

LEBSC
Laboratorio di Strutturistica
Chimica Ambientale e Biologica

Laboratory of Environmental and Biological Structural Chemistry

ALMA MATER STUDIORUM
UNIVERSITÀ DI BOLOGNA

ANTIMICROBIOLOGICAL TESTS CARRIED OUT IN CONFORMITY WITH ISO 22196 ON BALLPOINT PENS MADE OF ABS FUNCTIONALIZED WITH ZINC IONS, ACCORDING TO THE PROCESS PATENTED MI2013A000469

Evaluation of the surface antimicrobial effectiveness

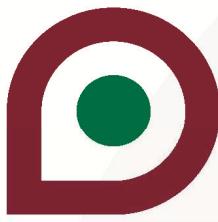
Aim: Evaluation of the possible decrease in bacterial load obtained after the contact for a known period of time between parts of the pens made of antibacterial ABS treated with Zinc ions (according to the patented process MI2013A000469) and two reference microbiological strains.

The product under investigation:

- Pens made of plastic (**S14-068**) treated with Zinc ions to make it antibacterial

Microbic strains utilized:

- *Escherichia coli* (Gram negative bacterium; Gram -) ATCC 25922
- *Staphylococcus Aureus* (Gram positive bacterium; Gram +) ATCC 6538P


Method

The samples have been tested according to the process described by **ISO 22196:2011**, which is an International Standard Method to evaluate the antibacterial activity on plastic not porous surfaces.

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA
LABORATORIO DI STRUTTURISTICA CHIMICA AMBIENTALE E BIOLOGICA

VIA SELMI, 2 - 40126 BOLOGNA - ITALIA TEL. +39 051-2099486 - 485 - FAX +39 051-2099593 - www.lebsc.unibo.it
Unità Operativa del C.I.R.C.M.S.B. Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici
Via C. Ulpiani, 27 - 70126 Bari (Italia) - P.I. e C.F.: 04434750727 - Reg. Società: 29713 Tribunale di Bari - CCIAA: 314319

EXPERIMENTAL PROCEDURE:

The starting bacterial suspensions were diluted to obtain a known bacterial concentration expressed by units forming a colony –ufc/ml. The polymers were treated with the reference microbical strains, then covered with a PE sterile film and incubated at 37 ± 1 °C for 24 hours. At this stage, the samples were washed with a neutralizing solution where the residual microbical load was detected.

The test was repeated three times and the results are reported in Table 1.

Table 1: Antibacterial activity of sample S14-068 – 4.0% treatments against *Escherichia Coli* ATCC 8739 (Gram -) and *Staphylococcus Aureus* ATCC 6538 (Gram +).

The results reported here represent the average of the three tests per type of product.

MICROBIC STRAINS	Initial inoculation (ufc/ml)	37°C per 24 h	Checkout inoculation	ABS 0-4 (cod. S14 068)	Decrease %
<i>Escherichia coli</i>	3.0×10^5		1.4×10^8	5.5×10^5	99.6 %
<i>Staphylococcus Aureus</i>	5.5×10^4		3.7×10^8	7.3×10^6	98,0 %

CONCLUSION:

In consideration of the results obtained from the *in vitro* tests, it can be stated that the residual bacterial load found on the samples of the treated pens after the contacting period is quantitatively lower respect to the one compared to the control pattern. The inhibition percentage ranges from 98.0 to 99.6% both for *Escherichia coli* (Gram -) common biologic indicator in environmental pollution, and *Staphylococcus aureus* (Gram +), which is one of the most common pathogenic bacterium responsible for skin infections.

Date: 30/01/2014

Prof. Norberto Roveri

ANTIMICROBIOLOGICAL TESTS CARRIED OUT IN CONFORMITY WITH ISO 22196 ON BALLPOINT PENS MADE OF ABS FUNCTIONALIZED WITH ZINC IONS

The present study was performed by Dr. Rinaldi in the microbiology laboratory of the company INCOS Ltd. ISO 9001:2008 certified.

Target

The objective of this test is to evaluate the reduction of the microbial obtained upon contact of samples of ballpoint pens, made of ABS polymer added to 4% with ABS polymer functionalized with zinc, with some microbial strains chosen among those most responsible for infections.

Dr. Francesca Rinaldi

Castello d'Argile (BO), 28.02.2014