

Controlled Components

HTML form elements are unique because, by default, they maintain some internal state.
Specifically, form elements such as the <input> and <textarea> maintain and update their
own internal state. For this reason, we have to think more carefully about how we use
them in React.

In chapter 3, it is pointed out that a component’s mutable data is stored in its state
property. It makes sense then, to combine the HTML forms’ “natural” abilities with React’s
state to make React’s state the singular data source.

This combination creates a situation where the component that renders a form also
controls what action is taken upon user input. For this reason, such a component is called
a controlled component. Inputs that live inside controlled components are known as
controlled inputs.

Here’s an example of a controlled component that renders a login form. For
demonstration purposes, we shall use the username field.

Handling User Input in React | 41

class LoginForm extends React.Component {

 constructor(props){
 super(props);
 this.state = { username: '' };
 }

 handleChange = event => {
 this.setState({ username: event.target.value });
 };

 render() {
 return (
 <React.Fragment>
 <form>
 <label htmlFor="username">username</label>
 <input
 type="text"
 name="username"
 value={this.state.username}
 onChange={this.handleChange}
 />
 </form>

 <h3>Your username is: {this.state.username}</h3>
 </React.Fragment>
);
 }
}

In the above example, the LoginForm component is set up with a state object containing a
username property. This property will hold the value/text entered by the user.

Initially, there is no text displayed in the input field because its value attribute is set to
this.state.username which is initialised with username set to an empty string.

When the user clicks on the input field and starts typing, each keystroke triggers the
onChange event handler. The handleChange function is then called and the current value
(text) in the input is saved to state using setState().

setState() causes the component to rerender and the text displayed in the input field is
now fetched from this.state.username. The text in the h3 is also updated upon the re-
render.

This flow ensures that the input, h3 and state are always in sync since the state object is

Handling User Input in React | 42

the single source of truth for the component.

Using controlled components ensures that:

⇒ the inputs (username field in this example) and the data (state) are
always in sync

⇒ the UI (h3 tag in this example) and the data (state) are always in sync.

Working with multiple inputs

It is unlikely that an application will have a form with just one field. Let’s add an extra
field to the LoginForm component from before to explore how to implement multiple
controlled inputs with minimal markup.

Handling User Input in React | 43

class LoginForm extends React.Component {

 constructor(props){
 super(props);
 this.state = { username: '', password: '' };
 }

 handleChange = ({ target }) => {
 this.setState({ [target.name]: target.value });
 };

 render() {
 return (
 <React.Fragment>
 <form>
 <label htmlFor="username">username</label>
 <input
 type="text"
 name="username"
 value={this.state.username}
 onChange={this.handleChange}
 />
 <label htmlFor="password">password</label>
 <input
 type="password"
 name="password"
 value={this.state.password}
 onChange={this.handleChange}
 />
 </form>
 <h3>Your username is: {this.state.username}</h3>
 </React.Fragment>
);
 }
}

In order to use a single handleChange function for multiple inputs, each input field is given
a name attribute. The handleChange function is altered to perform a different action
depending on the input target. Here, we use the power of ES6’s computed property name
[name]: value to update the state key corresponding to a particular input’s name attribute.

Uncontrolled Components

In uncontrolled components, form data is handled by the DOM, unlike controlled
components in which the form data is handled by a React component.

Handling User Input in React | 44

Uncontrolled components leverage the fact that HTML form elements maintain their own
internal state. When dealing with uncontrolled inputs, state management via a React
component is not required.

In uncontrolled components, form data is accessed using refs. Think of a ref as a tag that
you receive when you check your bag in at the airport (just go with it). When your flight
lands, you present your tag which serves as a reference to which bag is yours. The person
at the bag desk takes your tag and returns minutes later with your bag. Similarly, HTML
forms know which data belongs to which input field and by assigning an input a ref, you
can then retrieve its value later.

In this analogy, you can only retrieve your bag after the flight has landed. Similarly, you
can only use refs to fetch form data after a form has been submitted.

Here is an example of an uncontrolled component.

class LoginForm extends React.Component {

 handleSubmit = event => {
 event.preventDefault();
 alert('Your username is: ' + this.input.value);
 };

 render() {
 return (
 <form onSubmit={this.handleSubmit}>
 <label htmlFor="username">username</label>
 <input
 type="text"
 name="username"
 ref={(input) => this.input = input}
 />
 </form>
);
 }
}

In this example, notice that the input has a ref attribute. The input element is passed as
input to the arrow function and is then assigned to this.input.

When the form is submitted, the handleSubmit function is fired and at this point, the text
entered by the user can be accessed using this.input.value.

Handling User Input in React | 45

Using Default Values in Controlled Components

In cases where the user needs to update an already existing value, for example, a profile
update, the input field should display the pre-existing value and remain editable.

During a React component’s render lifecycle, a form’s value attribute will always override
the value attribute in the DOM. Consequently, you can use React to set the initial value and
leave subsequent updates as uncontrolled.

class LoginForm extends React.Component {

 handleSubmit = event => {
 event.preventDefault();
 alert('Your username is: ' + this.input.value);
 };

 render() {
 return (
 <form onSubmit={this.handleSubmit}>
 <label htmlFor="username">username</label>
 <input
 type="text"
 name="username"
 defaultValue="cool-guy"
 ref={(input) => this.input = input}
 />
 </form>
);
 }
}

In the LoginForm component above, the input field initially renders with the text cool-guy
because of the value passed to the defaultValue attribute. Alternatively, a value from state
can be passed in here.

