Errata

Bekanntgewordene Druckfehler in "Entwicklung und Konstruktion von Kunststoffteilen", 1. Auflage, Bernd-Rüdiger Meyer, ISBN: 978-3-446-46292-2

Seite 178:	Die Cleichungen der Crenzlängen wie felgt kerrigiert:				
Selle 1/8:	Die Gleichungen der Grenzlängen wie folgt korrigiert:				
	$l_{g1} = \frac{3, 4 \cdot r}{\alpha_g} \cdot \sqrt{\frac{r \cdot \left(1 - \nu^2\right)^{0.5}}{s}} \cdot \frac{E_2}{E_1}$				
	$l_{g2} = 0.96 \cdot \alpha_g \cdot k \cdot \sqrt{\frac{r \cdot s}{\left(1 - \nu^2\right)^{0.5}}} \cdot \frac{E_3}{E_2}$				
Seite 184:	Mittragende Zylinderlänge: $l_m = min \left\{ l_R; \frac{l_g}{2} \right\}$				
Seite 191:	1. Beispiel: ε_{Kzul} = 0,085% (statt 30,085%)				
	2. Beispiel: l_R = 14 cm (statt l_g)				
Seite 201:	xim. Eigenwert μ_∞ ersetzt durch:				
	$\sqrt{2(G+1)\cdot 1,2337^{(G+1)}}$				
Seite 238:	Abschnitt komplettiert unterhalb der letzten Zeile:				
	Graetzzahl Gz und Fluidverweilzeit t_V :				
	$Gz = \frac{d_h^2}{a \cdot t_V}$ $t_V = \frac{A \cdot l}{\dot{V}} = \frac{l}{\overline{V}}$				
	Nu_{∞} : Nußeltzahl für vollständig ausgebildete Strömungs- und Temperaturprofile der Druckströmung $(Gz \rightarrow 0)$				
	a: Temperaturleitzahl des Fluids (Schmelze)				
	ΔT_{ad} : Mittelwert des Temperaturanstiegs im Fluid infolge Wärmedissipation in einem adiabaten (isenthalpen) Strömungskanal				
	Hinweis: Nu_{∞} und f_p sind als strömungsquerschnittsabhängige Kennwerte dem Abschnitt 5.5.4 zu entnehmen.				

Seite 238: (Fortsetzung)

Bestimmung von ΔT_{ad} :

Aus der Energiebilanzgleichung eines isenthalpen Kanals ergibt sich der kalorisch gemittelte Temperaturanstieg ΔT_{ad} infolge Wärmedissipation. Vom Verfasser wurde die Bilanzgleichung bei Verwendung der TAIT-Beziehung als Zustandsgleichung für Polymerschmelzen integriert. Unabhängig von der Art der Schmelzen konnte folgende Näherungsbeziehung im technisch interessanten Druck- und Temperaturbereich definiert werden:

$$\Delta T_{ad} = \kappa_R \cdot \Delta p_R$$

Dabei ist ΔP_R der Druckabfall infolge Reibungsverluste der Strömung. Elastische und kinetische Effekte werden dabei nicht wirksam. Der Umrechnungsfaktor κ_R kann für alle Polymere ohne größere Einschränkung an Genauigkeit mit $\kappa_R \approx 0.03 \frac{K}{bar}$ eingesetzt werden.

Rheologisch repräsentative Fluidtemperatur (T_{rep}):

$$T_{rep} = T_a + \Delta T_1 - \Delta T_2$$

Rheologisch wirksame Temperaturerhöhung durch Wärmedissipation:

$$\Delta T_1 = \frac{\Delta T_{\kappa}}{f_T}$$

Halbempirischer Korrekturbeiwert nach Reher (1997):

$$f_T = 0.7 + \frac{40}{Gz}$$

Rheologisch wirksame Temperaturabsenkung durch hydrostatischen Druck:

$$\Delta T_2 = \kappa_p \left(p_h - p_{h0} \right)$$

Aktueller hydrostatischen Druck. Anfangsdruck (p_a) und Enddruck (p_e):

$$p_h = \frac{p_a}{2} + \frac{p_e}{2}$$

Hydrostatischer Druck bei Messung der Nullviskosität ist praktisch vernachlässigbar (p_{h0} = 0)

Druckeinflussfaktor als Näherungswert: κ_p = 0,025 K/bar.

