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• Becoming a rapidly growing issue worldwide

• UK fraud activity reached an estimated £17 million in 2018

• Biggest lines are Motor, Medical and Workmen’s Compensation – fake car 

crashes, personal injury scams, faked death claims

• With advancing technology, it can become easier to detect fraudulent claims 

when they are received



Machine Learning

02 September 2019



Machine Learning

02 September 2019 10

The ”teaching a kid math” analogy
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All about patterns!!!

Computer systems learn
from data

We train the system System learns Then performs operations on its own
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Training phase 1: data is 

fed into the algorithm, 

relevant fields and 

records sorted from data 

to retrieve active dataset

All about patterns!!!

Computer systems learn
from data

We train the system System learns Then performs operations on its own
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All about patterns!!!

Computer systems learn
from data

Training phase 2: Model Fitting –

algorithm decodes hidden patterns and 

relationships in the data

We train the system System learns Then performs operations on its own
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All about patterns!!!

Computer systems learn
from data

Testing phase: new data fed into system, 

algorithm uses patterns & relationships learnt 

during the training phase to predict new cases

We train the system System learns Then performs operations on its own
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Source: Data Science Central
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With ML, no need to…

• …make assumptions about distributions

• …worry about possible correlations between predictors

• …look for interactions between predictors
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How can ML help?
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RULE-BASED FRAUD DETECTION ML-BASED FRAUD DETECTION

Can catch obvious and known fraud 

scenarios only

Can find not-so-obvious fraud scenarios due 

to the ability to detect hidden 

patterns/correlations in data

Requires manual work to determine criteria 

for fraud scenarios

Can automatically detect and create rules for 

fraud scenarios

Longer processing and verification times due 

to manual nature

Quicker processing and verification times 

since algorithms are automatically generated 

and verified 



Tree-Based ML Algorithms
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Decision Trees
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Model is grown by recursively splitting the data 

into decision boundaries using the feature 

space



Types of Decision Tree Algorithms
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SINGLE TREE 

MODELS

1. CART 

2. C5.0

ENSEMBLE MODELS

1. GBM

2. RANDOM FOREST



Single Tree Models
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Creating a Decision Tree
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Parent node

Child node

Data is split in a way that 

maximizes the gain in information 

between parent and child nodes

Goal is to split data points in a way 

that makes the subgroups as 

homogenous as possible
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EntropyGini Impurity

𝐺𝑖𝑛𝑖 𝑡 =  

𝑘=1

ℎ

𝑝𝑘(1 − 𝑝𝑘)

𝑝𝑘 – Probability of choosing item with label k in set t

Measures how often a randomly chosen 

element would be incorrectly labeled if it were 

labeled according to its distribution in the data

𝑝𝑘 – Probability of choosing item with label k in set t
𝑏 – Logarithmic base 

𝐻 𝑡 = − 

𝑘=1

ℎ

𝑝𝑘 log𝑏 𝑝𝑘

Measures how “mixed up” the data is

Used as splitting criterion for the CART

algorithm 

Used as splitting criterion for the C5.0

algorithm 



Ensemble Learning Models
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Gradient Boosting Machines
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Boosting
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• Converts weak learners into a single strong learner by aggregating them



Boosting
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• Converts weak learners into a single strong learner by aggregating them

Model 1

Data

Residuals Model 2

Residuals …

Final 

Model



Random Forests
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• RF based on the concept of Bagging (Bootstrap Aggregating)
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• RF based on the concept of Bagging (Bootstrap Aggregating)

Random sample of p columns

Random sample of k rows

Repeat N times
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Artificial Neural Networks

Structured Sequential model
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Structured: A Neural Network has a defined structure that 

consists of 3 types of layers

Sequential: Information flows in a sequence from one 

layer to the next, undergoing operations at each layer –

almost like an assembly line 



How ANN’s Work
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How ANN’s Work

• Data in every neuron is transformed by an activation function:
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ℎ𝑘 𝑥 = 𝑔(𝛽0𝑘 + 

𝑖=1

𝑛

𝑥𝑖𝛽𝑖𝑘)

ℎ𝑘(𝑥) – kth neuron in a hidden layer
𝛽𝑖𝑘 - coefficient of the ith previous-layer neuron on 

above neuron



How ANN’s Work

• Data in every neuron is transformed by an activation function:

• Activation function transforms the linear combination of inputs from one layer 

and sends it to the next layer.
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ℎ𝑘 𝑥 = 𝑔(𝛽0𝑘 + 

𝑖=1

𝑛

𝑥𝑖𝛽𝑖𝑘)

ℎ𝑘(𝑥) – kth neuron in a hidden layer
𝛽𝑖𝑘 - coefficient of the ith previous-layer neuron on 

above neuron



How ANN’s Work
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At first, each neuron is randomly assigned a weight – this measures the contribution of that neuron to the next layer

How ANN’s Work
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Data flows through network, predicted values calculated

How ANN’s Work
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Predictions are compared with actuals based on a loss function

How ANN’s Work
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Weights are updated to reduce value of loss function

How ANN’s Work



Case Study: Classifying Motor Insurance 

Fraud
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The Data
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• Claim-level information with an indicator for whether a claim was flagged as a 

fraud or not

• Data points for each claim include –

– Driver demographics (age, marital status, gender)

– Vehicle information (age, price, body type, country or origin)

– Policy information (policy cover type, number of vehicles insured, deductible, agent type)

– Accident/Claim information (when was the claim filed, whether there were witnesses 

present during the accident, party at fault, whether a police report was filed)



Summary of Results
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• GBM, Random Forest performed best, followed by Neural Networks

• C5.0, CART poor

• Logistic Regression did not perform well

• Driver Age, Policy Type, Fault, Past Number of Claims most important 

predictors of fraudulent behavior

• Details in following slides
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Models
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• Data split 75-25 for training and validation

• C5.0 trained using standard algorithm

• CART pruned using cost-complexity

• GBM, Random Forest and Neural Networks tuned using Cartesian 

Hyperparameter Grid Search



Grid Search Example – H2O
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Model Performance
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• Evaluated using the following criteria

– Accuracy

– AUC

– F1 Score

• All metrics based on Confusion Matrix

• AUC also related to Receiver Operating Characteristics (ROC) Curve



Model Performance
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Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁

F1 = 
2 ∗(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +𝑅𝑒𝑐𝑎𝑙𝑙



Model Performance
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ROC Curve: Plots True 

Positive Rate vs. False 

Positive Rate at different 

probability thresholds

AUC: 

Area under ROC Curve

Measure of how well can a 

model distinguish between 2 

classes
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Conclusions
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• ML can be a powerful tool 

• Results from classification models could be used to proactively flag claims as 

fraudulent and minimize unnecessary losses

• Models can also help understand customer behavior, eg. which groups 

contribute most to insurance fraud
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The views expressed in this presentation are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views 

stated, nor any claims or representations made in this presentation and accept no responsibility or liability to any person for loss or damage suffered as a 

consequence of their placing reliance upon any view, claim or representation made in this presentation. 

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice 

of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this presentation be 

reproduced without the written permission of the author.

Questions Comments