Upon submission of the form, the input field’s value attribute overrides the defaultValue.

Controlled Vs Uncontrolled

Using controlled components is widely viewed as the preferred way to work with forms in
React. This because they are more powerful than uncontrolled components and offer a
number of benefits, that is to say:

⇒ The inputs, data and UI are always in sync

Handling User Input in React | 46

⇒ They allow for instant field validation

⇒ They allow for custom input formatting before submission, for example, converting all
entered email addresses to lowercase before form submission

That said, using controlled components where forms with numerous input fields are
involved can be tedious. This is because you would be required to write onChange handlers
covering every possible way your data can change and channel all input data through a
React component.

In situations where the form you are dealing with is relatively simple and only requires
submission of user data with no dynamic UI updates during user input, or input
formatting before submission, uncontrolled components could be a better choice.

Project Two (Continued)

You now know enough about forms to build out the rest of the features for project three
from the previous chapter.

Adding form data to state

It is time to use the form on top of the page to add names and their corresponding ages. To
do this, some changes need to be made to the class component, particularly to the form
element.

In order to get the name and age entered by the user, we need to add a ref attribute to the
name and age input elements. The ref attribute accepts a callback which receives the
underlying DOM element as its argument.

The ref callback is then used to store a reference to the text input of the DOM element
within an instance variable, in our case the instance variables are the name and age as
shown in the code snippet below.

Handling User Input in React | 47

<form className="form-inline">
 <input
 type="text"
 className="form-control mb-2 mr-sm-2 mb-sm-0"
 placeholder="Name"
 ref={input => this.name = input}/>
 <div className="input-group mb-2 mr-sm-2 mb-sm-0">
 <input
 type="text"
 className="form-control"
 placeholder="Age"
 ref={input => this.age = input}/>
 </div>
 <button
 type="submit"
 className="btn btn-primary">Save
 </button>
</form>

Add the ref lines to your name and age input elements to match the code shown above.

Now that we have a reference to the text entered by the user, we need to add it to state
when the save button is clicked. To do this effectively, we need to add an onSubmit event
handler to the form element which will be called when the save (submit) button is clicked.
This onSubmit handler attribute expects a function which will be executed when the save

button is clicked.

Therefore, define an arrow function with a name of onSubmit that accepts event as its only
argument within the Application component. Within the onSubmit function prevent the
default button behaviour (of reloading the page when it is clicked) by adding
event.preventDefault().

We also need to get the name and age text entered by the user from the instance variables
we set in the ref callbacks. After all that we update the component state using
this.setState as shown in the code snippet below.

Handling User Input in React | 48

onSubmit = event => {
 event.preventDefault();
 const name = this.name.value;
 const age = this.age.value;
 const info = {name: name, age: age};
 const data = this.state.data;
 data.push(info);
 this.setState({
 data: data
 });
};

Finally, add the onSubmit attribute to the form element and this.onSubmit as its value
referencing the onSubmit function defined within the component.

<form className="form-inline" onSubmit={this.onSubmit}>

Now open the index.js file in the browser and type kagga in the name input field and 30 in
the age input field then click the Save button. A new card will be added on the page as
shown in the image below.

State immutability

You can now add the form data into state and display it on the page.

But wait…did you see it? It is okay if you did not. In the introduction of chapter 3, it was
pointed out that state in React should never be mutated that to say, should be immutable.

Looking back at the onSubmit function, we mutated state when we used the push method
on the data array from this.state.data.

Handling User Input in React | 49

The right way to update state is to create a new data array and then update the state with
that new array. This can be achieved in many ways but we are going to use the ES6 spread
operator to create a new data array and also add the new info object containing the name
and age from the form as shown in the code snippet below. Make the necessary changes to
the earlier code.

onSubmit = event => {
 event.preventDefault();
 const name = this.name.value;
 const age = this.age.value;
 const info = {name: name, age: age};
 const data = [...this.state.data, info];
 this.setState({
 data: data
 });
};

With the above changes, we still get the same results With the added benefit of state
immutability. Find all code for this section here.

Project Three: Building a Shopping List App

In this project, we shall combine everything we’ve learnt until this point as we build our
shopping list app. Our app will allow for CRUD functionality.

The starter files are available for download here, in there, you will find TODOs to guide
you if you would like to attempt the project on your own. The final code for the project is
also available here and has solutions to all the TODOs in the starter code.

After cloning the repository, cd into your project directory and install the dependencies by
running npm install or yarn install. Run npm start or yarn start to view the project in
the browser and make sure that everything is working well.

Handling User Input in React | 50

https://github.com/vumbula/vumbula-react/tree/master/chapter%204/project-three-continued
https://github.com/vumbula/vumbula-react/tree/master/chapter%204/starter-code
https://github.com/vumbula/vumbula-react/tree/master/chapter%204/Delete-Final

In the src folder, you will find a file App.js that contains an App component. Inside the
App component, there are functional components which include Nav, Jumbotron, AddItem
and Footer.

Adding Items to the Shopping List

* Add name and price as properties to the state object. These will hold the new item before
it is saved to state. * After the name and price have been saved as a new item in the items
array that is within state, they are reset to their defaults.

Destructure the name and price from the state object and pass them as props to the
AddItem component.

const {name, price} = this.state;
<AddItem
 name={name}
 price={price}
/>

• Also within the AddItem component, destructure the name and price within the
function argument parentheses.

