INSTRUCTION MANUAL

Cellulase "Onozuka" R-10 from Trichoderma viride

Cat. No. 16419

Product Description:	
General	A multi-component enzyme system with high cellulose activity Cellulase is able to decompose natural (e.g. filter paper) as well as modified celluloses (e.g. carboxymethyl cellulose). It hydrolyses 1,4- β -D-glucosidic linkages in cellulose, lichenin and cereal β -D-glucans. In nature, cellulose is found in association with other components e.g. hemicellulose, lignin and pectin. SERVA cellulases contain a number of other activities, which assist in breaking down these components and degrading cell walls. α -Amylase hydrolyses 1,4- α -D-glucosidic linkages in polysaccharides containing three or more 1,4- α -linked D-glucose units. Pectinase randomly cleaves 1,4- α -D galactosiduronic linkages in galacturans. Contained are as well hemicellulase and protease activities.
Application	 Isolation of plant protoplasts² for its ability to degrade cell walls, often in combination with Macerozyme R-10 (cat. no. 28032). Recommended quality for ELOS analysis by VDLUFA.
Features	 Lyophilisate activity: ca. 1 U/mg* Temperature optimum: 40 – 50 ℃ Optimal pH: 4 - 5 (activity range 3 - 7) Extraneous activities: α-amylase ca. 0.8 U/mg, hemicellulase ca. 1 U/mg, pectinase ca. 0.4 U/mg, protease ca. 0.01 DMC-U/mg
Stability and Storage	Lyophilisate should be stored at a dry place in a tightly closed container at +2 $^{\circ}$ C to +8 $^{\circ}$ C. Cellulase solutions ar e stable at pH 5 – 7 at 4 $^{\circ}$ C for 24 h. Activity is completely d estroyed after 10 – 15 minutes at 80 $^{\circ}$ C.
Inhibition/ Inactivation	Cellulase is inhibited by its reaction products e.g. glucose, cellobiose. Hg ²⁺ inhibits the activity completely, whereas Mn ⁺ ,

Celiobiose. Hg Innibits the activity completely, whereas Mn Ag²⁺, Zn²⁺ and Cu²⁺ are only slightly inhibitory.

*Unit definition: 1 U catalyses the liberation of 1 µmol glucose from sodium carboxymethyl cellulose per minute at 40 ℃, pH 4.5; glucose is determined with alkaline copper reagent³.

Version 12/0759 - 263

¹Beldman, G. et al. (1985) Eur. J. Biochem. 146, 301 - 308

²Potrykus, J. & Shillito, R. D. (1986) Methods Enzymol. 118, 549 – 578

³Okada, G. (1988) Methods Enzymol. 160, 259 – 263