Techniques checklist

0. Basics

- □ Briefly understand what a *function* is
- □ Determine the *domain* of a function
- □ Determine the *range* of a function

1. Inverse functions

- \Box Determine if an inverse function f^{-1} *exists*
- \square Formulas for *domain and range* $D_{f^{-1}}$ and $R_{f^{-1}}$
- \square Find the *rule* for $f^{-1}(x)$
- \Box *Relationship* between the graphs of y = f(x) and $y = f^{-1}(x)$

2. Composite functions

- \Box Determine if a composite function *f g exists*
- \square Formula for *domain* D_{fg}
- \Box Finding the *range* R_{fg}
- \Box Find the *rule* for fg(x)

3. Miscellaneous

$$\square \ f^2(x) = ff(x)$$

$$\Box f f^{-1}(x), f^{-1}f(x)$$

- □ "Self-inverse" functions
- □ Piecewise functions
- □ Repeating/periodic functions

Page 1

1 Inverse functions

1.1 Existence of inverse functions

1.1.1 Inverse function exists

1.1.2 Inverse function does not exist

1.1.3 Restriction of domain to get an inverse function

Example 1.1C: Restriction of domain

The function f is defined by

 $f: x \mapsto x^2 + 1, \qquad x \in \mathbb{R}, -2 < x \le b.$

Find the largest value of *b* such that f^{-1} exists.

Answer: Largest b = 0.

1.2 Formulas for $D_{f^{-1}}$ and $R_{f^{-1}}$

•
$$D_{f^{-1}} = R_f$$

• $R_{f^{-1}} = D_f$

1.3 Rule for f^{-1}

Example 1.3: Finding $f^{-1}(x)$ The function f is defined by $f: x \mapsto x^2 + 2x - 2, \quad x \in \mathbb{R}, x \le -1.$ Let $y = x^2 + 2x - 2$ $y = (x + 1)^2 - 3$ $(x + 1)^2 = y + 3$ $x + 1 = \pm \sqrt{y + 3}$ Since $x \le -1$ (domain of f), $x = -1 - \sqrt{y + 3}$ Hence $f^{-1}(x) = -1 - \sqrt{x + 3}$. \blacksquare Definition of f^{-1} : $f^{-1}: x \mapsto -1 - \sqrt{x + 3}, \quad x \in \mathbb{R}, x \ge -3.$ *Remark*: Note that we have used $D_{f^{-1}} = R_f$ (see previous example).

Page 5

1.4 **Relationship between** y = f(x) and $y = f^{-1}(x)$

1.4 Relationship between y = f(x) and $y = f^{-1}(x)$

Example 1.4: Symmetry between y = f(x) and $y = f^{-1}(x)$

The function f is defined by

$$f: x \mapsto x^2 + 2x - 2, \qquad x \in \mathbb{R}, x \le -1.$$

The graphs of y = f(x) and $y = f^{-1}(x)$ are *symmetrical* about the line y = x.

The intersection of the two curves also coincide with y = x.

Hence the solution to $f(x) = f^{-1}(x)$ can be found by solving the equation f(x) = x.

2 Composite functions

- 2.1 Existence of composite functions
 - The composite function fg *exists* if $R_g \subseteq D_f$
 - The composite function fg *does not exist* if $R_g \not\subseteq D_f$

2.2 Domain and range of composite functions

• $D_{gf} = D_f$ $D_{fg} = D_g$ • $D_f \xrightarrow{f} R_f \xrightarrow{g} R_{gf}$ $D_g \xrightarrow{g} R_g \xrightarrow{f} R_{fg}$

2.2.1 Domain of composite function

Example 2.2A: Domain of a composite functionThe functions f and g are defined by $f: x \mapsto \ln x, \qquad x \in \mathbb{R}, \ 0 < x < e^{-1}, \qquad g: x \mapsto x^2 - 1, \qquad x \in \mathbb{R}.$ $D_{gf} = D_f = (0, e^{-1}).$

2.2.2 Range of composite function

2.3 Rule for composite functions

Example 2.3: Rule of composite functions	
The functions f and g are defined by	
$f: x \mapsto -\frac{3}{4}x + 2,$ $g: x \mapsto x^2 - 1,$	$x \in \mathbb{R}, \ 0 \le x \le 4,$ $x \in \mathbb{R}, \ -1 \le x \le 2$
$fg(x) = f(x^2 - 1)$ = $-\frac{3}{4}(x^2 - 1) + 2$ = $-\frac{3}{4}x^2 + \frac{11}{4}$.	
$gf(x) = g\left(-\frac{3}{4}x + 2\right)$ $= \left(-\frac{3}{4}x + 2\right)^2 - 1. \blacksquare$	
Definition of <i>gf</i> :	
$gf: x \mapsto \left(-\frac{3}{4}x + 2\right)^2 -$	$1, \qquad x \in \mathbb{R}, 0 \le x \le 4.$
<i>Remark</i> : Note that we have used $D_{gf} = D_f$ (see previous example).	

Links

- Math Atlas: notes and questions https://math-atlas.vercel.app
- Math Bounty: TYS answers and related questions https://math-bounty.vercel.app
- (Under construction) Math Interactive: mobile-friendly lecture notes https://math-interactive.vercel.app
- (Deprecated soon) AdotB: older website https://adotb.xyz

Contact me

Contact me at kelvinsjk@gmail.com