• Add a value attribute to both the name and price input elements with the variables
destructed from the component argument list as necessary.

• Add an attribute name to both the name and price input elements with string values of
name and price respectively.

• We need to check the type of the props we are passing to the AddItem component. To

Handling User Input in React | 51

do this we use the prop-types package. Follow the steps below to add type checking.
*Import PropTypes from the prop-types package, note that this package is already
installed, it is part of the dependencies in the package.json but not bundled with React.
It should always be installed separately using npm.

Add a propTypes object for name and price with a type of string and mark them as required
as shown below.

AddItem.propTypes = {
 name: PropTypes.string.isRequired,
 price: PropTypes.string.isRequired,
};

At this point, your component should look like this:

Handling User Input in React | 52

import React from 'react';
import PropTypes from 'prop-types';

export const AddItem = ({name, price}) => (
 <div className="row justify-content-center">
 <form className="form-inline">
 <input
 type="text"
 className="form-control mb-2 mr-sm-2"
 placeholder="Item"
 value={name}
 name="name"
 />
 <div className="input-group mb-2 mr-sm-2">
 <input
 type="text"
 className="form-control"
 placeholder="Price"
 value={price}
 name="price"
 />
 </div>
 <button type="submit" className="btn btn-primary mb-2 pxy-4">Save</
button>
 </form>
 </div>
);

AddItem.propTypes = {
 name: PropTypes.string.isRequired,
 price: PropTypes.string.isRequired,
};

In order to get the name and price the user types into the input fields, we need to add an
onChange event listener to both the name and price inputs.

• Create an arrow function called handleInputChange which accepts event as its own
argument within the App component.

• Within the function, use the passed in event parameter to get the target input element;
from the target get the value and name of the input element.

Use the setState function to add the name and/or price to the name and price properties in
the state object.

Handling User Input in React | 53

handleInputChange = event => {
 const target = event.target;
 const value = target.value;
 const name = target.name;
 this.setState({
 [name]: value
 });
};

Define an onChange prop on the AddItem component with a value of
this.handleInputChange

<AddItem
 name={name}
 price={price}
 onChange={this.handleInputChange}
/>

• In the AddItem file and component, add the onChange prop to the list of destructured
elements in the function argument list.

• Add onChange to the propTypes object as a required function.

• Add an onChange attribute to both input elements with the value of the onChange prop.

At this point your AddItem component should look like this

Handling User Input in React | 54

import React from 'react';
import PropTypes from 'prop-types';

export const AddItem = ({name, price, onChange}) => (
 <div className="row justify-content-center">
 <form className="form-inline">
 <input
 type="text"
 className="form-control mb-2 mr-sm-2"
 placeholder="Item"
 value={name}
 name="name"
 onChange={onChange}
 />

 <div className="input-group mb-2 mr-sm-2">
 <input
 type="text"
 className="form-control"
 placeholder="Price"
 value={price}
 name="price"
 onChange={onChange}
 />
 </div>
 <button type="submit" className="btn btn-primary mb-2 pxy-4">Save</
button>
 </form>
 </div>
);
AddItem.propTypes = {
 name: PropTypes.string.isRequired,
 price: PropTypes.string.isRequired,
 onChange: PropTypes.func.isRequired,
};

• Head over to the browser, let’s check out our progress.

Open the React developer tools and look at the state section. Notice that within the state
section, the name and price properties have empty strings as their values. image::vr-
chap4-2.png[]

As you type into the name or price input fields, the state updates with each keystroke.

Handling User Input in React | 55

• The name and price now need to be added to the items array in state, so that they are
rendered when the Save button is clicked. Let’s do this now.

• Define an arrow function called addItem which accepts event as its only argument

• Within it call preventDefault() on event, to prevent the default behaviour of the
button.

• Use destructing to get the set name and price from state.

• Since an id is needed when saving an item to be used as a key, get the length of the
existing items array in state. Then, use the ternary operator to either increment the id
of the last element in the items array or to use 1 as the id if the items array is empty.

Use the setState function to add the new item to the items array. Remember not to mutate
state. Use the spread operator for the existing items within the array and the
Object.assign function for adding the new item to the array. Set the name and price back to
their defaults as shown below.

Handling User Input in React | 56

addItem = event => {
 event.preventDefault();
 const {name, price} = this.state;
 const itemsInState = this.state.items;
 const itemsArrayLength = itemsInState.length;
 const id = itemsArrayLength
 ?
 (itemsInState[itemsArrayLength - 1].id + 1)
 :
 1;
 this.setState({
 items: [
 ...itemsInState,
 Object.assign({}, {
 id,
 name,
 price
 })
],
 name: "",
 price: ""
 })
};

• Define an onSubmit prop on the AddItem component with a value of this.addItem
within the App component.

• Within the AddItem component, add an onSubmit to the list of destructured elements in
the function argument list.

• Add onSubmit to the proptypes object as a required function.

• Add an onSubmit attribute to the form with the value of onSubmit.

• Moment of truth, open the app in your browser. At this point, you should be able to
view the added item when you click the save button.

The final working code for this section can be found here.

Editing/Updating the Items on the Shopping List

In this section, we are going to tackle editing and updating the items. The general idea is
to click the edit button so that the name and price fields turn into input fields, thus giving
the user the ability to modify their content. After modifying the name and price the user
can then click the save button in order for the name and price to revert to their display
mode. The starter code for this section can be found here.