Seite 271: | Im Text: $z_F \cdot z_{ST}$ (statt $z_F + z_{ST}$)

Seite 273:	Im Entscheidungsalgorithmus F durch z_F ersetzt						
Seite 314:	In Tabelle Temperaturdefinitionen die Gleichung der Temperatur-						
	ausgleichszahl ersetzt:						
	$\Theta = rac{artheta_M - artheta_K}{ec{artheta}_C - artheta_K}$						
	$\overline{\vartheta}_E - \vartheta_K$						
Seite 349:	In Tabelle Biegefeder mit linearer Höhenabnahme Gleichung kom-						
	plettiert:						
	$\psi = \frac{3}{\left(1 - \kappa\right)^3} \cdot \left(2\kappa - \ln \kappa - 1, 5 - 0, 5\kappa^2\right) - 1$						
	$(1-\kappa)$						
Seite 358:	In der Gleichung für $F_{F,L}$ ist der Ausdruck $\left(1-\eta^2\right)$ durch $\left(1-\nu^2\right)$ zu						
	ersetzen						
Seite 359:	Für q > 414 gilt $0.76 \cdot q^{0.1}$						
Seite 363:	Hakenverlängerung durch unterschiedliche Hakenanbindung:						
	In Bildunterschrift rechts und links vertauscht						
	In darunterliegenden Bildern folgende Unterschrift ergänzt:						
	rechts: Faktische Hakenverlängerung durch biege- u. torsionswei-						
Seite 380:	Che Hakenwurzel Der fettgedruckte Satz unter dem Cliederungspunkt 12.1.2 Werk						
Selle 300.	Der fettgedruckte Satz unter dem Gliederungspunkt "12.1.2 Werkstoffdaten" gehört an den Schluss des vorherigen Gliederungspunk-						
	tes.						
Seite 384:	Abschnitt komplettiert nach der Tabelle:						
	Maximale Durchbiegung und Formänderungsnachweis:						
	$p^* = C_m \cdot f^{*3} + C_b \cdot f^*$						
	(2 ")						
	Festigkeitsnachweis:						
	Plattenmitte: $\sigma^*_{x(0)} = C_{xm(0)} \cdot f^{*2} + C_{xb(0)} \cdot f^*$						
	$\sigma^{^{\star}}{}_{y(0)} = C_{ym(0)} \cdot f^{^{\star}2} + C_{yb(0)} \cdot f^{^{\star}}$						
	Plattenrand: $\sigma^*_{x(b)} = C_{xm(b)} \cdot f^{*2} + C_{xb(b)} \cdot f^*$						
	$\sigma^{*}_{y(b)} = C_{ym(b)} \cdot f^{*2} + C_{yb(b)} \cdot f^{*}$						

Seite 384:	Vergleichszugspannung nach GEH:						
(Fortsetzung)	Plattenmitte:	$\sigma^*_{V(0)} = \sqrt{\sigma^*_{x(0)}^2 + \sigma^*_{y(0)}^2 - \sigma^*_{x(0)} \cdot \sigma^*_{y(0)}}$					
	Plattenrand:	$\sigma_{V(b)}^{*} = \sqrt{\sigma_{X(b)}^{*2} + \sigma_{Y(b)}^{*2} - \sigma_{X(b)}^{*} \cdot \sigma_{Y(b)}^{*}}$					
	$\sigma^*_{Vmax} = max$	$\mathcal{L}\left\{\sigma^{\star}_{V(0)};\sigma^{\star}_{V(b)}\right\}$	}	$\sigma_{\mathit{Vmax}} = \sigma^*_{\mathit{Vmax}} \cdot E \cdot \left(\frac{s}{b}\right)^2 \le \sigma_{\mathit{zul}}$			
Seite 393:	93: Für Lastfall 2 und WB 3 folgende Zwischenwerte korrigiert:						
	$H_2 = 1,81 \text{ (statt 2,09)};$						
	f* = 6,87 (statt 9,20);						
	f = 27,5 (statt 36,8)						
Seite 394:							
	$\sigma^*_{x(0)} = 18,88 \text{ (statt 30,43)};$						
	$\sigma_{v(0)}^* = 16,92 \text{ (statt 25,45)};$						
	$\sigma^*_{V(0)} = 17,98 \text{ (statt 28,27)}$						
Seite 394:	Korrektur der			gen:			
	Lastfall	WB	σ _{V(0)}				
	1	1	2,9				
		2	2,6				
		3	2,45				
	2	1	3,1				
		2	2,8	<u> </u>			
		3	2,55				