Handling User Input in React | 57

https://github.com/vumbula/vumbula-react/tree/master/chapter%204/Adding-Final
https://github.com/vumbula/vumbula-react/tree/master/chapter%204/Edit-Starter-code

Let’s get started

• Define an arrow function with a name of toggleItemEditing which accepts index as its
only argument. The index will be used to find the item to be edited.

• Within this function use the setState method and within it, define the item’s key. To
set its value, loop through the items array and when the item with the passed in index
is found, add an isEditing property with a value of !item.isEditing. This will toggle
the isEditing boolean accordingly. The function implementation is as shown below.

toggleItemEditing = index => {
 this.setState({
 items: this.state.items.map((item, itemIndex) => {
 if (itemIndex === index) {
 return {
 ...item,
 isEditing: !item.isEditing
 }
 }
 return item;
 })
 });
};

• Add toggleEdit as a prop to the ItemCard component and define an arrow function
that calls the toggleItemEditing function passing it the index as the argument.

• This function acts as a callback and will only execute when a button is clicked.

toggleEditing = {() => this.toggleItemEditing(index)}

• Within the ItemCard component, add an onClick attribute to the edit button with the
toggleEditing prop as its value.

• Use the isEditing property of the item to toggle between showing Edit or Save as the
button text. Do not forget to add toggleEditing to the list of propTypes in the ItemCard
component.

Handling User Input in React | 58

<button
 type="button"
 className="btn btn-primary mr-2"
 onClick={toggleEditing}
>
 {item.isEditing ? "Save" : "Edit"}
</button>

• At this point, clicking the edit button in the browser will toggle its text between Save

and Edit.

• Also note that the isEditing property changes its value whenever the Edit button is
clicked as shown below in the React devtools.

• Now, we use the item.isEditing property to either render the input fields or display
the name and price of the item within the card body.

Also, add the value attribute to the name input element with a value of item.name and also
the price input element with item.price.

<div className="card-body">
 {item.isEditing
 ?
 <div className="mb-4">
 <input
 type="text"
 name="name"
 className="form-control mb-2 mr-sm-2"
 placeholder="Item"
 value={item.name}
 required
 />
 <input

Handling User Input in React | 59

 type="number"
 name="price"
 className="form-control"
 placeholder="Price"
 value={item.price}
 required
 />
 </div>
 :
 <div>
 <h4 className="card-title text-center">
 {item.name}
 </h4>
 <div className="row justify-content-center mb-4">
 <p className="card-text">
 Price
 ${item.price}
 </p>
 </div>
 </div>
 }

 <div className="row justify-content-center">
 <div>
 <button
 type="button"
 className="btn btn-primary mr-2"
 onClick={toggleEditing}>
 {item.isEditing ? "Save" : "Edit"}
 </button>
 <button
 type="button"
 className="btn btn-primary">
 Delete
 </button>
 </div>
 </div>
</div>

At this point, when you open the app in the browser and click the edit button, the input
fields should be visible. Clicking the save button should cause them to disappear as shown
below.

Handling User Input in React | 60

Attempting to type into the item-name and item-price fields will not work at
this point. This is because we are using controlled inputs but the inputs
do not have onChange event handlers. Fixing this is fairly forward, we need
to write a function to handle the editing functionality.

• Within the App component define an arrow function with a name of handleItemUpdate
which accepts an event and index as its only arguments.

• This function is similar to one we defined above that was updating the state with the

Handling User Input in React | 61

name and price of an item before it was saved into the items array. The difference is
that we use the setState function to find the item with the passed in index and update
its name and/or price with the new values. We use the spread operator to populate the
already existing item properties.

We return the item after updating it as shown below.

handleItemUpdate = (event, index) => {
 const target = event.target;
 const value = target.value;
 const name = target.name;
 this.setState({
 items: this.state.items.map((item, itemIndex) => {
 if (itemIndex === index) {
 return {
 ...item,
 [name]: value
 }
 }
 return item;
 })
 });
};

By now, you know the flow. Go ahead and add an onChange prop to the ItemCard
component with the above function as its value.

Add the passed in prop to the ItemCard component argument list and use an arrow
function which accepts an event. This function returns this prop as the value to the
onChange attribute to both the name and price input elements, passing it the event and index
as shown below.

onChange = {event => onChange(event, index)}

The onChange prop name can have any name. Here onChange is used for
simplicity, but the onChange attribute on the input elements CANNOT have
any other name

The ItemCard component looks like this in the end.

export const ItemCard = ({toggleEditing, item, image, onChange, index}) => (
 <div className="col-md-6 col-lg-3">
 <div className="card mb-3">

Handling User Input in React | 62

 <div className="card-body">
 {item.isEditing
 ?
 <div className="mb-4">
 <input
 type="text"
 name="name"
 className="form-control mb-2 mr-sm-2"
 placeholder="Item"
 value={item.name}
 onChange={event => onChange(event, index)}
 required
 />
 <input
 type="number"
 name="price"
 className="form-control"
 placeholder="Price"
 value={item.price}
 onChange={event => onChange(event, index)}
 required
 />
 </div>
 :
 <div>
 <h4
 className="card-title text-center">
 {item.name}
 </h4>
 <div
 className="row justify-content-center mb-4">
 <p className="card-text">
 Price
 ${item.price}
 </p>
 </div>
 </div>
 }

 <div className="row justify-content-center">
 <div>
 <button
 type="button"
 className="btn btn-primary mr-2"
 onClick={toggleEditing}>
 {item.isEditing ? "Save" : "Edit"}

Handling User Input in React | 63

 </button>
 <button
 type="button"
 className="btn btn-primary">
 Delete
 </button>
 </div>
 </div>
 </div>
 </div>
 </div>
);

ItemCard.propTypes = {
 image: PropTypes.string.isRequired,
 item: PropTypes.shape({
 name: PropTypes.string.isRequired,
 price: PropTypes.string.isRequired
 }),
 toggleEditing: PropTypes.func.isRequired,
 onChange: PropTypes.func.isRequired,
};

The app should now permit update of the name and/or price of any item successfully. Find
the final code for this section here.

Deleting an Item from the Shopping List

Deleting an item should be straightforward, the idea is that when a user clicks the Delete

button, an item is removed from the items array in state. Here is the starter code for this
section.

Let’s get started adding the delete functionality.

• Define an arrow function, onDelete that takes index as its only argument.

• Within the function, call the setState function and define an object with items as a
property key and the value being an empty array.

• Within the array, use the spread operator to populate the array with items from the
zeroth index to the item before the passed in index using the slice method.

At this point, only part of the array is being included in the new array using the spread
operator. To add the remaining part of the array without the item with the passed in
index (item to be deleted), the spread operator and the slice method are used again to get
the items at the index passed in + 1 as shown below.

Handling User Input in React | 64

https://github.com/vumbula/vumbula-react/tree/master/chapter%204/Editing-Final
https://github.com/vumbula/vumbula-react/tree/master/chapter%204/Delete-Starter-code

onDelete = index => {
 this.setState({
 items: [
 ...this.state.items.slice(0, index),
 ...this.state.items.slice(index + 1)
]
 });
};

• Moving on, define an onDelete prop on the ItemCard component with its value being
an arrow function that calls the onDelete function in the App component, passing it the
index of the item to be deleted.

• Within the ItemCard component destructure the onDelete prop in the components
argument list.

• Go on and add onDelete to the components propTypes.

Finally, add an onClick attribute to the delete button with the onDelete prop as its value as
shown below.

<button
 type="button"
 className="btn btn-primary"
 onClick={onDelete}>
 Delete
</button>

Save all your changes and open the app in a browser, when you click on the delete button
that item card should be deleted and thus, disappear. Find the final code for this section
here.

Handling User Input in React | 65

https://github.com/vumbula/vumbula-react/tree/master/chapter%204/Delete-Final

Chapter Five

Handling Routing in React

66

Routing is the ability to move between different parts of an application when a user
enters a URL or clicks an element (link, button, icon, image etc) within the application.

Up until this point, you have dealt with simple projects that do not require transitioning
from one view to another, thus, you are yet to interact with Routing in React.

In this chapter, you will get introduced to routing in a React application. To extend your
applications by adding routing capabilities, you will use the popular React-Router library.
It’s worth noting that this library has three variants:

⇒ react-router: the core library

⇒ react-router-dom: a variant of the core library meant to be used for web applications

⇒ react-router-native: a variant of the core library used with react native in the
development of Android and iOS applications.

Often, there is no need to install the core react-router library by itself, but rather a choice
is made between react-router-dom and react-router-native, depending on the situation.
Both react-router-dom and react-router-native import all the functionality of the core
react-router library.

The scope of this book is in the realm of web applications so we can safely choose react-
router-dom. This library is installed in a project by running the command below in the
project directory

npm install --save react-router-dom

Routers

The react-router package includes a number of routers that we can take advantage of
depending on the platform we are targeting. These include BrowserRouter, HashRouter, and
MemoryRouter.

For the browser-based applications we are building, the BrowserRouter and HashRouter are
a good fit.

The BrowserRouter is used for applications which have a dynamic server that knows how
to handle any type of URL whereas the HashRouter is used for static websites with a server
that only responds to requests for files that it knows about.

Going forward, we shall use the BrowserRouter with the assumption that the server
running our application is dynamic. Worth noting is that any router expects to receive
only one child. Take the example below

Handling Routing in React | 67

https://reacttraining.com/react-router/web/guides/philosophy

ReactDOM.render(
 <BrowserRouter>
 <App/>
 </BrowserRouter>,
 document.getElementById('root'));

In this example, the <App/> component is the child to the <BrowserRouter> and should be
the only child. Now, the routing can happen anywhere within the <App/> component,
however, it is considered good practice to group and place all the routes in the same place.
More on this later.

History

Each router creates a history object that it uses to keep track of the current location and
re-renders the application whenever this location changes. For this reason, the other
React Router components rely on this history object being present; which is why they
need to be rendered inside a router.

The BrowserRouter uses the HTML5 history API to keep the user interface in sync with the
URL in the browser address bar.

The history object created by the Router contains a number of properties and one of the
location property whose value is also an object. The location property is one we shall put
a lot of emphasis on in this chapter as the rest are beyond the scope of this book.

When the earlier example is rendered in the browser, you should be able to see the
created history object within the React DevTools window as shown below.

The location object within the history object is shaped like so

{ pathname, search, hash, state }

The location object properties are derived from the application URL.

Handling Routing in React | 68

https://github.com/ReactTraining/history
https://developer.mozilla.org/en-US/docs/Web/API/History_API

Routes

The <Route/> component is one of the most important building blocks in the React Router
package. It renders the appropriate user interface when the current location matches the
route’s path. The path is a prop on the <Route/> component that describes the pathname
that the route should match as shown in the example that follows

<Route path="/items" />

This route is matched when the pathname is /items or, all other paths that start with
/items/ for example /items/2. If the intention is to strictly match only /items, the <Route/>
component accepts an exact prop. Adding this ensures that only the pathname that
exactly matches the current location is rendered. Below is an example that uses the exact

prop.

<Route exact path="/items" />

When a path is matched, a React component should be rendered so that there’s a change
in the UI.

It is also worth noting that the Path-to-RegExp package is used by the react-router
package to turn a path string into a regular expression and matched against the current
location.

The <Route/> component provides three props that can be used to determine which
component to render:

⇒ component

⇒ render

⇒ children

Component Prop

The component prop defines the React element that will be returned by the Route when the
path is matched. This React element is created from the provided component using
React.createElement. Below is an example using the component prop.

Handling Routing in React | 69

<Route
 exact
 path="/items"
 component={Items}
/>

In this example, the Items component will be returned when the path matches the current
location.

Render Prop

The render prop provides the ability for inline rendering and passing extra props to the
element. This prop expects a function that returns a React element when the current
location matches the route’s path. Below are examples demonstrating the use of the render
prop on a Route component.

<Route
 exact
 path="/items"
 render={() => (<div>List of Items</div>)}
/>

In the example above, when the current location matches the path exactly, a React
element is created and the string List of Items is rendered in the browser.

const cat = {category: "food"}
<Route
 exact path="/items"
 render={props => <Items {…props} data={cat}/>}
/>

In the second example, data represents the extra props that are passed to the Items
component. Here, cat is passed in as the extra prop.

Children Prop

The children prop is similar to the render prop since it always expects a function that
returns a React element. The major difference is that the element defined by the child
prop is returned for all paths irrespective of whether the current location matches the
path or not.

Handling Routing in React | 70

<Route children={props => <Items {…props}/>}/>

In this case, Items component is always rendered.

Switch

The react-router library also contains a <Switch/> component that is used to wrap multiple
<Route/> components. The Switch component only picks the first matching route among
all its children routes.

The next example demonstrates how multiple routes behave in the absence of the Switch
component.

<Route
 path="/items"
 render={() => (<div>List of items</div>)}
/>
<Route
 path="/items/2"
 render={() => (<div>Item with id of 2</div>)}
/>

In the browser, when you navigate to /items/2, the React elements in both Route
components will be rendered as shown below

List of items
Item with id of 2

This could be the intended behaviour, where the first component displays the title and the
other routes with the same base path render different UIs.

Let’s modify the example above and include the <Switch/> component and observe the
behaviour when we navigate to /items/2.

Handling Routing in React | 71

<Switch>
 <Route
 path="/items"
 render={() => (<div>List of items</div>)}
 />
 <Route
 path="/items/2"
 render={() => (<div>Item with id of 2</div>)}
 />
</Switch>

In the browser, only List of Items will be rendered. This is because the Switch component
matches only the first path that matches the current location. In this example, the route
/items was matched when /items/2 was entered in the browser’s address bar.

Link

The react-router package also contains a <Link/> component that is used to navigate the
different parts of an application by way of hyperlinks. It is similar to HTML’s anchor
element but the main difference is that using the Link component does not reload the
page but rather, changes the UI. Using an anchor tag would require that the page is
reloaded in order to load the new UI. When the Link component is clicked, it also updates
the URL.

Let’s explore the use of the Link component further by creating an app that allows us to
navigate between categories and items.

export const Home = () => (
 <div>
 Home Component

 <Link to="/items">Items</Link>

 <Link to="/category">Category</Link>

 </div>
);

The Home component contains links to Items and Categories components.

Handling Routing in React | 72

The <Link/> component uses to as a prop to define the location to navigate to. This prop
can either be a string or a location object. If it is a string, it is converted to a location
object. Note that the pathname must be absolute.

To get the example set up on your machine, clone the project here and run npm install &&
npm start. The rendered page should look like this

Clicking on the Items link triggers a UI change and updates the URL in the address bar as
well.

Similarly, clicking on the Category link trigger a UI change and updates the URL in the
address bar.

Handling Routing in React | 73

https://github.com/vumbula/vumbula-react/tree/master/chapter5/Link-example

Nested Routing

You now have an understanding of how the <Route/> component and path work. We can
now move on to nested routing in a React application.

When the router’s path and location are successfully matched, a match object is created.
This object contains information about the URL and the path. This information can be
accessed as properties on the match object.

Let’s take a closer look at the properties:

⇒ url : A string that returns the matched part of the URL

⇒ path : A string that returns the route’s path

⇒ isExact : A boolean that returns true if the match was exact

⇒ params : An object containing key-value pairs that were matched by the Path-To-

RegExp package.

 You can try this out using Route tester to match routes to URLs.

In order to successfully achieve nested routing, we shall use match.url for nested Links
and match.path for nested Routes.

Let’s explore the use of nested routing by working on an example. Clone the project here
and run npm install && npm start to get it set up and fired up.

This example contains four components;

Handling Routing in React | 74

https://pshrmn.github.io/route-tester/#/
https://github.com/vumbula/vumbula-react/tree/master/chapter5/Nested-Routing

⇒ Header component which contains the Home, Items and Category links

⇒ Home component which contains dummy data

⇒ Items component which contains a list of dummy items

⇒ Category component which demonstrates nested routing and dynamic routing

We shall focus on the Category component since it contains the nested and dynamic
routing.

export const Category = ({match}) => (
 <div>
 <h1>Category Component</h1>
 <h5>Click on a category</h5>

 <Link to={`${match.url}/shoes`}>Shoes</Link>

 <Link to={`${match.url}/food`}>Food</Link>

 <Link to={`${match.url}/dresses`}>Dresses</Link>

);

Based on the code snippet above, when the Category link is clicked, a route path is
matched and a match object is created and sent as a prop to the Category component.

Within the Category component, the match object is destructured in the argument list and
links to the three categories are created using match.url.

Template literals are used to construct the value of the prop on the Link component to the
different /shoes, /food and /dresses URLs.

Opening the example in the browser and clicking on the category link reveals three
different categories. When any one of these categories is clicked, the URL updates,
however, there is no change in the UI.

Handling Routing in React | 75

In order to fix this bug and ensure that the UI changes when a category link is clicked, we
create a dynamic route within the Category component that uses match.path for its path
prop and then dynamically change the UI.

<Route
 path={`${match.path}/:categoryName`}
 render={props =>
 (<div>
 {props.match.params.categoryName} category
 </div>
)
 }
/>

Looking closely at the value of the path prop in the code snippet above, you can see that
we use :categoryName, a variable within the pathname.

:categoryName is the path parameter within the URL and it catches everything that comes
after /category.

Passing the value to the path prop in this way saves us from having to hardcode all the
different category routes. Also, notice the use of template literals to construct the right
path.

Handling Routing in React | 76

A pathname like category/shoes creates a param object like the one below

{
 categoryName: “shoes”
}

The render prop in this route example runs an inline render which displays the
categoryName param from the match object contained within the props.

That should fix the issue of an unchanging UI and now, clicking on one of the categories
should trigger an update of both the URL and the UI like so

Protected Routes

The rationale of having is a protected route is that when a user tries to access part of the
application without logging in, they are redirected to the login page to sign into the
application.

Handling Routing in React | 77

For this redirect to work as intended, the react-router package provides a <Redirect/>
component to serve this purpose. This component has a to prop which is passed to it in
form of an object containing the pathname and state as shown below.

<Redirect
 to={{pathname: ‘/login’, state: {from:props.location}}}
/>

Here, the Redirect component replaces the current location in the stack with the pathname
provided in the object (/login) and then stores the location that the user was attempting to
visit, in the state property. The value in state can be accessed from within the Login
component using this.props.location.state.

For example, if a user attempts to navigate to /admin, a protected route, without logging in
first, they will be redirected to the login page. Following a successful sign in, they will be
redirected to /admin, the route they intended to visit in the first place.

Custom Routes

In order to achieve the concept of protected routes, we need to understand first how to
create custom routes.

Custom routes are a fancy way of saying nesting a route inside a component. This is
typically done when there is a need to decide whether a component should be rendered,
or not.

In the case of a protected route, a given route should only be accessed when a user is
logged in, otherwise, the user should be directed to the login page.

Let’s explore custom routes more in the next example. Clone the project here and run npm
install && npm start to set up.

A private route is also grouped with all other routes as shown below.

Handling Routing in React | 78

https://github.com/vumbula/vumbula-react/tree/master/chapter5/Protected-Routes

<Switch><Route exact path="/" component={Home}/>
 <Route path="/items" component={Items}/>
 <Route path="/category" component={Category}/>
 <Route path="/login" component={Login}/>}/>
 <PrivateRoute
 path="/admin"
 component={Admin}
 isAuthenticated={fakeAuth.isAuthenticated}
 />
</Switch>

The private route has the path, component and isAuthenticated props. Let’s take a closer
look at the private (custom) route.

import React from 'react';
import { Route, Redirect } from "react-router-dom";

const PrivateRoute = ({component: Component, isAuthenticated, ...rest}) => (
 <Route {...rest} render={props => (
 isAuthenticated
 ?
 (<Component {...props}/>)
 :
 (<Redirect to={{pathname: '/login', state: {from: props.location}}}/>)
)}/>
);

We destructure the props within the argument list and rename component to Component. We
use the Route component by passing it the …rest and render props. Within the render
prop, we write logic that determines whether to render a component and which one to
render if the user is signed in. Otherwise, the user is redirected to the login page.

The Login component contains a dummy authentication method which signs the user in
when they click the Login button within its render method. See below the code snippet
from the Login component.

Handling Routing in React | 79

import React from 'react';
import {Redirect} from 'react-router-dom';

class Login extends React.Component {
 state = {
 redirectToReferrer: false
 };

 login = () => {
 fakeAuth.authenticate(() => {
 this.setState({
 redirectToReferrer: true
 })
 })
 };

 render() {
 const { from } = this.props.location.state || {from: {pathname: '/'}};
 const { redirectToReferrer } = this.state;

 if (redirectToReferrer) {
 return (
 <Redirect to={from}/>
)
 }

 return (
 <div>
 <p> You must log in to view the content at {from.pathname} </p>
 <button onClick={this.login}> Log in </button>
 </div>
)
 }
}

/* A fake authentication function */
export const fakeAuth = {
 isAuthenticated: false,
 authenticate(cb) {
 this.isAuthenticated = true;
 setTimeout(cb, 100)
 },
};

export default Login

Handling Routing in React | 80

The redirectToReferrer state property is set to true when the user is signed in. This
triggers a redirect to the route they had intended to visit, or to the ‘/’ path in case they
navigated directly to the login route.

Run npm start if you do not already have the project running and navigate to
localhost:3000. You should see this

Clicking on the Admin link when not signed in redirects you to the /login page, showing
the Login button.

After clicking the Login button, you are redirected to the protected admin page as shown
below

Handling Routing in React | 81

You’re now fully equipped to build a complete React application. You are well on your
way to gaining the ability to write complex React applications. We’re excited to see what
you’ll build.

Handling Routing in React | 82

Index
A

arrow functions, 11

B

block body syntax, 13

C

class components, 19, 19
className, 25
classes, 13
component prop, 69
components, 16

class components, 19
composing components, 23
controlled components, 41
controlled vs uncontrolled, 46
functional components, 19
props, 20
uncontrolled components, 44

const, 6
constructor function, 32
container components, 19
controlled components, 41

default values, 46
multiple inputs, 43

create-react-app, 4

D

DOM (Document Object Model, 3
default props, 22
destructing

array, 8
object, 9

dumb components, 19

E

ES6
arrow functions, 11
block body syntax, 13
classes, 13
default function parameters, 7

destructing, 8
let and const, 6
object literal shorthand, 10
spread operator, 6
template literals, 7

F

function parameters, 7
functional components, 19, 20

G

Greeting component
class component, 18
setup, 16
using default props, 22
using props, 21

L

let, 6

O

object literal shorthand, 10

P

presentational components, 19
project one

Card component, 28
Footer component, 27
Jumbotron component, 26
Nav component, 26
Toys component, 27
passing props to Card component, 29
setup, 25
toys array, 27

project three
adding items to shopping list, 51
deleting an item from shopping list, 64
editing items on the shopping list, 57
react developer tools, 55

project three: Building a Shopping List App
setup, 50

Index | 83

project two
adding form data to state, 47
adding state to components, 36
render data from state, 37
setup, 35

props, 4
default props, 22
functional component, 21
with class component, 21

protected routes, 77

R

React, 2
React Developer tools, 33
handling user input, 41
routing, 67
setting up, 4
state, 32

React Developer tools
installation, 34
working with, 34

Routes, 69
routers

BrowserRouter, 67
HashRouter, 67
history, 68
location, 68

routes
Path-to-RegExp, 69
path, 69

routing
<Link/>, 72
<Route/>, 69
<Switch/>, 71
children prop, 70
component prop, 69
custom routes, 78
history, 68
nested routing, 74
protected routes, 77
render prop, 70
routers, 67

S

smart components, 19
spread operator, 6
state

adding state to components, 36
constructor function, 32
immutability, 32, 49
render data from state, 37
setState, 42
this.state, 32, 33
to class components, 32

stateful components, 19
stateless components, 19
super(), 33

T

template literals, 7
this.state, 32, 33

U

uncontrolled components, 44

V

virtual DOM, 3

Index | 84

About the Authors

Edmond Atto
Edmond Atto is a Senior Software Engineer at Andela
and Co-founder of Arvana - a startup that launched a
mobile application providing a digitised physical
addressing system for Uganda, and The Andela Way - a
publication that features freemium content for people
looking to get started with software development. He
has written standalone articles for several publications
and/or websites i.e. The Creative Cafe, The Andela Way
and Digest Africa. He is part of the 2019-20 cohort of the
Obama Foundation Scholars at Columbia University in
New York. Away from work, he spends time dreaming up
new travel destinations, reading books and watching car
shows.

John Kagga
John Kagga is a Senior Software Engineer at Andela. For
two years before joining Andela, he was the Co-founder
and lead developer at Arvana, a startup that launched a
mobile application providing a digitised physical
addressing system for Uganda. He has written several
articles for The Andela Way; a publication with over
5000 unique daily visitors. He is passionate about
growing technology communities; he pioneered a
Women in Tech Leadership program powered by Andela.
Away from work, he spends time playing football,
tennis, and dancing. He is currently working on a web
platform for Educators, at Intentional Futures - a Seattle
based company.

Colophon
Credit goes to John Paul Serumba who designed the cover page.
The word Vumbula used in the title of this book is from a local dialect in Uganda, to be
precise Luganda. Vumbula literally translates to discover. So this book means Discover
React.

The text font used is Noto Serif and the code font is M+ 1mn.

	Vumbula React
	Table of Contents
	A Beginner’s Guide to React With ES6
	What is React?
	Is React really for me?
	Why React?
	Setting up your first React Application
	Commonly used ES6 Features

	Understanding React Components
	What are components?
	Your first component
	A different way to write components
	Functional (Stateless) Vs Class (Stateful) components
	How do I choose which component type to use?
	Props
	Composing Components
	Project One
	Into components

	Understanding State in React
	What is State?
	Adding State to a Class Component
	Investigating State using React Developer tools
	Project Two

	Handling User Input in React
	Controlled Components
	Working with multiple inputs
	Uncontrolled Components
	Using Default Values in Controlled Components
	Controlled Vs Uncontrolled
	Project Two (Continued)
	State immutability
	Project Three: Building a Shopping List App

	Handling Routing in React
	Routers
	History
	Routes
	Component Prop
	Render Prop
	Children Prop
	Switch
	Link
	Nested Routing
	Protected Routes
	Custom Routes

	Index

